Manuscript A, Gliomas PL. NIH Public Access. 2010;24:1397–408. doi:10.1177/0883073809342005.Pediatric.
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. doi:10.1007/s00401-007-0243-4.
Article
PubMed Central
PubMed
Google Scholar
Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J Child Neurol. 2009;24:1397–408. doi:10.1177/0883073809342005.
Article
PubMed Central
PubMed
Google Scholar
Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales LMC, Marcus KJ, et al. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer. 2014;61:1173–9. doi:10.1002/pbc.24958.
Article
PubMed
Google Scholar
Gutmann DH, McLellan MD, Hussain I, Wallis JW, Fulton LL, Fulton RS, et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 2013;23:431–9. doi:10.1101/gr.142604.112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamiryo T, Shinojima N, Ushio Y. Preliminary observations on genetic alterations in pilocytic astrocytomas associated with neurofibromatosis 1 1. 2003;228–234. doi:10.1215/S1152
Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45:602–12. doi:10.1038/ng.2611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. 2008;118:1739–1749. doi:10.1172/JCI33656DS1
Forshew T, Tatevossian RG, Lawson ARJ, Ma J, Neale G, Ogunkolade BW, et al. Activation of the ERK / MAPK pathway : a signature genetic defect in posterior fossa pilocytic astrocytomas. 2009;172–181. doi:10.1002/path.
Jones DTW, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68:8673–7. doi:10.1158/0008-5472.CAN-08-2097.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lawson ARJ, Hindley GFL, Forshew T, Tatevossian RG, Jamie GA, Kelly GP, et al. RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. Genome Res. 2011;21:505–14. doi:10.1101/gr.115782.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones DTW, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP, et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549: BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28:2119–23. doi:10.1038/onc.2009.73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6:e17948. doi:10.1371/journal.pone.0017948.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17:4790–8. doi:10.1158/1078-0432.CCR-11-0034.
Article
CAS
PubMed
Google Scholar
Ichimura K, Nishikawa R, Matsutani M. Molecular markers in pediatric neuro-oncology; 2012.90–99
Tian Y, Rich BE, Vena N, Craig JM, MacConaill LE, Rajaram V, et al. Detection of KIAA1549-BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. J Mol Diagn. 2011;13:669–77. doi:10.1016/j.jmoldx.2011.07.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Komotar RJ, Mocco J, Carson BS, Sughrue ME, Zacharia BE, Sisti AC, et al. Pilomyxoid astrocytoma: a review. MedGenMed. 2004;6:42.
PubMed Central
PubMed
Google Scholar
Hegi ME, Murat A, Lambiv WL, Stupp R. Brain tumors: molecular biology and targeted therapies. Ann Oncol. 2006;17 Suppl:1:x191–7. doi:10.1093/annonc/mdl259.
Manuscript A. NIH Public Access. 2012;16:103–19. doi:10.1517/14728222.2011.645805.Targeting.
Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014;16:1408–16. doi:10.1093/neuonc/nou059.
Article
PubMed
Google Scholar
Sievert AJ, Lang S-S, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A. 2013;110:5957–62. doi:10.1073/pnas.1219232110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Subbiah V, Westin SN, Wang K, Araujo D, Wang W-L, Miller VA, et al. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol Oncol. 2014;7:8. doi:10.1186/1756-8722-7-8.
Article
PubMed Central
PubMed
Google Scholar
Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67. doi:10.1158/0008-5472.CAN-11-2612.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74. doi:10.1038/nrc3106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez FJ, Ligon AH, Horkayne-szakaly I, Rushing J, Ligon KL, Vena N, et al. in Gliomas of the Optic Nerve Proper. 2012;71:789–794. doi:10.1097/NEN.0b013e3182656ef8.BRAF
Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada L, Gutmann DH, et al. Astrocyte-Specific Inactivation of the Insufficient for Astrocytoma Formation Astrocyte-Specific Inactivation of the Neurofibromatosis 1 Gene ( NF1) Is Insufficient for Astrocytoma Formation. 2002. doi:10.1128/MCB.22.14.5100.
Google Scholar
Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, et al. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003;278:26958–69. doi:10.1074/jbc.M209413200.
Article
CAS
PubMed
Google Scholar
Cichowski K, Santiago S, Jardim M, Johnson BW, Jacks T, et al. . Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 2003;17:449–54. doi:10.1101/gad.1054703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jentoft M, Giannini C, Cen L, Scheithauer BW, Hoesley B, Sarkaria J, et al. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. 2011;4:43–57
Hutchinson KE, Lipson D, Stephens PJ, Otto G, Lehmann BD, Lyle PL, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res. 2013;19:6696–702. doi:10.1158/1078-0432.CCR-13-1746.
Article
CAS
PubMed
Google Scholar
Frasca F, Nucera C, Pellegriti G, Gangemi P, Attard M, Stella M, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205. doi:10.1677/ERC-07-0212.
Article
CAS
PubMed
Google Scholar
Brastianos PK, Taylor-Weiner A, Manley PE, Johns RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46:161–5. doi:10.1038/ng.2868.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121:397–405. doi:10.1007/s00401-011-0802-6.
Article
CAS
PubMed
Google Scholar