Bentzon JF, Otsuka F, Virmani R, Falk E: Mechanisms of plaque formation and rupture. Circ Res 2014, 114: 1852–1866.
CAS
PubMed
Google Scholar
Falk E, Shah PK, Fuster V: Coronary plaque disruption. Circulation 1995, 92: 657–671.
CAS
PubMed
Google Scholar
Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993, 69: 377–381.
CAS
PubMed
PubMed Central
Google Scholar
Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold HK: Pathologic assessment of the vulnerable human coronary plaque. Heart 2004, 90: 1385–1391.
CAS
PubMed
PubMed Central
Google Scholar
Braganza DM, Bennett MR: New insights into atherosclerotic plaque rupture. Postgrad Med J 2001, 77: 94–98.
CAS
PubMed
PubMed Central
Google Scholar
Shah PK: Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis 2002, 44: 357–368.
PubMed
Google Scholar
Hansson GK, Libby P: The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006, 6: 508–519.
CAS
PubMed
Google Scholar
Mosser DM, Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008, 8: 958–969.
CAS
PubMed
PubMed Central
Google Scholar
Medbury HJ, James V, Ngo J, Hitos K, Wang Y, Harris DC, Fletcher JP: Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 2013, 32: 74–84.
CAS
PubMed
Google Scholar
Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32: 593–604.
CAS
PubMed
Google Scholar
Stanley ER, Chen DM, Lin HS: Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature 1978, 274: 168–170.
CAS
PubMed
Google Scholar
Stout RD, Suttles J: Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004, 76: 509–513.
CAS
PubMed
PubMed Central
Google Scholar
Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G: Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005, 142: 481–489.
CAS
PubMed
PubMed Central
Google Scholar
Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175: 342–349.
CAS
PubMed
Google Scholar
Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13: 453–461.
CAS
PubMed
Google Scholar
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000, 164: 6166–6173.
CAS
PubMed
Google Scholar
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23: 549–555.
CAS
PubMed
Google Scholar
Modolell M, Corraliza IM, Link F, Soler G, Eichmann K: Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 1995, 25: 1101–1104.
CAS
PubMed
Google Scholar
Gratchev A, Schledzewski K, Guillot P, Goerdt S: Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 2001, 14: 272–279.
CAS
PubMed
Google Scholar
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41: 14–20.
CAS
PubMed
PubMed Central
Google Scholar
Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004, 101: 4560–4565.
CAS
PubMed
PubMed Central
Google Scholar
Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH: Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006, 79: 285–293.
CAS
PubMed
Google Scholar
Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J: M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 2009, 182: 4415–4422.
CAS
PubMed
Google Scholar
Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P: Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 2009, 85: 779–787.
CAS
PubMed
Google Scholar
Rey-Giraud F, Hafner M, Ries CH: In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 2012, 7: e42656.
CAS
PubMed
PubMed Central
Google Scholar
Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 2007, 178: 5245–5252.
CAS
PubMed
Google Scholar
Martinez FO, Gordon S, Locati M, Mantovani A: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006, 177: 7303–7311.
CAS
PubMed
Google Scholar
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014, 40: 274–288.
CAS
PubMed
PubMed Central
Google Scholar
Hoeksema MA, Stoger JL, de Winther MP: Molecular pathways regulating macrophage polarization: implications for atherosclerosis. Curr Atheroscler Rep 2012, 14: 254–263.
CAS
PubMed
PubMed Central
Google Scholar
Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13: 709–721.
CAS
PubMed
PubMed Central
Google Scholar
Stein M, Keshav S, Harris N, Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992, 176: 287–292.
CAS
PubMed
Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25: 677–686.
CAS
PubMed
Google Scholar
Sironi M, Martinez FO, D'Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J, Sozzani S, Martini A, Sinigaglia F, Vecchi A, Mantovani A: Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 2006, 80: 342–349.
CAS
PubMed
Google Scholar
van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF: Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 2011, 214: 345–349.
CAS
PubMed
Google Scholar
Edwards JP, Zhang X, Frauwirth KA, Mosser DM: Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006, 80: 1298–1307.
CAS
PubMed
PubMed Central
Google Scholar
Wolfs IM, Donners MM, de Winther MP: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 2011, 106: 763–771.
CAS
PubMed
Google Scholar
Kleemann R, Zadelaar S, Kooistra T: Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008, 79: 360–376.
CAS
PubMed
PubMed Central
Google Scholar
Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 2012, 110: 20–33.
CAS
PubMed
Google Scholar
Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R: Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 2012, 59: 166–177.
CAS
PubMed
PubMed Central
Google Scholar
Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO: Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 2009, 174: 1097–1108.
PubMed
PubMed Central
Google Scholar
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010, 107: 737–746.
CAS
PubMed
PubMed Central
Google Scholar
Gleissner CA: Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol 2012, 3: 1.
CAS
PubMed
PubMed Central
Google Scholar
Bobryshev YV, Lord RS: S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc Res 1995, 29: 689–696.
CAS
PubMed
Google Scholar
Bobryshev YV, Lord RS, Rainer S, Jamal OS, Munro VF: Vascular dendritic cells and atherosclerosis. Pathol Res Pract 1996, 192: 462–467.
CAS
PubMed
Google Scholar
Medbury HJ, Tarran SL, Guiffre AK, Williams MM, Lam TH, Vicaretti M, Fletcher JP: Monocytes contribute to the atherosclerotic cap by transformation into fibrocytes. Int Angiol 2008, 27: 114–123.
CAS
PubMed
Google Scholar
Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012, 2012: 948098.
PubMed
PubMed Central
Google Scholar
Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014, 6: 13.
PubMed
PubMed Central
Google Scholar
Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL: High-resolution transcriptome of human macrophages. PLoS One 2012, 7: e45466.
CAS
PubMed
PubMed Central
Google Scholar
Zizzo G, Hilliard BA, Monestier M, Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 2012, 189: 3508–3520.
CAS
PubMed
PubMed Central
Google Scholar
Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, Ley K: CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 2010, 106: 203–211.
CAS
PubMed
PubMed Central
Google Scholar
Williams KJ, Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995, 15: 551–561.
CAS
PubMed
PubMed Central
Google Scholar
Tabas I, Williams KJ, Boren J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007, 116: 1832–1844.
CAS
PubMed
Google Scholar
Williams KJ: Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Curr Opin Lipidol 2001, 12: 477–487.
CAS
PubMed
Google Scholar
Khalil MF, Wagner WD, Goldberg IJ: Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24: 2211–2218.
CAS
PubMed
Google Scholar
Chait A, Wight TN: Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 2000, 11: 457–463.
CAS
PubMed
Google Scholar
Schwenke DC, Carew TE: Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989, 9: 895–907.
CAS
PubMed
Google Scholar
Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 1998, 9: 471–474.
CAS
PubMed
Google Scholar
Gerrity RG, Naito HK, Richardson M, Schwartz CJ: Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol 1979, 95: 775–792.
CAS
PubMed
PubMed Central
Google Scholar
Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 2001, 104: 503–516.
CAS
PubMed
Google Scholar
Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P: Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 1992, 140: 301–316.
CAS
PubMed
PubMed Central
Google Scholar
Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 1995, 92: 8264–8268.
CAS
PubMed
PubMed Central
Google Scholar
Zaman AG, Helft G, Worthley SG, Badimon JJ: The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000, 149: 251–266.
CAS
PubMed
Google Scholar
Stary HC: Changes in components and structure of atherosclerotic lesions developing from childhood to middle age in coronary arteries. Basic Res Cardiol 1994, 89(Suppl 1):17–32.
PubMed
Google Scholar
Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT: Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 2002, 22: 211–217.
CAS
PubMed
Google Scholar
Schissel SL, Schuchman EH, Williams KJ, Tabas I: Zn2 + -stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 1996, 271: 18431–18436.
CAS
PubMed
Google Scholar
Kaplan M, Aviram M: Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis 2000, 149: 5–17.
CAS
PubMed
Google Scholar
Williams KJ, Tabas I: Lipoprotein retention–and clues for atheroma regression. Arterioscler Thromb Vasc Biol 2005, 25: 1536–1540.
CAS
PubMed
Google Scholar
Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G: Macrophage plasticity in experimental atherosclerosis. PLoS One 2010, 5: e8852.
PubMed
PubMed Central
Google Scholar
George J, Shoenfeld Y, Gilburd B, Afek A, Shaish A, Harats D: Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res 2000, 86: 1203–1210.
CAS
PubMed
Google Scholar
Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994, 14: 133–140.
CAS
PubMed
Google Scholar
Nakashima Y, Chen YX, Kinukawa N, Sueishi K: Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch 2002, 441: 279–288.
PubMed
Google Scholar
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20: 1262–1275.
CAS
PubMed
Google Scholar
Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K: Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007, 27: 1159–1165.
CAS
PubMed
Google Scholar
Waldo SW, Li Y, Buono C, Zhao B, Billings EM, Chang J, Kruth HS: Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 2008, 172: 1112–1126.
PubMed
PubMed Central
Google Scholar
Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, Derudas B, Mayi T, Bories G, Tailleux A, Haulon S, Zawadzki C, Jude B, Staels B: Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res 2011, 108: 985–995.
CAS
PubMed
PubMed Central
Google Scholar
Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287: 11629–11641.
CAS
PubMed
PubMed Central
Google Scholar
Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY: Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 2005, 280: 2352–2360.
CAS
PubMed
Google Scholar
Yesner LM, Huh HY, Pearce SF, Silverstein RL: Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996, 16: 1019–1025.
CAS
PubMed
Google Scholar
Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA: CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993, 268: 11811–11816.
CAS
PubMed
Google Scholar
Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 2002, 277: 49982–49988.
CAS
PubMed
Google Scholar
Nakagawa T, Nozaki S, Nishida M, Yakub JM, Tomiyama Y, Nakata A, Matsumoto K, Funahashi T, Kameda-Takemura K, Kurata Y, Yamashita S, Matsuzawa Y: Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1998, 18: 1350–1357.
CAS
PubMed
Google Scholar
Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287(15):11629–11641.
CAS
PubMed
PubMed Central
Google Scholar
Seimon T, Tabas I: Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009, 50(Suppl):S382-S387.
PubMed
PubMed Central
Google Scholar
Isa SA, Ruffino JS, Ahluwalia M, Thomas AW, Morris K, Webb R: M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 2011, 10: 229.
CAS
PubMed
PubMed Central
Google Scholar
Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997, 390: 350–351.
CAS
PubMed
Google Scholar
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101: 890–898.
CAS
PubMed
PubMed Central
Google Scholar
Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002, 109: 41–50.
CAS
PubMed
PubMed Central
Google Scholar
Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W: Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005, 25: 1256–1261.
CAS
PubMed
Google Scholar
Tabas I: Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010, 10: 36–46.
CAS
PubMed
PubMed Central
Google Scholar
Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL: Modulation of macrophage efferocytosis in inflammation. Front Immunol 2011, 2: 57.
PubMed
PubMed Central
Google Scholar
Nauta AJ, Raaschou-Jensen N, Roos A, Daha MR, Madsen HO, Borrias-Essers MC, Ryder LP, Koch C, Garred P: Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003, 33: 2853–2863.
CAS
PubMed
Google Scholar
Zizzo G, Cohen PL: IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J Immunol 2013, 190: 5237–5246.
CAS
PubMed
PubMed Central
Google Scholar
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I: Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012, 15: 545–553.
CAS
PubMed
PubMed Central
Google Scholar
Sergin I, Razani B: Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014, 25: 225–234.
CAS
PubMed
PubMed Central
Google Scholar
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T: The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2013, 4: 2834.
PubMed
PubMed Central
Google Scholar
Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP: Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012, 225: 461–468.
PubMed
Google Scholar
Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, Stoll G: Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998, 29: 1625–1630.
CAS
PubMed
Google Scholar
Tavora FR, Ripple M, Li L, Burke AP: Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009, 9: 27.
PubMed
PubMed Central
Google Scholar
Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T: The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013, 22: 910–918.
PubMed
Google Scholar
Lendon CL, Davies MJ, Born GV, Richardson PD: Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991, 87: 87–90.
CAS
PubMed
Google Scholar
Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P: Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 1995, 92: 402–406.
CAS
PubMed
PubMed Central
Google Scholar
Gough PJ, Gomez IG, Wille PT, Raines EW: Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006, 116: 59–69.
CAS
PubMed
PubMed Central
Google Scholar
Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P: Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 1994, 75: 181–189.
CAS
PubMed
Google Scholar
Boyle JJ, Weissberg PL, Bennett MR: Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003, 23: 1553–1558.
CAS
PubMed
Google Scholar
Butcher MJ, Galkina EV: Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol 2012, 3: 44.
CAS
PubMed
PubMed Central
Google Scholar
Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ: Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res 2006, 99: 943–950.
CAS
PubMed
Google Scholar
Jeney V, Balla G, Balla J: Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014, 5: 379.
PubMed
PubMed Central
Google Scholar
Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY: Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001, 104: 1519–1525.
CAS
PubMed
Google Scholar
Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA: Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007, 98: 1108–1113.
CAS
PubMed
Google Scholar
Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG: Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 2003, 107: 1315–1321.
PubMed
Google Scholar
Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG, Fisher EA: Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 2011, 123: 989–998.
CAS
PubMed
PubMed Central
Google Scholar
Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O: Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 2012, 7: e39790.
CAS
PubMed
PubMed Central
Google Scholar
Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA: HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 2011, 108: 7166–7171.
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011, 22: 317–326.
CAS
PubMed
PubMed Central
Google Scholar
Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007, 6: 137–143.
CAS
PubMed
Google Scholar
Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KA, Allen TJ: Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005, 25: 1903–1909.
CAS
PubMed
Google Scholar
Wolfs IM, Stoger JL, Goossens P, Pottgens C, Gijbels MJ, Wijnands E, van der Vorst EP, van Gorp P, Beckers L, Engel D, Biessen EA, Kraal G, van Die I, Donners MM, de Winther MP: Reprogramming macrophages to an anti-inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB J 2014, 28: 288–299.
CAS
PubMed
Google Scholar
Assaad-Khalil SH, Lachine N, Sidrak M, Amara F, Jacotot B, Fahmy MH: Immuno-metabolic factors in schistosomal hepatic fibrosis modulating atherogenesis. Ann Biol Clin (Paris) 1992, 50: 697–701.
CAS
Google Scholar
Shnyra A, Brewington R, Alipio A, Amura C, Morrison DC: Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol 1998, 160: 3729–3736.
CAS
PubMed
Google Scholar
Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008, 205: 1261–1268.
CAS
PubMed
PubMed Central
Google Scholar
Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P: Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 2009, 125: 367–373.
CAS
PubMed
Google Scholar