Khosravi A, Yáñez A, Price JG et al (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15:374–381. https://doi.org/10.1016/j.chom.2014.02.006
Article
CAS
PubMed
PubMed Central
Google Scholar
Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485. https://doi.org/10.1038/nri1373
Article
CAS
PubMed
Google Scholar
Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047
Article
CAS
PubMed
PubMed Central
Google Scholar
Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128
Article
CAS
PubMed
Google Scholar
Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626. https://doi.org/10.1038/nature11400
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen J, Sears CL (2019) Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 11:11. https://doi.org/10.1186/s13073-019-0621-2
Article
PubMed
PubMed Central
Google Scholar
Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37:47–55. https://doi.org/10.1007/s00281-014-0454-4
Article
CAS
PubMed
Google Scholar
Kang J, Zhang L, Luo X et al (2018) Systematic exposition of mesenchymal stem cell for inflammatory bowel disease and its associated colorectal cancer. Biomed Res Int 2018:1–16. https://doi.org/10.1155/2018/9652817
Article
CAS
Google Scholar
Kilcoyne A (2016) Inflammatory bowel disease imaging: current practice and future directions. World J Gastroenterol 22:917. https://doi.org/10.3748/wjg.v22.i3.917
Article
CAS
PubMed
PubMed Central
Google Scholar
Fakhoury M, Al-Salami H, Negrulj R, Mooranian A (2014) Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. https://doi.org/10.2147/JIR.S65979
Article
PubMed
PubMed Central
Google Scholar
Yang L, Tang S, Baker SS et al (2019) Difference in pathomechanism between Crohn’s disease and ulcerative colitis revealed by colon transcriptome. Inflamm Bowel Dis 25:722–731. https://doi.org/10.1093/ibd/izy359
Article
PubMed
Google Scholar
Schaefer JS, Attumi T, Opekun AR et al (2015) MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC Immunol 16:5. https://doi.org/10.1186/s12865-015-0069-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Rybaczyk L, Rozmiarek A, Circle K et al (2009) New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 15:971–984. https://doi.org/10.1002/ibd.20893
Article
PubMed
Google Scholar
Lazaridis L-D, Pistiki A, Giamarellos-Bourboulis EJ et al (2017) Activation of NLRP3 inflammasome in inflammatory bowel disease: differences between Crohn’s disease and ulcerative colitis. Dig Dis Sci 62:2348–2356. https://doi.org/10.1007/s10620-017-4609-8
Article
CAS
PubMed
Google Scholar
Mortensen JH, Manon-Jensen T, Jensen MD et al (2017) Ulcerative colitis, Crohn’s disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS ONE 12:e0185855. https://doi.org/10.1371/journal.pone.0185855
Article
CAS
PubMed
PubMed Central
Google Scholar
Philippe M, Harry S (2015) Gut microbiota and inflammatory bowel disease: a selection of content from the gut microbiota for health experts exchange 2014–2015. Gut microbiota Health 37:47–55
Google Scholar
Bloemendaal ALA, Buchs NC, George BD, Guy RJ (2016) Intestinal stem cells and intestinal homeostasis in health and in inflammation: a review. Surgery 159:1237–1248. https://doi.org/10.1016/j.surg.2016.01.014
Article
PubMed
Google Scholar
Nishida A, Inoue R, Inatomi O et al (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10. https://doi.org/10.1007/s12328-017-0813-5
Article
PubMed
Google Scholar
Takahashi K, Nishida A, Fujimoto T et al (2016) Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93:59–65
Article
CAS
PubMed
Google Scholar
Fujimoto T, Takahashi K et al (2013) Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J Gastroenterol Hepatol 28:613–619
Article
CAS
PubMed
Google Scholar
Varela E, Manichanh C, Gallart M et al (2013) Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther 38:151–161
Article
CAS
PubMed
Google Scholar
Darfeuille-Michaud A, Boudeau J, Bulois P et al (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127:412–421
Article
PubMed
Google Scholar
Png C, Linden S, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428
Article
CAS
PubMed
Google Scholar
Pickard JM, Zeng MY, Caruso R, Núñez G (2017) Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279:70–89. https://doi.org/10.1111/imr.12567
Article
CAS
PubMed
PubMed Central
Google Scholar
Norman JM, Handley SA, Baldridge MT et al (2015) Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–460. https://doi.org/10.1016/j.cell.2015.01.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Colman RJ, Rubin DT (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis 8:1569–1581. https://doi.org/10.1016/j.crohns.2014.08.006
Article
Google Scholar
van Nood E, Vrieze A, Nieuwdorp M et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. https://doi.org/10.1056/NEJMoa1205037
Article
CAS
PubMed
Google Scholar
Moayyedi P, Surette MG, Kim PT et al (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102. https://doi.org/10.1053/j.gastro.2015.04.001
Article
PubMed
Google Scholar
Rossen NG, Fuentes S, van der Spek MJ et al (2015) Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149:110. https://doi.org/10.1053/j.gastro.2015.03.045
Article
PubMed
Google Scholar
Imdad A, Nicholson MR, Tanner-Smith EE et al (2017) Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012774
Article
PubMed
PubMed Central
Google Scholar
Angelberger S, Reinisch W, Makristathis A et al (2013) Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 108:1620–1630. https://doi.org/10.1038/ajg.2013.257
Article
CAS
PubMed
Google Scholar
Tian Y, Zhou Y, Huang S et al (2019) Fecal microbiota transplantation for ulcerative colitis: a prospective clinical study. BMC Gastroenterol 19:116. https://doi.org/10.1186/s12876-019-1010-4
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Li P, Zhu J et al (2017) Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn’s disease complicated with inflammatory mass. Sci Rep 7:4753. https://doi.org/10.1038/s41598-017-04984-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunde S, Pham A, Bonczyk S et al (2013) Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr 56:597–601. https://doi.org/10.1097/MPG.0b013e318292fa0d
Article
PubMed
Google Scholar
Zhang F-M, Wang H-G, Wang M et al (2013) Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol 19:7213–7216. https://doi.org/10.3748/wjg.v19.i41.7213
Article
PubMed
PubMed Central
Google Scholar
Cui B, Feng Q, Wang H et al (2015) Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol 30:51–58. https://doi.org/10.1111/jgh.12727
Article
CAS
PubMed
Google Scholar
Wang H, Cui B, Li Q et al (2018) The safety of fecal microbiota transplantation for Crohn’s disease: findings from a long-term study. Adv Ther 35:1935–1944. https://doi.org/10.1007/s12325-018-0800-3
Article
PubMed
PubMed Central
Google Scholar
Paramsothy S, Kamm MA, Kaakoush NO et al (2017) Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389:1218–1228. https://doi.org/10.1016/S0140-6736(17)30182-4
Article
PubMed
Google Scholar
Vaughn BP, Vatanen T, Allegretti JR et al (2016) Increased intestinal microbial diversity following fecal microbiota transplant for active Crohnʼs disease. Inflamm Bowel Dis 22:2182–2190. https://doi.org/10.1097/MIB.0000000000000893
Article
PubMed
Google Scholar
Nusbaum DJ, Sun F, Ren J et al (2018) Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy133
Article
PubMed
PubMed Central
Google Scholar
Costello SP, Hughes PA, Waters O et al (2019) Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis. JAMA 321:156. https://doi.org/10.1001/jama.2018.20046
Article
PubMed
PubMed Central
Google Scholar
Paramsothy S, Nielsen S, Kamm MA et al (2019) Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 156:1440. https://doi.org/10.1053/j.gastro.2018.12.001
Article
PubMed
Google Scholar
Suskind DL, Brittnacher MJ, Wahbeh G et al (2015) Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohnʼs disease. Inflamm Bowel Dis 21:556–563. https://doi.org/10.1097/MIB.0000000000000307
Article
PubMed
Google Scholar
Goyal A, Yeh A, Bush BR et al (2018) Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm Bowel Dis 24:410–421. https://doi.org/10.1093/ibd/izx035
Article
PubMed
Google Scholar
Li P, Zhang T, Xiao Y et al (2019) Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn’s disease. Appl Microbiol Biotechnol 103:349–360. https://doi.org/10.1007/s00253-018-9447-x
Article
CAS
PubMed
Google Scholar
Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22. https://doi.org/10.1016/j.stem.2015.06.007
Article
CAS
PubMed
Google Scholar
Xing J, Ying Y, Mao C et al (2018) Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun 9:2020. https://doi.org/10.1038/s41467-018-04453-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Panés J, García-Olmo D, Van Assche G, Colombel J (2016) Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet 388:1281–1290
Article
PubMed
Google Scholar
Dhere T, Copland I, Garcia M, Chiang K (2016) The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn’s disease—a phase 1 trial with three doses. Aliment Pharmacol Ther 44:471–481
Article
CAS
PubMed
Google Scholar
Jiang W, Tan Y, Cai M et al (2018) Human umbilical cord MSC-derived exosomes suppress the development of CCl 4-induced liver injury through antioxidant effect. Stem Cells Int 2018:1–11. https://doi.org/10.1155/2018/6079642
Article
CAS
Google Scholar
Martín Arranz E, Martín Arranz MD, Robredo T, Mancheño-Corvo P (2018) Endoscopic submucosal injection of adipose-derived mesenchymal stem cells ameliorates TNBS-induced colitis in rats and prevents stenosis. Stem Cell Res Ther 9:95. https://doi.org/10.1186/s13287-018-0837-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J, Kang HJ, Hong JS et al (2017) Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Sci Rep 7:9412. https://doi.org/10.1038/s41598-017-09827-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Zhao G, Zhang L et al (2016) Safety and therapeutic effect of mesenchymal stem cell infusion on moderate to severe ulcerative colitis. Exp Ther Med 12:2983–2989. https://doi.org/10.3892/etm.2016.3724
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Lv S, Liu X et al (2018) Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver 12:73–78. https://doi.org/10.5009/gnl17035
Article
CAS
PubMed
Google Scholar
Forbes GM, Sturm MJ, Leong RW et al (2014) A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol 12:64–71. https://doi.org/10.1016/j.cgh.2013.06.021
Article
PubMed
Google Scholar
Lazebnik LB, Kniazev OV, Konopliannikov AG et al (2010) Allogeneic mesenchymal stromal cells in patients with ulcerative colitis: two years of observation. Eksp Klin Gastroenterol 11:3–15
Google Scholar
Lazebnik LB, Kniazev OV, Parfenov AI et al (2010) Transplantation of allogeneic mesenchymal stem cells from the bone marrow increases duration of remission and reduces the risk of ulcerative colitis relapse. Eksp Klin Gastroenterol 3:5–10
Google Scholar
Sanz-Baro R, García-Arranz M, Guadalajara H et al (2015) First-in-human case study: pregnancy in women with Crohn’s perianal fistula treated with adipose-derived stem cells: a safety study. Stem Cells Transl Med 4:598–602. https://doi.org/10.5966/sctm.2014-0255
Article
PubMed
PubMed Central
Google Scholar
Shi X, Chen Q, Wang F (2019) Mesenchymal stem cells for the treatment of ulcerative colitis: a systematic review and meta-analysis of experimental and clinical studies. Stem Cell Res Ther 10:266. https://doi.org/10.1186/s13287-019-1336-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson AM, Rahman AA, Miller S et al (2017) The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Res Ther 8:87. https://doi.org/10.1186/s13287-017-0540-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee B-C, Shin N, Lee JY et al (2018) MIS416 enhances therapeutic functions of human umbilical cord blood-derived mesenchymal stem cells against experimental colitis by modulating systemic immune milieu. Front Immunol. https://doi.org/10.3389/fimmu.2018.01078
Article
PubMed
PubMed Central
Google Scholar
Yang FY, Chen R, Zhang X et al (2018) Preconditioning enhances the therapeutic effects of mesenchymal stem cells on colitis through PGE2-mediated T-cell modulation. Cell Transplant 27:1352–1367. https://doi.org/10.1177/0963689718780304
Article
PubMed
PubMed Central
Google Scholar
Ciccocioppo R, Cangemi GC, Kruzliak P et al (2015) Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact. Stem Cell Res Ther 6:137. https://doi.org/10.1186/s13287-015-0122-1
Article
PubMed
PubMed Central
Google Scholar
Cho Y, Park K, Yoon S, Song K (2015) Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med 4:532–537
Article
PubMed
PubMed Central
Google Scholar
Guadalajara H, Herreros D, De-La-Quintana P, Trebol J (2012) Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Colorectal Dis 27:595–600. https://doi.org/10.1007/s00384-011-1350-1
Article
PubMed
Google Scholar
Kamada N, Nunez G (2014) Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 146:1477–1488
Article
CAS
PubMed
Google Scholar
Xiao E, He L, Wu Q et al (2017) Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation. Stem Cell Res Ther 8:213. https://doi.org/10.1186/s13287-017-0670-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Soontararak S, Chow L, Johnson V et al (2018) Mesenchymal Stem Cells (MSC) Derived from Induced Pluripotent Stem Cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Transl Med 7:456–467. https://doi.org/10.1002/sctm.17-0305
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagashima K, Sawa S, Nitta T et al (2017) Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol 18:675–682. https://doi.org/10.1038/ni.3732
Article
CAS
PubMed
Google Scholar
Kol A, Foutouhi S, Walker NJ et al (2014) Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells Dev 23:1831–1843. https://doi.org/10.1089/scd.2014.0128
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwamura C, Bouladoux N, Belkaid Y et al (2017) Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood 129:171–176. https://doi.org/10.1182/blood-2016-06-723742
Article
CAS
PubMed
PubMed Central
Google Scholar
Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10:649–656. https://doi.org/10.1016/S1474-4422(11)70121-1
Article
CAS
PubMed
Google Scholar
Watanabe S, Arimura Y, Nagaishi K et al (2014) Conditioned mesenchymal stem cells produce pleiotropic gut trophic factors. J Gastroenterol 49:270–282. https://doi.org/10.1007/s00535-013-0901-3
Article
CAS
PubMed
Google Scholar
Nicholson JK, Holmes E, Kinross J et al (2012) Host–gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813
Article
CAS
PubMed
Google Scholar
Dong X, Feng X, Liu J et al (2019) Characteristics of intestinal microecology during mesenchymal stem cell-based therapy for mouse acute liver injury. Stem Cells Int 2019:1–14. https://doi.org/10.1155/2019/2403793
Article
CAS
Google Scholar
Riehl TE, Alvarado D, Ee X et al (2019) Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 68:1003–1013. https://doi.org/10.1136/gutjnl-2018-316226
Article
CAS
PubMed
Google Scholar
Ferrand J, Lehours P, Schmid-Alliana A et al (2011) Helicobacter pylori infection of gastrointestinal epithelial cells in vitro induces mesenchymal stem cell migration through an NF-κB-dependent pathway. PLoS ONE 6:e29007. https://doi.org/10.1371/journal.pone.0029007
Article
CAS
PubMed
PubMed Central
Google Scholar
Buffie C, Pamer E (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang T, Zhang X, Pan J et al (2016) Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci Rep 6:35560
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinnebrew M, Ubeda C, Zenewicz LA et al (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201:534–543
Article
CAS
PubMed
Google Scholar
Ivanov I, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamada N et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science (80−) 336:1325–1329
Article
CAS
Google Scholar
Ferreira RB et al (2011) The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE 6:e20338
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamada N, Seo S-U, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. https://doi.org/10.1038/nri3430
Article
CAS
PubMed
Google Scholar
Krasnodembskaya A, Samarani G, Song Y et al (2012) Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Cell Mol Physiol 302:L1003–L1013. https://doi.org/10.1152/ajplung.00180.2011
Article
CAS
Google Scholar
Mei S, Haitsma J, Dos Santos C et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057
Article
CAS
PubMed
Google Scholar
Nemeth K, Leelahavanichkul A, Yuen P et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49
Article
CAS
PubMed
Google Scholar
Brandau S, Jakob M, Bruderek K et al (2014) Mesenchymal stem cells augment the antibacterial activity of neutrophil granulocytes. PLoS ONE 9:e114201
Article
Google Scholar
Harman RM, Yang S, He MK, Van de Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157. https://doi.org/10.1186/s13287-017-0610-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson V, Webb T, Norman A et al (2017) Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Sci Rep 7:9575. https://doi.org/10.1038/s41598-017-08311-4
Article
PubMed
PubMed Central
Google Scholar
Kościuczuk E, Lisowski P, Jarczak J et al (2012) Cathelicidins: family of antimicrobial peptides, a review. Mol Biol Rep 39:10957–10970
Article
PubMed
PubMed Central
Google Scholar
Gupta N, Krasnodembskaya A, Kapetanaki M et al (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539
Article
PubMed
Google Scholar
Sung D, Chang Y, Sung S et al (2016) Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta-defensin- 2 via toll-like receptor 4 signaling: antibacterial effects of MSCs via beta defensin-2. Cell Microbiol 18:424–436
Article
CAS
PubMed
Google Scholar
Kurashima Y, Yamamoto D, Nelson S et al (2017) Mucosal mesenchymal cells: secondary barrier and peripheral educator for the gut immune system. Front Immunol. https://doi.org/10.3389/fimmu.2017.01787
Article
PubMed
PubMed Central
Google Scholar
Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801
Article
CAS
PubMed
Google Scholar
Vijay-Kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science (80−) 328:228–231. https://doi.org/10.1126/science.1179721
Article
CAS
Google Scholar
Liotta F, Angeli R, Cosmi L et al (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26:279–289. https://doi.org/10.1634/stemcells.2007-0454
Article
CAS
PubMed
Google Scholar
Shirjang S, Mansoori B, Solali S et al (2017) Toll-like receptors as a key regulator of mesenchymal stem cell function: an up-to-date review. Cell Immunol 315:1–10. https://doi.org/10.1016/j.cellimm.2016.12.005
Article
CAS
PubMed
Google Scholar
Yiu JHC, Dorweiler B, Woo CW (2017) Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med (Berl) 95:13–20. https://doi.org/10.1007/s00109-016-1474-4
Article
CAS
Google Scholar
Atarashi K, Tanoue T, Oshima K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236
Article
CAS
PubMed
Google Scholar
Littman D, Rudensky A (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–858
Article
CAS
PubMed
Google Scholar
Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736
Article
CAS
PubMed
PubMed Central
Google Scholar
Miquel S, Leclerc M, Martin R et al (2015) Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio. https://doi.org/10.1128/mBio.00300-15
Article
PubMed
PubMed Central
Google Scholar
Sarrabayrouse G, Bossard C, Chauvin J-M et al (2014) CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol 12:e1001833. https://doi.org/10.1371/journal.pbio.1001833
Article
CAS
PubMed
PubMed Central
Google Scholar
Quévrain E, Maubert MA, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425. https://doi.org/10.1136/gutjnl-2014-307649
Article
CAS
PubMed
Google Scholar
Parekkadan B, Upadhyay R, Dunham J, Iwamoto Y (2011) Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b+ splenocytes. Gastroenterology 140:966–975
Article
CAS
PubMed
Google Scholar
Chao K, Zhang S, Yao J, He Y (2014) Imbalances of CD4(+) T-cell subgroups in Crohn’s disease and their relationship with disease activity and prognosis. J Gastroenterol Hepatol 29:1808–1814
Article
CAS
PubMed
Google Scholar
Pouya S, Heidari M, Baghaei K, Asadzadeh Aghdaei H (2018) Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol 54:86–94. https://doi.org/10.1016/j.intimp.2017.11.001
Article
CAS
PubMed
Google Scholar
Liang L, Dong C, Chen X, Fang Z (2011) Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic Acid (TNBS)-induced colitis. Cell Transplant 20:1395–1408. https://doi.org/10.3727/096368910X557245
Article
PubMed
Google Scholar
Akiyama K, Chen C, Wang D, Xu X (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel Salam AG, Ata HM, Salman TM, Rashed LA (2014) Potential therapeutic utility of mesenchymal stem cells in inflammatory bowel disease in mice. Int Immunopharmacol 22:515–521. https://doi.org/10.1016/j.intimp.2014.07.030
Article
CAS
PubMed
Google Scholar
Solchaga LA, Zale EA (2012) Prostaglandin E2: a putative potency indicator of the immunosuppressive activity of human mesenchymal stem cells. Am J Stem Cells 1:138–145
CAS
PubMed
PubMed Central
Google Scholar
Fawzy SA, El-Din Abo-Elnou RK, Abd-El-Maksoud El-Deeb DF, Yousry Abd-Elkader MM (2013) The possible role of mesenchymal stem cells therapy in the repair of experimentally induced colitis in male albino rats. Int J stem cells 6:92–103
Article
PubMed
PubMed Central
Google Scholar
Gong W, Guo M, Han Z et al (2016) Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis 7:e2387. https://doi.org/10.1038/cddis.2016.276
Article
CAS
PubMed
PubMed Central
Google Scholar
La Francesca S, Aho JM, Barron MR et al (2018) Long-term regeneration and remodeling of the pig esophagus after circumferential resection using a retrievable synthetic scaffold carrying autologous cells. Sci Rep 8:4123. https://doi.org/10.1038/s41598-018-22401-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Yan L, Wang C, Wang W (2013) Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses. World J Gastroenterol 19:4702–4717
Article
PubMed
PubMed Central
Google Scholar
Hinz B (2016) Myofibroblasts. Exp Eye Res 142:56–70. https://doi.org/10.1016/j.exer.2015.07.009
Article
CAS
PubMed
Google Scholar
Roulis M, Flavell RA (2016) Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92:116–131. https://doi.org/10.1016/j.diff.2016.05.002
Article
CAS
PubMed
Google Scholar
de Lau W, Kujala P, Schneeberger K et al (2012) Peyer’s patch M cells derived from Lgr5 + stem cells require SpiB and are induced by RankL in cultured “Miniguts”. Mol Cell Biol 32:3639–3647. https://doi.org/10.1128/MCB.00434-12
Article
CAS
PubMed
PubMed Central
Google Scholar
Knoop KA, Kumar N, Butler BR et al (2009) RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol 183:5738–5747. https://doi.org/10.4049/jimmunol.0901563
Article
CAS
PubMed
Google Scholar
Nigro G, Rossi R, Commere P et al (2014) Short article the cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15:792–798. https://doi.org/10.1016/j.chom.2014.05.003
Article
CAS
PubMed
Google Scholar
Neal M, Sodhi C, Jia H et al (2012) Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem 287:37296–37308
Article
CAS
PubMed
PubMed Central
Google Scholar
Oprita R, Bratu M, Oprita B, Diaconescu B (2016) Fecal transplantation–the new, inexpensive, safe, and rapidly effective approach in the treatment of gastrointestinal tract diseases. J Med Life 9:160–162
CAS
PubMed
PubMed Central
Google Scholar
Kang D-W, Adams JB, Gregory AC et al (2017) Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. https://doi.org/10.1186/s40168-016-0225-7
Article
PubMed
PubMed Central
Google Scholar
Frank DN, Amand ALS, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 140:13780–13785
Article
Google Scholar
Dave M, Papadakis KA, Faubion WA Jr (2014) Immunology of inflammatory bowel disease and molecular targets for biologics. Gastroenterol Clin North Am 43:405
Article
PubMed
PubMed Central
Google Scholar
Kim H-S, Shin T-H, Yang S-R et al (2010) Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS ONE 5:e15369. https://doi.org/10.1371/journal.pone.0015369
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE 5:e10088. https://doi.org/10.1371/journal.pone.0010088
Article
CAS
PubMed
PubMed Central
Google Scholar
Anton K, Banerjee D, Glod J (2012) Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS ONE 7:e35036. https://doi.org/10.1371/journal.pone.0035036
Article
CAS
PubMed
PubMed Central
Google Scholar