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Abstract

The emerging understanding of macrophage subsets and their functions in the atherosclerotic plaque has led to
the consensus that M1 macrophages are pro-atherogenic while M2 macrophages may promote plaque stability,
primarily though their tissue repair and anti-inflammatory properties. As such, modulating macrophage function to
promote plaque stability is an exciting therapeutic prospect. This review will outline the involvement of the different
macrophage subsets throughout atherosclerosis progression and in models of regression. It is evident that much of
our understanding of macrophage function comes from in vitro or small animal models and, while such knowledge
is valuable, we have much to learn about the roles of the macrophage subsets in the clinical setting in order to
identify the key pathways to target to possibly promote plaque stability.
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Introduction
The main cause of cardiovascular disease is the formation
of atherosclerotic plaques within the blood vessel wall.
They may occur at multiple sites in the arterial tree and
be at different stages of progression [1]. While plaques
progressively narrow the arteries in which they form, their
clinical significance is dependent more on their compos-
ition than the size they attain [2,3]. Morphologically, ad-
vanced plaques are composed of a necrotic core and
overlying fibrous cap and those with a relatively large
core and thin cap are considered unstable as they are
vulnerable to rupture [2-4]. Rupture of the cap leads to
exposure of the blood to thrombogenic material. While
the subsequent thrombus that forms primarily leads to
subclinical plaque progression, through fibrosis tissue
formation and constrictive remodelling [1,5], it may also
lead to vessel occlusion and occurrence of a clinical event,
such as a heart attack or stroke [6,7].
Macrophages are key players in atherosclerotic plaque

development, progression and, importantly, stability as
they contribute to formation of the core and degradation
of the fibrous cap. However, macrophages can adopt vari-
ous phenotypes including a wound healing form [8] and,
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indeed, collagen producing macrophages are present in
human carotid plaques [9]. The ‘plasticity’ of macrophages
gives hope to the notion of atherosclerotic plaque stabil-
isation through the modulation of macrophage functions.
This review will summarise macrophage phenotype het-
erogeneity, the presence of the different ‘subsets’ within
the plaque throughout its development and focus, in par-
ticular, on the possible clinical significance of macrophage
subsets in terms of their likely contribution to plaque sta-
bility – such as their role in the core and cap.
Review
Macrophage phenotypes
Monocytes can differentiate into a spectrum of func-
tional macrophage phenotypes depending upon the
microenvironment - such as presence of specific growth
and differentiation factors- as well as on the receptors they
express, signaling pathways and transcription factors [8,10].
The first stage of differentiation is induced by macrophage
colony stimulating factor (M-CSF) or granulocyte macro-
phage colony stimulating factor (GM-CSF) [11] and
the subsequent phenotype that macrophages adopt is
dependent upon the concentration of various mediators
they are exposed to - with interferon (IFN)γ and interleukin
(IL)-4 priming macrophages to adopt classical or alternative
s an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

mailto:heather.medbury@sydney.edu.au
http://creativecommons.org/licenses/by/4.0


Medbury et al. Clinical and Translational Medicine 2014, 3:42 Page 2 of 9
http://www.clintransmed.com/content/3/1/42
phenotypes respectively [10]. Macrophages exhibit a high
degree of plasticity such that some (though not all) of their
properties alter as the local milieu changes [12-14].
Our understanding of macrophage phenotypes, and

their plasticity, relies heavily on cell culture systems
and, accordingly, so does much of the terminology ap-
plied to them. While numerous names have been used
in the literature, the terms that predominate are M1
(classically activated) and M2 (alternatively activated)
[15] and as such, these are used here. The M1 and M2
terms parallel the T helper cell (Th)1 and Th2 cytokines
which drive macrophage polarisation [16-19]. For a re-
view on alternative nomenclature including differentiat-
ing based on activation method, the reader is directed
to Murray et. al. [20].
M1 macrophages are promoted by Th1 cytokines [15],

with this term used in the literature to describe macro-
phages induced by monocyte stimulation with GM-CSF
[21,22] or by M-CSF combined with lipopolysaccharide
(LPS) and IFNγ [23-25]. While the cytokine production
from both these forms is similar [26], the current recom-
mendation is that GM-CSF macrophages not be assigned
the terminology M1 [20]. M1 macrophages are consid-
ered inflammatory as they produce high levels of IL-6
and TNFα [27,28] and they have a recognised role in
tissue destruction [8]. M1 macrophages express pro-
inflammatory transcription factors such as nuclear factor-
κB and signal transducer and activator of transcription
(STAT) 1 [28-30].
The term ‘M2’ encompasses largely any phenotype

that is not M1 [15,17] and is subdivided into groups
based on the stimulus used, with M2a (alternative) stim-
ulated by IL-4 or IL-13, M2b stimulated by immuno-
complex and M2c stimulated by IL-10, glucocorticoids
or transforming growth factor (TGF)β [15,31-33]. The
term ‘M2’ has also been used to describe M-CSF generated
macrophages [34] with evidence that M-CSF stimulation
promotes expression of a considerable portion of the M2
transcriptome [27]. M2 macrophages (human and mouse)
produce anti-inflammatory cytokines such as IL-10 and
TGFβ [27,35]. M2a macrophages express the transcription
factors Krüppel-like factor 4, peroxisome proliferator acti-
vated receptor-γ (PPARγ) and STAT6 [28-30] while M2c
macrophages express STAT 3 [36]. The key recognised
functions of M2 macrophages are immunosuppressive, in-
cluding immune regulation and wound healing [8,15,35].
There are, in reality, many different modes of activation,
resulting in an array of macrophage functional phenotypes
[8]. The possible function of these subsets in plaque stabil-
ity can, in part, be gleaned from understanding the effect
of the stimulating cytokines on plaque development in
murine models. As such, IFNγ (which promotes M1) is
considered pro-atherogenic, IL-4 (which promotes M2a)
is considered to have a dual pro and anti-inflammatory
character, while IL-10 (which promotes M2c macro-
phages), is considered anti-atherogenic [37].
In the atherosclerosis field, additional forms have been

described including the Mhem macrophage [38] (also
known M(Hb) [39] or HA-Mac [40]). Consistent with their
presence in regions of haemorrhage, Mhem macrophages
arise from culturing monocytes with the haemoglobin/
haptoglobin complex [38-40]. The term Mox macro-
phages has been given to murine macrophages (includ-
ing M1 or M2) cultured in the presence of oxidised
phospholipids [41]; their phenotype is markedly differ-
ent from standard M1 or M2 macrophages. The term
‘M4’ describes macrophages formed when monocytes
are differentiated with the platelet chemokine chemo-
kine (C-X-C motif ) ligand 4 (CXCL4) [42]. Other mono-
cyte derived cells (sharing some overlapping functions
with macrophages) are also recognised in the plaque,
such as dendritic cells [43,44] and fibrocytes [45]. Com-
mon markers used to identify the macrophage subsets
include CD86 for M1 (as well as Arginase (Arg) II in mice)
and CD163 plus CD206 (mannose receptor: MR) for M2
(as well as Arg I and FIZZ1 in mice) [15,24,27,31,46,47].
Transcriptome analysis of cultured cells has identified
additional markers [27,28,48]. Noted differences are, that
M2a macrophages also express CD209 [49]; Mhem mac-
rophages, while expressing CD163 and CD206, are distin-
guishable from M2 macrophages by the expression of
activating transcription factor (ATF) [38] and M4 macro-
phages lack expression of CD163 [50].

Macrophages in plaque initiation
Atherosclerosis is initiated by the accumulation of apolipo-
protien (Apo) B lipoproteins within the vessel wall [51,52].
Their retention is partially mediated by interaction with
extracellular matrix (ECM) proteins, primarily proteogly-
cans that have chondroitin sulphate side chains [52] such
as biglycan and versican [53-55]. ECM binding makes lipo-
proteins susceptible to modification, such as oxidation
[56,57]. This activates endothelial cells (EC) which secrete
chemokines that promote monocyte recruitment [58,59].
Vascular cells, such as EC and smooth muscle cells (SMC),
produce M-CSF - a factor which promotes monocyte dif-
ferentiation into macrophages [60,61]. The macrophages
formed internalise the modified low density lipoprotein
(LDL), become foam cells [62] and form what is known as
a fatty streak [63]. The inflammatory response to retained
lipoproteins is maladapted as the macrophage foam cells
do not leave but are retained in the vessel wall [52]. They
may also exacerbate lesion formation independently by
producing molecules such as lipoprotein lipase [64], sphin-
gomyelinase [65] or proteoglycans [66], which promote
lipoprotein retention and modification [67]. Though the
contribution of different macrophage subsets to lipopro-
tein retention is not completely defined, M2a macrophages
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secrete components of the ECM as part of their wound
healing function [8]. Our preliminary findings are that
CD163+ foam cells in the plaque produce biglycan (un-
published data) and thus may contribute to retention of
lipoproteins.
In the murine model (ApoE-/- mouse), it is thought

that the early infiltrating macrophages are mainly of the
M2 phenotype as they virtually all stain for Arg I [68].
Consistent with this, IL-4 was the predominant tran-
script (compared to IFNγ) in early lesions [68]. Further-
more, fatty streak formation is significantly reduced in
IL-4-/- mice [69]. Whether M2 macrophages predominate
in early human plaques is not known, though M-CSF-
driven monocyte to macrophage differentiation may pro-
mote such skewing (Figure 1). Inferences from the murine
model are not entirely appropriate as the initial environ-
ment encountered by transmigrating monocytes is quite
different to that in humans. There is minimal intima in
the mouse [70], while human lesion-prone sites con-
tain considerable diffuse intimal thickening (composed
of SMC, elastin and proteoglycans) prior to lipid accumu-
lation, with the lipid depositing deep in the (ECM and
Figure 1 Proposed role of macrophage subsets in formation of
the necrotic core. Monocytes are recruited early in atherosclerotic
plaque development where, through the action of MCSF (and
possibly IL-4, as evident in the mouse model), they differentiate into
macrophages (Mϕ), primarily skewed towards an M2 form. Through
the uptake of modified lipid they become foam cells. Apoptosis of
the foam cells is accompanied by efferocytosis, primarily by M2
macrophages. As the plaque adopts an increasingly inflammatory
environment, macrophage differentiation skews towards the M1 form
and consequently, M1 foam cells predominate. As M1 macrophages
have low efferocytosis capability, and there is a decreasing number
of M2 efferocytes, apoptotic foam cells (including any remaining
M2: dashed line in figure) undergo secondary necrosis promoting
development of the necrotic core.
SMC rich) intima [71,72]. In humans, the foam cells form
at the interface between infiltrating macrophages and
extracellular lipid, rather than just below the luminal sur-
face [62,73]. As the plaque progresses, a heterogeneous
population of foam cells is found (Figure 2:A-C and F),
as is evident by the presence of CD68+ foam cells that
double stain with a variety of markers such as CD14
(M-CSF derived macrophages (M-Mac)) [74], CD86
(M1) [9], CD163(M2) [50] or MR (CD206:M2) [75] .
Conflicting data exists on the ability of different

macrophage phenotypes to take up lipid with both in-
crease and decrease of lipid uptake being reported in
M2 macrophages- the differences are likely due to vari-
ations in culture conditions leading to differences in
the cell types being formed and compared. While M2a
macrophages take up less lipid than resting macro-
phages [75], M2 macrophages (a, b and c) take up more
lipid than M1 macrophages (M-CSF with LPS plus
IFNγ) [76]. M-CSF derived macrophages also take up
more lipid than GM-CSF derived macrophages [34].
Macrophages can also take up lipid by non scavenger
receptor means such as macropinocytosis [77]; inter-
estingly, this is enhanced in M-CSF plus IL-10 (M2c)
compared to GM-CSF derived macrophages [74]. The
finding that M2 macrophages take up more lipid than
M1 macrophages is consistent with the fact that M-CSF
and IL-4 up-regulate the expression of CD36 [34,78] a re-
ceptor for oxLDL [79,80] and scavenger receptor class A
[34,76] while, conversely, IFNγ reduces CD36 expression
[81]. GM-CSF up-regulates expression of genes that pro-
mote reverse cholesterol transport (PPARγ, liver x recep-
tor (LXR)-α [34,74] and ATP-binding cassette sub-family
G member 1(ABCG1)) [74]. As M2 (a, b and c) macro-
phages do not differ in ApoA-1 or high density lipoprotein
(HDL)-stimulated cholesterol efflux compared with M1
macrophages, it is thought that the net increase in foam
cell formation is primarily due to cholesterol uptake [76].
The accumulation of lipid by M-CSF derived macrophages
enhances pro-inflammatory responses characterised by
higher production of IL-6, IL-8 and MCP-1 and lower
production of IL-10 upon stimulation with LPS [34].
As the atherosclerotic lesion progresses, a pro-

inflammatory environment ensues with greater levels
of Th1 cytokines (such as IFNγ) compared to Th2 (IL-4)
[7]. Consistent with this, lesion progression in the ApoE-/-

mouse is associated with an increased prevalence of M1
(Arg II) in older mice [68]. Thus, though M2 macrophages
may theoretically have a greater ability to take up lipid in
the plaque, the increasingly pro-inflammatory environ-
ment may skew monocyte to macrophage differentiation
towards that of an M1 phenotype. This skewing would ac-
cordingly account for the reported absence of M2 foam
cells in advanced human lesions [40], or their location
distant from the core [75]. Though, interestingly, in the



Figure 2 Macrophages in atherosclerotic plaque development. A-C representative heterogeneous foam cells from carotid atherosclerotic
plaques. A: CD86 (brown), B: CD163 (brown) ADRP (green), C: CD206 (brown). D and E: macrophage collagen I expression. D: CD163 (green), procollagen
I (red), nuclei (blue), CD163 and procollagen I co-expression (yellow). Inset: closer magnification of the cell in D indicated by white arrow head. E: CD86
(green: examples indicated by white arrow heads), procollagen I (red), nuclei (blue). Note, no CD86/procollagen I co-expression is evident as seen by
absence of yellow. F: Proposed role of macrophage involvement in plaque progression. Lipoprotein enters the vessel wall where it is retained, in part, by
binding to proteoglycans. Monocytes are recruited into the atherosclerotic plaque where they differentiate into different macrophage phenotypes
(predominantly M2 in the early plaque) and uptake modified lipid adopting heterogenous foam cell forms (see also A-C). Apoptosis of the
macrophages, in particular M2, is accompanied by efferocytosis, also primarily by M2 macrophages. As the plaque adopts an increasingly inflammatory
environment, M1 foam cells predominate and defective efferocytosis increases, with subsequent necrosis leading to the formation of the necrotic core.
In the advanced plaque, intraplaque haemorrhage promotes the formation of Mhem macrophages, which are athero-protective, partly due to reduced
lipid accumulation and the production of collagen I. In contrast, M1 macrophages accumulate in the shoulder of the plaque contributing to thinning of
the cap through MMP production. The destabilisation of the plaque leads to rupture of the plaque and thrombus formation. IPH = intraplaque
haemorrhage, MV = microvessels, Mϕ =macrophage, PG = proteoglycan.
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ApoE-/- mouse, M2 (MR+) macrophages were localised
more centrally within the plaque, and had a higher pro-
portion of adipose differentiation-related protein (ADRP)
expression compared to M1(chemokine (C-C motif) re-
ceptor 7 (CCR7)) macrophages [82]. The lack of M2 foam
cells may also arise from increased cell death, as choles-
terol uptake promotes endoplasmic reticulum (ER) stress
which triggers the unfolded protein response [76,83] and
M2 (IL-13 derived) foam cells are more sensitive to the
unfolded protein response than other forms of macro-
phages [84].

Macrophages and formation of the necrotic core
The clearance of apoptotic cells promotes resolution of
inflammation through the production of anti inflamma-
tory mediators such as IL-10 and TGFβ [85-87]. How-
ever, in atherosclerosis, defective clearance of apoptotic
cells leads to secondary necrosis and development of the
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necrotic core [88,89]. The switch from an M2 to an M1
promoting environment during atherosclerosis progres-
sion may impede apoptotic cell clearance as M2 cells
have greater capacity for efferocytosis [90] (Figure 1);
this is through various pathways such as the expression
of MR [91] and up-regulation of MER proto-oncogene
tryosine kinase (MERTK) (on M2c), which is not in-
duced on M1 macrophages [49,92]. Furthermore, inhib-
ition of autophagy promotes apoptosis and defective
efferocytosis leading to increased plaque necrosis in a
murine model [93]. Interestingly, ER stress, which pro-
motes autophagy [93], also promotes an M2 macrophage
phenotype [76], while mechanistic target of rapamcyin
(mTOR) which negatively regulates autophagy [94], also
inhibits M2 polarisation [95]. In addition, the uptake of
phospholipid (and adoption of a Mox phenotype) re-
duces the ability of both M1 and M2 macrophages to
phagocytose apoptotic cells [41]. Necrosis leads to a
pro-inflammatory state, which itself promotes formation
of efferocytic low macrophage phenotypes [90].

Macrophages in the fibrous cap
While a large necrotic core promotes plaque instability,
formation of the fibrous cap promotes plaque stability
and thus the role of macrophages in the cap is equally
important. Both M1 (CD86) and M2 (CD163 and MR)
macrophages are found in the atherosclerotic cap, where
they adopt a spindle shape (Figure 2: D-F) [9,96]. A high
number of CD68 macrophages in the cap is associated
with plaque instability [97,98], with this association also
holding for M1(CD86), but not M2(CD163), macro-
phages [9]. Similarly, levels of CD68 and CD11c (M1) in
the carotid plaque are higher in symptomatic patients
compared to asymptomatic patients, while levels of the
M2 markers (CD163 and MR) are lower [99]. Notably,
M1 macrophages are found in the rupture-prone shoul-
der regions of the plaque [96]. Macrophage activity in
the cap is highly detrimental as they produce matrix me-
talloproteinases (MMP) which degrade components of
the matrix, thinning the cap and leaving it vulnerable to
rupture [100-102]. That M1 macrophages are more fre-
quent in plaques with an unstable morphology is con-
sistent with the understanding that M1 macrophages are
involved in tissue destruction [8]. This can be directly
through the production of matrix metalloproteinases
and indirectly through effects on SMC. Macrophage pro-
duction of inflammatory cytokines, such as IL-1 and
TNFα, can stimulate SMC to produce gelatinase, inter-
stitial collagenase and stromelysin [103]. Furthermore,
TNFα promotes macrophage–induced vascular SMC
apoptosis [104], thus reducing the source of collagen
and other matrix which thickens the cap. These cytokines
also further activate EC and SMC, up-regulating chemo-
kine production [105].
M2 macrophages may promote plaque stability due to
their promotion of tissue repair and evidence of this in
the carotid plaque is seen by their (CD163+ and CD206+
macrophages) production of collagen I (Figure 2:D) [9].
Despite this function however, no correlation was found
in levels of CD163 in plaque cap, with cap thickness [9];
which may reflect a range of macrophages in the plaque
that can express CD163. Furthermore, M2 macrophages
may also promote plaque stabilisation by inducing the
proliferation of vascular SMC [68].

Macrophages in the complex plaque
Advanced plaques can become quite complex with fea-
tures such as calcification and intra-plaque haemorrhage.
In this respect, distinct macrophages are found in regions
of plaque haemorrhage displaying a non foam cell form
[38-40]. In vitro investigation of these Mhem macrophages
shows that they are resistant to foam cell formation
through down regulation of scavenger receptors and
up-regulation of ATP-binding cassette, sub-family A
member 1 (ABCA1), ABCG1 [39] and LXR-β [38].
Consistent with this, MR (CD206) + foam cells in the
plaque are smaller and contain smaller lipid droplets than
their MR- counterparts [75]. Mhem macrophages are
thought to be athero-protective as haemoglobin bind-
ing to CD163 up-regulates haemoxygenase (HMOX)1
[106]. HMOX1 catabolises haeme, thus removing its
pro-oxidative and pro- inflammatory actions, and in the
process, promotes anti-oxidant and anti-inflammatory
effects through the generation of haeme degradation by-
products, such as biliverdin [107]. Over-expression of
HMOX1 inhibits atherosclerosis in ApoE-/- mice [108].
With the production of collagen I evident in CD163+
and CD206+ macrophages found in regions of haemor-
rhage [9], this suggests that Mhem macrophages may
also be athero-protective through production of colla-
gen I. M4 macrophages are also evident in the plaque;
they may have a pro-atherogenic role as CXCL4 defi-
ciency results in decreased atherosclerotic plaque bur-
den [109]. Furthermore, in vitro, CXCL4 down regulates
both IL-10 secretion and CD163 expression and inhibits
HMOX1 up-regulation [50].

Macrophage phenotypes in plaque
regression/stabilisation
Plaque regression or stabilisation, a key clinical goal, has
been achieved in mouse models, most notably in the
Reversa mouse – a mouse in which hypercholesterol-
aemia (due to knock out of the LDL receptor) can be
conditionally reversed [110]. Decreasing LDL resulted
in stabilisation of the plaque with a reduced lipid com-
ponent and increased collagen content. These changes
were associated with a decrease in total macrophages
(CD68 and Moma +) and increased gene expression of
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M2 markers such as Arg I, MR, CD163, C-lectin and
FIZZ1 [111]. This increase in M2 macrophages is also
evident in other models of plaque regression including
transplant of the atherosclerosed vessel into normal
cholesterolaemic mice [112] and induction of regression
by HDL [113]. Whether these changes involved a pheno-
typic conversion of M1 to M2 macrophages is not clear,
but it has been suggested to occur in the ApoE-/- mouse
as seen by the presence of macrophages double staining
with Arg I (M2) and Arg II (M1) [68], though it should be
noted that the specificity of Arg I for M2 macrophages is
in question [20]. Nonetheless, an M1- M2 switch has been
seen in other models, such as wound healing [114].
The polarisation towards an M2 phenotype in plaque

regression is consistent with the view that M1 macro-
phages are pro-atherogenic and promote an unstable
plaque, while M2 macrophages promote tissue repair
[10] and likely plaque stability. Stimulation of the PPARγ
pathway, which promotes M2 macrophage polarisation
[115], results in decreased atherosclerosis development in
the ApoE-/- mouse [116]. Interestingly, Wolfs et al. [117]
observed reduced atherosclerosis in the LDLR-/- mouse
after injection of helminth antigens which reprogrammed
monocytes and macrophages to an M2 phenotype. Of
note, a link between Schistosomal infection and reduced
incidence of atherosclerosis has previously been recog-
nised [118]. These results show that modulation towards
an M2 phenotype may inhibit plaque progression, reflect
plaque regression and holds promise that it may also
promote plaque regression in an advanced plaque.
Plasticity of macrophage phenotypes
Though the plasticity of macrophages in vitro and in vivo,
which suggests functional adaptivity, has been documented
[12-14,119-121], the reversal of the phenotype does not al-
ways occur and may depend upon the state of macrophage
differentiation. For example, while PPARγ activation primes
monocytes to adopt an M2 phenotype, it does not influence
M2 marker expression in M1 macrophages nor does it
influence the expression of M2 markers in human ath-
erosclerotic lesions [115]. Furthermore, while M-CSF
and IL-10 promote the formation of an M2c macrophage
and accordingly high levels of expression of MERTK and
ability to clear apoptotic cells [49], chronic pre-exposure
of the cells to IFN-γ or IL-4 prior to exposure with IL-10
down regulates MERTK, leading instead to the cells
up-regulating Fas (CD95) and undergoing apoptosis
[92]. In addition, M-CSF was unable to significantly in-
duce CD163 expression on monocytes pre-exposed to
CXCL4 [50]. Clearly a greater understanding of macro-
phage function in the plaque, their plasticity (or lack
thereof) and the pathways involved is required to ensure
that a plaque stabilising form can be promoted.
Conclusion
A spectrum of macrophage phenotypes is present in the
atherosclerotic plaque with each, in some way, impacting
plaque stability. Given the association of M1 macrophages
with plaque instability and their known role in tissue de-
struction, decreasing the levels of these macrophages in
the plaque is a promising avenue for plaque stabilisation.
However, promoting the elevation of M2 macrophages in
the plaque is too simplistic and requires a greater under-
standing of the function of the various subsets within the
human plaque and careful consideration of the pathways
to target. For while M2 macrophages may have predom-
inantly anti-atherogenic functions, some properties may
promote plaque progression; such as their increased up-
take of, and sensitivity to, oxLDL, which may promote
enlargement of the core. Furthermore, while macro-
phages are ‘plastic’, it is apparent that such plasticity is
quite conditional with some, but not all, properties be-
ing reversible and even leading to undesired functions.
(Note also that the source of macrophages in the plaque;
the contribution of monocyte derived, proliferating and
resident macrophages, to plaque stability will also need
to be considered, but this was outside the scope of this
review).
Upon further investigation, modulating macrophage

function to promote plaque stabilisation may become a
reality. However, any approach to modulate macrophage
phenotype should be an adjunct to existing treatments of
lowering lipids, for lipid deposition in the arterial wall is a
key initiating factor in atherosclerosis and itself increases
the inflammatory nature of the plaque, which could coun-
teract efforts to promote a less inflammatory environment.
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