Qin J, Theis KA, Barbour KE, Helmick CG, Baker NA, Brady TJ (2015) Impact of arthritis and multiple chronic conditions on selected life domains—United States, 2013. MMWR Morb Mortal Wkly Rep 64(21):578–582
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention (CDC) (2015) Impact of arthritis and multiple chronic conditions on selected life domains—United States, 2013. MMWR Morb Mortal Wkly Rep 62(44):869–873
Google Scholar
Pereira D, Ramos E, Branco J (2015) Osteoarthritis. Acta Med Port 28(1):99–106
Article
Google Scholar
Menashe L, Hirko K, Losina E, Kloppenburg M, Zhang W, Li L et al (2012) The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 20(1):13–21
Article
CAS
Google Scholar
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT (2016) Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 11:19
Article
Google Scholar
McCoy AM (2015) Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 52(5):803–818
Article
CAS
Google Scholar
Lorenz J, Grassel S (2014) Experimental osteoarthritis models in mice. Methods Mol Biol 1194:401–419
Article
Google Scholar
Malfait AM, Little CB (2015) On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 17:225
Article
Google Scholar
Little CB, Hunter DJ (2013) Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol 9(8):485–497
Article
CAS
Google Scholar
Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, Liakou C, Triantafillopoulos IK, Dontas I et al (2014) Useful animal models for the research of osteoarthritis. Eur J Orthopaedic Surg Traumatol 24(3):263–271
Article
Google Scholar
Lapvetelainen T, Hyttinen M, Lindblom J, Langsjo TK, Sironen R, Li SW et al (2001) More knee joint osteoarthritis (OA) in mice after inactivation of one allele of type II procollagen gene but less OA after lifelong voluntary wheel running exercise. Osteoarthritis Cartilage 9(2):152–160
Article
CAS
Google Scholar
Kyostio-Moore S, Nambiar B, Hutto E, Ewing PJ, Piraino S, Berthelette P et al (2011) STR/ort mice, a model for spontaneous osteoarthritis, exhibit elevated levels of both local and systemic inflammatory markers. Comp Med 61(4):346–355
CAS
PubMed
PubMed Central
Google Scholar
Jaeger K, Selent C, Jaehme W, Mahr S, Goebel U, Ibrahim S et al (2008) The genetics of osteoarthritis in STR/ort mice. Osteoarthritis Cartilage 16(5):607–614
Article
CAS
Google Scholar
Kumagai K, Suzuki S, Kanri Y, Matsubara R, Fujii K, Wake M et al (2015) Spontaneously developed osteoarthritis in the temporomandibular joint in STR/ort mice. Biomed Rep 3(4):453–456
Article
CAS
Google Scholar
Uchida K, Urabe K, Naruse K, Kozai Y, Onuma K, Mikuni-Takagaki Y et al (2012) Differential age-related bone architecture changes between female and male STR/Ort mice. Exp Anim 61(1):59–66
Article
CAS
Google Scholar
Staines KA, Poulet B, Wentworth DN, Pitsillides AA (2017) The STR/ort mouse model of spontaneous osteoarthritis—an update. Osteoarthritis Cartilage 25(6):802–808
Article
CAS
Google Scholar
Pasold J, Osterberg A, Peters K, Taipaleenmaki H, Saamanen AM, Vollmar B et al (2013) Reduced expression of Sfrp1 during chondrogenesis and in articular chondrocytes correlates with osteoarthritis in STR/ort mice. Exp Cell Res 319(5):649–659
Article
CAS
Google Scholar
Allen KD, Griffin TM, Rodriguiz RM, Wetsel WC, Kraus VB, Huebner JL et al (2009) Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen. Arthritis Rheum 60(9):2684–2693
Article
Google Scholar
Hu K, Xu L, Cao L, Flahiff CM, Brussiau J, Ho K et al (2006) Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen. Arthritis Rheum 54(9):2891–2900
Article
CAS
Google Scholar
Costello KE, Guilak F, Setton LA, Griffin TM (2010) Locomotor activity and gait in aged mice deficient for type IX collagen. J Appl Physiol 109(1):211–218
Article
Google Scholar
de Hooge AS, van de Loo FA, Bennink MB, Arntz OJ, de Hooge P, van den Berg WB (2005) Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging. Osteoarthritis Cartilage 13(1):66–73
Article
Google Scholar
Motomura H, Seki S, Shiozawa S, Aikawa Y, Nogami M, Kimura T (2018) A selective c-Fos/AP-1 inhibitor prevents cartilage destruction and subsequent osteophyte formation. Biochem Biophys Res Commun 497(2):756–761
Article
CAS
Google Scholar
Poole R, Blake S, Buschmann M, Goldring S, Laverty S, Lockwood S et al (2010) Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage 18(Suppl 3):S10–S16
Article
Google Scholar
Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19(6):704–712
Article
CAS
Google Scholar
Fang H, Huang L, Welch I, Norley C, Holdsworth DW, Beier F et al (2018) Early changes of articular cartilage and subchondral bone in The DMM mouse model of osteoarthritis. Sci Rep 8(1):2855
Article
Google Scholar
Culley KL, Dragomir CL, Chang J, Wondimu EB, Coico J, Plumb DA et al (2015) Mouse models of osteoarthritis: surgical model of posttraumatic osteoarthritis induced by destabilization of the medial meniscus. Methods Mol Biol 1226:143–173
Article
CAS
Google Scholar
Jia H, Ma X, Wei Y, Tong W, Tower RJ, Chandra A et al (2018) Loading-induced reduction in sclerostin as a mechanism of subchondral bone plate sclerosis in mouse knee joints during late-stage osteoarthritis. Arthritis Rheumatol 70(2):230–241
Article
CAS
Google Scholar
Sniekers YH, Weinans H, Bierma-Zeinstra SM, van Leeuwen JP, van Osch GJ (2008) Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment—a systematic approach. Osteoarthritis Cartilage 16(5):533–541
Article
CAS
Google Scholar
Ma HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS (2007) Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 15(6):695–700
Article
Google Scholar
Chambers MG, Cox L, Chong L, Suri N, Cover P, Bayliss MT et al (2001) Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice. Arthritis Rheum 44(6):1455–1465
Article
CAS
Google Scholar
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H et al (2015) Osteoarthritis. Lancet 386(9991):376–387
Article
CAS
Google Scholar
van Osch GJ, van der Kraan PM, Blankevoort L, Huiskes R, van den Berg WB (1996) Relation of ligament damage with site specific cartilage loss and osteophyte formation in collagenase induced osteoarthritis in mice. J Rheumatol 23(7):1227–1232
PubMed
Google Scholar
Adaes S, Mendonca M, Santos TN, Castro-Lopes JM, Ferreira-Gomes J, Neto FL (2014) Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis. Arthritis Res Ther 16(1):R10
Article
Google Scholar
Murakami K, Nakagawa H, Nishimura K, Matsuo S (2015) Changes in peptidergic fiber density in the synovium of mice with collagenase-induced acute arthritis. Can J Physiol Pharmacol 93(6):435–441
Article
CAS
Google Scholar
Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noel D (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 7(1):16214
Article
Google Scholar
Pitcher T, Sousa-Valente J, Malcangio M (2016) The monoiodoacetate model of osteoarthritis pain in the mouse. J Visualized Exp. https://doi.org/10.3791/53746
Article
Google Scholar
Al-Saffar FJ, Ganabadi S, Yaakub H, Fakurazi S (2009) Collagenase and sodium iodoacetate-induced experimental osteoarthritis model in sprague dawley rats. As J Sci Res 2(4):167–179
Article
CAS
Google Scholar
Brederson JD, Chu KL, Xu J, Nikkel AL, Markosyan S, Jarvis MF et al (2018) Characterization and comparison of rat monosodium iodoacetate and medial meniscal tear models of osteoarthritic pain. J Orthop Res. https://doi.org/10.1002/jor.23869
Article
PubMed
Google Scholar
Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P (1997) Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum 40(9):1670–1679
Article
CAS
Google Scholar
Poulet B (2016) Non-invasive loading model of murine osteoarthritis. Curr Rheumatol Rep 18(7):40
Article
Google Scholar
Furman BD, Strand J, Hembree WC, Ward BD, Guilak F, Olson SA (2007) Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J Orthop Res 25(5):578–592
Article
Google Scholar
Christiansen BA, Guilak F, Lockwood KA, Olson SA, Pitsillides AA, Sandell LJ et al (2015) Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 23(10):1627–1638
Article
CAS
Google Scholar
Schenker ML, Mauck RL, Ahn J, Mehta S (2014) Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg 22(1):20–28
Article
Google Scholar
Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JH, Haudenschild DR (2012) Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 20(7):773–782
Article
CAS
Google Scholar
Lewis JS, Hembree WC, Furman BD, Tippets L, Cattel D, Huebner JL et al (2011) Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis Cartilage 19(7):864–873
Article
CAS
Google Scholar
Furman BD, Mangiapani DS, Zeitler E, Bailey KN, Horne PH, Huebner JL et al (2014) Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res Ther 16(3):R134
Article
Google Scholar
Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA (2011) Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 63(1):137–147
Article
Google Scholar
Melville KM, Robling AG, van der Meulen MCH (2015) In vivo axial loading of the mouse tibia. Methods Mol Biol 1226:99–115
Article
Google Scholar
Onur TS, Wu R, Chu S, Chang W, Kim HT, Dang ABC (2014) Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis. J Orthop Res 32(2):318–323
Article
Google Scholar
Lockwood KA, Chu BT, Anderson MJ, Haudenschild DR, Christiansen BA (2014) Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis. J Orthop Res 32(1):79–88
Article
Google Scholar
Khorasani MS, Diko S, Hsia AW, Anderson MJ, Genetos DC, Haudenschild DR et al (2015) Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res Ther 17(1):30
Article
Google Scholar
Rai MF, Duan X, Quirk JD, Holguin N, Schmidt EJ, Chinzei N et al (2017) Post-traumatic osteoarthritis in mice following mechanical injury to the synovial joint. Sci Rep 7:45223
Article
CAS
Google Scholar
McCoy SY, Falgowski KA, Srinivasan PP, Thompson WR, Selva EM, Kirn-Safran CB (2012) Serum xylosyltransferase 1 level increases during early posttraumatic osteoarthritis in mice with high bone forming potential. Bone 51(2):224–231
Article
CAS
Google Scholar
McIlwraith CW, Fortier LA, Frisbie DD, Nixon AJ (2011) Equine models of articular cartilage repair. Cartilage. 2(4):317–326
Article
Google Scholar
Elmesiry A, Seleim M, Cullis-Hill D (2014) Iodoacetate and allogenous cartilage particles as models for arthritis induction in equine. Int J Vet Sci Med 2(2):142–150
Article
Google Scholar
Bolam CJ, Hurtig MB, Cruz A, McEwen BJ (2006) Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses. Am J Vet Res 67(3):433–447
Article
CAS
Google Scholar
Turley SM, Thambyah A, Riggs CM, Firth EC, Broom ND (2014) Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J Anat 224(6):647–658
Article
Google Scholar
Proffen BL, McElfresh M, Fleming BC, Murray MM (2012) A comparative anatomical study of the human knee and six animal species. Knee 19(4):493–499
Article
Google Scholar
Song F, Tang J, Geng R, Hu H, Zhu C, Cui W et al (2014) Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. Int J Clin Exp Pathol 7(4):1415–1426
PubMed
PubMed Central
Google Scholar
Spadari A, Romagnoli N, Predieri PG, Borghetti P, Cantoni AM, Corradi A (2013) Effects of intraarticular treatment with stanozolol on synovial membrane and cartilage in an ovine model of osteoarthritis. Res Vet Sci 94(3):379–387
Article
CAS
Google Scholar
Delling U, Brehm W, Ludewig E, Winter K, Julke H (2015) Longitudinal evaluation of effects of intra-articular mesenchymal stromal cell administration for the treatment of osteoarthritis in an ovine model. Cell Transpl 24(11):2391–2407
Article
Google Scholar
Cake MA, Read RA, Corfield G, Daniel A, Burkhardt D, Smith MM et al (2013) Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritis Cartilage 21(1):226–236
Article
CAS
Google Scholar
Kim JE (2018) Development and characterization of various osteoarthritis models for tissue engineering. PLoS ONE 13(3):e0194288
Article
Google Scholar
Tonge DP, Bardsley RG, Parr T, Maciewicz RA, Jones SW (2013) Evidence of changes to skeletal muscle contractile properties during the initiation of disease in the ageing guinea pig model of osteoarthritis. Longev Healthspan. 2:15
Article
Google Scholar