Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30
Article
PubMed
Google Scholar
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921
Article
CAS
PubMed
Google Scholar
Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 23:55–68
Article
PubMed
Google Scholar
Yokoi K, Fidler IJ (2004) Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10(7):2299–2306
Article
CAS
PubMed
Google Scholar
Sheahan AV, Biankin AV, Parish CR, Khachigian LM (2018) Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. Oncotarget. 9(30):21613–21627
Article
PubMed
PubMed Central
Google Scholar
Hidalgo M, Cascinu S, Kleeff J, Labianca R, Löhr J, Neoptolemos J et al (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 15(1):8–18
Article
PubMed
Google Scholar
McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG (2016) Pancreatic cancer: update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother 12(3):563–575
Article
PubMed
Google Scholar
Ahn DH, Ramanathan RK, Bekaii-Saab T (2018) Emerging Therapies and Future Directions in Targeting the Tumor Stroma and Immune System in the Treatment of Pancreatic Adenocarcinoma. Cancers (Basel). 10(6):193
Article
PubMed Central
Google Scholar
Pillarisetty VG (2014) The pancreatic cancer microenvironment: an immunologic battleground. Oncoimmunology 3(8):e950171
Article
PubMed
PubMed Central
Google Scholar
Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Oshikiri T et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28(1):26
Article
Google Scholar
Carstens JL, Sampaio P, Yang D, Barua S, Wang H, Rao A et al (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 8:15095
Article
PubMed
PubMed Central
Google Scholar
Shibuya KC, Goel VK, Xiong W, Sham JG, Pollack SM, Leahy AM et al (2014) Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment. PLoS ONE 9(5):e96565
Article
PubMed
PubMed Central
CAS
Google Scholar
Bailey P, Chang DK, Forget M, Lucas FAS, Alvarez HA, Haymaker C et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep. 6:35848
Article
CAS
PubMed
PubMed Central
Google Scholar
Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 74(3):665–674
Article
CAS
PubMed
Google Scholar
Doktorova H, Hrabeta J, Khalil MA, Eckschlager T (2015) Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(2):166–177
Article
PubMed
Google Scholar
Moreno Roig E, Yaromina A, Houben R, Groot AJ, Dubois L, Vooijs M (2018) Prognostic Role of Hypoxia-Inducible Factor-2α Tumor Cell Expression in Cancer Patients: a Meta-Analysis. Front Oncol 8:224
Article
PubMed
PubMed Central
Google Scholar
Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000 Nov 01,;48(4):919-922
Carreau A, Hafny-Rahbi BE, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao M, Hedley DW (2014) Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers (Basel). 6(1):459–471
Article
PubMed
PubMed Central
Google Scholar
Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C et al (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23(11):3312–3326
Article
CAS
PubMed
PubMed Central
Google Scholar
Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008 Mar;8(3):180-192
López-Lázaro M (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8(3):305–312
Article
PubMed
Google Scholar
Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441(7092):437–443
Article
PubMed
CAS
Google Scholar
Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410
Article
CAS
PubMed
Google Scholar
Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214
Article
CAS
PubMed
PubMed Central
Google Scholar
Jokilehto T, Jaakkola PM (2010) The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med 14(4):758–770
Article
CAS
PubMed
PubMed Central
Google Scholar
Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 12(1):9–22
Article
PubMed
PubMed Central
CAS
Google Scholar
Criscimanna A, Duan L, Rhodes JA, Fendrich V, Wickline E, Hartman DJ et al (2013) PanIN-specific regulation of Wnt signaling by HIF2α during early pancreatic tumorigenesis. Cancer Res. 73(15):4781–4790
Article
CAS
PubMed
PubMed Central
Google Scholar
White E (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 27(19):2065–2071
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillaumond F, Leca J, Olivares O, Lavaut M, Vidal N, Berthezène P et al (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110(10):3919–3924
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillaumond F, Iovanna JL, Vasseur S (2014) Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys. 545:69–73
Article
CAS
PubMed
Google Scholar
Gunda V, Kumar S, Dasgupta A, Singh PK (2018) Hypoxia-induced metabolomic alterations in pancreatic cancer cells. Methods Mol Biol 1742:95–105
Article
CAS
PubMed
Google Scholar
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819
Article
CAS
PubMed
Google Scholar
Pastorek J, Pastorekova S (2015) Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin Cancer Biol 31:52–64
Article
CAS
PubMed
Google Scholar
Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-Driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591
Article
PubMed
PubMed Central
CAS
Google Scholar
Peng Y, Zhang J, Liang W, Tu M, Lu Z, Wei J et al (2014) Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 14:738
Article
PubMed
PubMed Central
CAS
Google Scholar
Iacobuzio-Donahue CA, Herman JM (2014) Autophagy, p53, and pancreatic cancer. N Engl J Med 370(14):1352–1353
Article
CAS
PubMed
Google Scholar
Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179
Article
PubMed
PubMed Central
CAS
Google Scholar
Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524(7565):361–365
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Wang D, Zhang L, Xie X, Wu Y, Liu Y et al (2014) Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133 + pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32(3):935–942
Article
CAS
PubMed
Google Scholar
Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F et al (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133 + pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119
Article
PubMed
PubMed Central
CAS
Google Scholar
Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227(3):325–335
Article
CAS
PubMed
Google Scholar
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628
Article
CAS
PubMed
Google Scholar
McGinn O, Gupta VK, Dauer P, Arora N, Sharma N, Nomura A et al (2017) Inhibition of hypoxic response decreases stemness and reduces tumorigenic signaling due to impaired assembly of HIF1 transcription complex in pancreatic cancer. Sci Rep 7(1):7872
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeung TM, Gandhi SC, Bodmer WF (2011) Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci USA 108(11):4382–4387
Article
CAS
PubMed
PubMed Central
Google Scholar
Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92
Article
Google Scholar
Al-Assar O, Demiciorglu F, Lunardi S, Gaspar-Carvalho MM, McKenna WG, Muschel RM et al (2014) Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells. Radiother Oncol 111(2):243–251
Article
PubMed
Google Scholar
Yang M, Wang H, Hou Y, Tung H, Chiu T, Shan Y (2015) Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 14:179
Article
PubMed
PubMed Central
CAS
Google Scholar
Fitzgerald TL, McCubrey JA (2014) Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul 56:45–50
Article
CAS
PubMed
Google Scholar
Nomura A, Dauer P, Gupta V, McGinn O, Arora N, Majumdar K et al (2016) Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133 + tumor initiating cells. Oncotarget 7(35):56324–56337
Article
PubMed
PubMed Central
Google Scholar
Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12(1):9–22
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu X, Xiao X, Shou Q, Yan J, Chen L, Fu H et al (2016) Bufalin inhibits pancreatic cancer by inducing cell cycle arrest via the c-Myc/NF-κB pathway. J Ethnopharmacol 193:538–545
Article
CAS
PubMed
Google Scholar
Zhang M, Fan H, Li S (2015) Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma. Biomed Pharmacother 73:123–128
Article
CAS
PubMed
Google Scholar
Chien W, Lee DH, Zheng Y, Wuensche P, Alvarez R, Wen DL et al (2014) Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NFkB, and mTOR signaling in vitro and in vivo. Mol Carcinog 53(9):722–735
Article
CAS
PubMed
Google Scholar
Jung H, Fattet L, Yang J (2015) Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res 21(5):962–968
Article
CAS
PubMed
Google Scholar
Marie-Egyptienne DT, Lohse I, Hill RP (2013) Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 341(1):63–72
Article
CAS
PubMed
Google Scholar
Sui H, Zhu L, Deng W, Li Q (2014) Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 37(10):584–589
Article
CAS
PubMed
Google Scholar
Shi C, Fan Y, Liu B, Lou W (2013) HIF1 contributes to hypoxia-induced pancreatic cancer cells invasion via promoting QSOX1 expression. Cell Physiol Biochem 32(3):561–568
Article
CAS
PubMed
Google Scholar
Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J et al (2014) Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 74(9):2455–2464
Article
CAS
PubMed
Google Scholar
Cheng Z, Sun B, Wang S, Gao Y, Zhang Y, Zhou H et al (2011) Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE 6(8):e23752
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotz B, Arndt M, Dullat S, Bhargava S, Buhr H, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776
Article
CAS
PubMed
Google Scholar
Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y et al (2016) HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res 35:26
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu A, Huang C, Cai X, Xu J, Yang D (2016) Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget 7(18):25801–25814
PubMed
PubMed Central
Google Scholar
Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q et al (2013) Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer 12:66
Article
CAS
PubMed
PubMed Central
Google Scholar
Harashima N, Takenaga K, Akimoto M, Harada M (2017) HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 8(26):42887–42900
Article
PubMed
PubMed Central
Google Scholar
Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M et al (2007) Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 67(7):3345–3355
Article
CAS
PubMed
Google Scholar
Abe T, Toyota M, Suzuki H, Murai M, Akino K, Ueno M et al (2005) Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40(5):504–510
Article
CAS
PubMed
Google Scholar
Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64(15):5338–5346
Article
CAS
PubMed
Google Scholar
Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Büchler MW et al (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24(27):4421–4432
Article
CAS
PubMed
Google Scholar
Chand S, O’Hayer K, Blanco FF, Winter JM, Brody JR (2016) The landscape of pancreatic cancer therapeutic resistance mechanisms. Int J Biol Sci 12(3):273–282
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz DL, Bankson JA, Lemos R, Lai SY, Thittai AK, He Y et al (2010) Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. Mol Cancer Ther 9(7):2057–2067
Article
CAS
PubMed
PubMed Central
Google Scholar
Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H et al (2008) Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 68(12):4746–4753
Article
CAS
PubMed
Google Scholar
Märten A, von Lilienfeld-Toal M, Büchler MW, Schmidt J (2006) Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119(10):2359–2365
Article
PubMed
CAS
Google Scholar
Zhou L, Niu Z, Liang Z, Zhou W, You L, Wang M et al (2015) HLA-G impairs host immune response and predicts poor prognosis in pancreatic cancer. Am J Transl Res 7(10):2036–2044
CAS
PubMed
PubMed Central
Google Scholar
Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O et al (2016) Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 7(44):71198–71210
Article
PubMed
PubMed Central
Google Scholar
Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S et al (2018) CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 24(6):1415–1425
Article
CAS
PubMed
Google Scholar
Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA et al (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74(23):6771–6783
Article
CAS
PubMed
PubMed Central
Google Scholar
Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3(5):506–517
Article
CAS
PubMed
Google Scholar
Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med. 19(6):355–367
Article
CAS
PubMed
PubMed Central
Google Scholar
Masamune A, Shimosegawa T (2015) Pancreatic stellate cells: a dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol 39(Suppl 1):98
Article
CAS
Google Scholar
Masamune A, Shimosegawa T (2013) Pancreatic stellate cells–multi-functional cells in the pancreas. Pancreatology 13(2):102–105
Article
CAS
PubMed
Google Scholar
Erkan M, Adler G, Apte MV, Bachem MG, Buchholz M, Detlefsen S et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178
Article
CAS
PubMed
Google Scholar
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV et al (2017) Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol 23(3):382–405
Article
CAS
PubMed
PubMed Central
Google Scholar
Feig C, Jones JO, Kraman M, Wells RJB, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110(50):20212
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi M, Yu D, Chen Y, Zhao C, Zhang J, Liu Q et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 18(8):840–846
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, Cheng JD (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang G, Xu W, Du J, Zhang K, Zhang Q, Wang X et al (2016) The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 7(22):33472–33482
PubMed
PubMed Central
Google Scholar
Keklikoglou I, Kadioglu E, Bissinger S, Langlois B, Bellotti A, Orend G et al (2018) Periostin limits tumor response to VEGFA inhibition. Cell Rep 22(10):2530–2540
Article
CAS
PubMed
Google Scholar
Masamune A, Watanabe T, Kikuta K, Shimosegawa T (2009) Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7(11 Suppl):48
Article
CAS
Google Scholar
Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018
Article
CAS
PubMed
PubMed Central
Google Scholar
Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508
Article
CAS
PubMed
PubMed Central
Google Scholar
Spivak-Kroizman TR, Hostetter G, Posner R, Aziz M, Hu C, Demeure MJ et al (2013) Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 73(11):3235–3247
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784
Article
CAS
PubMed
PubMed Central
Google Scholar
Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295(4):709
Article
CAS
Google Scholar
Moir JAG, Mann J, White SA (2015) The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol 24(3):232–238
Article
PubMed
Google Scholar
Nelson BH (2010) CD20 + B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982
Article
CAS
PubMed
Google Scholar
Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing b cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255
Article
CAS
PubMed
Google Scholar
Schwartz M, Zhang Y, Rosenblatt JD (2016) B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer 4:40
Article
PubMed
PubMed Central
Google Scholar
Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R et al (2016) Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology 5(4):e1085147
Article
PubMed
CAS
Google Scholar
Koizumi M, Hiasa Y, Kumagi T, Yamanishi H, Azemoto N, Kobata T et al (2013) Increased B cell-activating factor promotes tumor invasion and metastasis in human pancreatic cancer. PLoS ONE 8(8):e71367
Article
CAS
PubMed
PubMed Central
Google Scholar
Reis ST, Leite KRM, Piovesan LF, Pontes-Junior J, Viana NI, Abe DK et al (2012) Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder Cancer. BMC Urol 12:18
Article
CAS
PubMed
PubMed Central
Google Scholar
Tadmor T, Zhang Y, Cho H, Podack ER, Rosenblatt JD (2011) The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model. Cancer Immunol Immunother 60(5):609–619
Article
CAS
PubMed
Google Scholar
Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov 6(3):270–285
Article
CAS
PubMed
Google Scholar
Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N et al (2010) Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 95(5):776–784
Article
CAS
PubMed
Google Scholar
Piovan E, Tosello V, Indraccolo S, Masiero M, Persano L, Esposito G et al (2007) Differential regulation of hypoxia-induced CXCR4 triggering during B-cell development and lymphomagenesis. Cancer Res 67(18):8605–8614
Article
CAS
PubMed
Google Scholar
Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D et al (2016) Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 6(3):256–269
Article
CAS
PubMed
Google Scholar
Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59(10):1593–1600
Article
PubMed
PubMed Central
Google Scholar
Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33(14):1743–1754
Article
CAS
PubMed
Google Scholar
Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L et al (2015) Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget 6(7):4717–4732
Article
PubMed
Google Scholar
Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835
Article
CAS
PubMed
PubMed Central
Google Scholar
Porembka MR, Mitchem JB, Belt BA, Hsieh C, Lee H, Herndon J et al (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385
Article
CAS
PubMed
PubMed Central
Google Scholar
Stromnes IM, Brockenbrough JS, Izeradjene K, Carlson MA, Cuevas C, Simmons RM et al (2014) Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut 63(11):1769–1781
Article
CAS
PubMed
Google Scholar
Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179(2):977–983
Article
CAS
PubMed
Google Scholar
Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797
Article
CAS
PubMed
Google Scholar
Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77
Article
CAS
PubMed
Google Scholar
Leone RD, Emens LA (2018) Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6(1):57
Article
PubMed
PubMed Central
Google Scholar
Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE et al (2016) Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget 7(32):51840
PubMed
PubMed Central
Google Scholar
Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4 + and CD8 + T cells. J Immunol 183(2):937–944
Article
CAS
PubMed
Google Scholar
Li J, Wang L, Chen X, Li L, Li Y, Ping Y et al (2017) CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 6(6):e1320011
Article
PubMed
PubMed Central
Google Scholar
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh H et al (2016) Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 64(3):797–813
Article
CAS
PubMed
Google Scholar
Chiu DK, Tse AP, Xu IM, Cui JD, Lai RK, Li LL et al (2017) Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications 8:517
Article
PubMed
PubMed Central
CAS
Google Scholar
Corzo CA, Condamine T, Lu L, Cotter MJ, Youn J, Cheng P et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan X (2016) Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 7(31):50735–50754
Article
PubMed
PubMed Central
Google Scholar
Chang Y, Hsu T, Lin H, Chio C, Chiu AW, Chen N et al (2004) Modulation of macrophage differentiation and activation by decoy receptor 3. J Leukoc Biol 75(3):486–494
Article
CAS
PubMed
Google Scholar
Gajewski TF, Schreiber H, Fu Y (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022
Article
CAS
PubMed
PubMed Central
Google Scholar
Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925
Article
CAS
PubMed
PubMed Central
Google Scholar
Lao L, Fan S, Song E (2017) Tumor associated macrophages as therapeutic targets for breast cancer. Adv Exp Med Biol 1026:331–370
Article
CAS
PubMed
Google Scholar
Zhong X, Chen B, Yang Z (2018) The role of tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem 45(1):356–365
Article
CAS
PubMed
Google Scholar
Krishnan V, Schaar B, Tallapragada S, Dorigo O (2018) Tumor associated macrophages in gynecologic cancers. Gynecol Oncol 149(1):205–213
Article
CAS
PubMed
Google Scholar
Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I et al (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135(4):843–861
Article
CAS
PubMed
Google Scholar
Arnold JN, Magiera L, Kraman M, Fearon DT (2014) Tumoral immune suppression by macrophages expressing fibroblast activation protein-α and heme oxygenase-1. Cancer Immunol Res 2(2):121–126
Article
CAS
PubMed
PubMed Central
Google Scholar
Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ et al (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29):3812–3819
Article
CAS
PubMed
Google Scholar
Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923
Article
CAS
PubMed
PubMed Central
Google Scholar
Henze A, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest 2016 Oct 03,;126(10):3672-3679
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709
Article
CAS
PubMed
Google Scholar
Zhang J, Cao J, Ma S, Dong R, Meng W, Ying M et al (2014) Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 5(20):9664–9677
Article
PubMed
PubMed Central
Google Scholar
Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X et al (2016) Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7(49):80521–80542
PubMed
PubMed Central
Google Scholar
Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4):439
Article
CAS
PubMed
Google Scholar
Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115(7):1806–1815
Article
CAS
PubMed
PubMed Central
Google Scholar
Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4):1568–1573
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye L, Chen W, Bai X, Xu X, Zhang Q, Xia X et al (2016) Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res 76(4):818–830
Article
CAS
PubMed
Google Scholar
Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74(3):665–674
Article
CAS
PubMed
Google Scholar
Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM (2001) Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 3(6):459–468
Article
CAS
PubMed
PubMed Central
Google Scholar
Fainaru O, Almog N, Yung CW, Nakai K, Montoya-Zavala M, Abdollahi A et al (2010) Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J 24(5):1411–1418
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellone G, Carbone A, Smirne C, Scirelli T, Buffolino A, Novarino A, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 2006 Sep 01,;177(5):3448-3460
Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952
Article
CAS
PubMed
Google Scholar
Bharadwaj U, Li M, Zhang R, Chen C, Yao Q (2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res 67(11):5479–5488
Article
CAS
PubMed
Google Scholar
Alfaro C, Suárez N, Martínez-Forero I, Palazón A, Rouzaut A, Solano S et al (2011) Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS ONE 6(3):e17922
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Yamao J, Kim S et al (2012) Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J Surg Res 173(2):299–308
Article
CAS
PubMed
Google Scholar
Hirooka S, Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Yamaki S et al (2011) The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 31(11):3827–3834
CAS
PubMed
Google Scholar
Wiedemann GM, Knott MML, Vetter VK, Rapp M, Haubner S, Fesseler J et al (2016) Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5(9):e1175794
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4 + CD25 + regulatory T cell proliferation. J Exp Med 202(7):919–929
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L (2014) Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol 292(1–2):65–69
Article
CAS
PubMed
Google Scholar
Kang TH, Kim YS, Kim S, Yang B, Lee J, Lee H et al (2015) Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget 6(29):27751–27762
PubMed
PubMed Central
Google Scholar
Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B et al (2012) Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol 29(4):2814–2823
Article
CAS
PubMed
Google Scholar
Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG et al (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705
Article
CAS
PubMed
Google Scholar
Yilmaz A, Ratka J, Rohm I, Pistulli R, Goebel B, Asadi Y et al (2016) Decrease in circulating plasmacytoid dendritic cells during short-term systemic normobaric hypoxia. Eur J Clin Invest 46(2):115–122
Article
CAS
PubMed
Google Scholar
Wobben R, Hüsecken Y, Lodewick C, Gibbert K, Fandrey J, Winning S (2013) Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells. Biol Chem 394(4):495–505
Article
CAS
PubMed
Google Scholar
Filippi I, Morena E, Aldinucci C, Carraro F, Sozzani S, Naldini A (2014) Short-term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway. J Cell Physiol 229(12):2067–2076
Article
CAS
PubMed
Google Scholar
Ogino T, Onishi H, Suzuki H, Morisaki T, Tanaka M, Katano M (2012) Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother 61(3):409–424
Article
CAS
PubMed
Google Scholar
Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I (2012) Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol 42(5):1226–1236
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W et al (2009) Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 128(1 Suppl):237
Article
Google Scholar
Yang M, Liu Y, Ren G, Shao Q, Gao W, Sun J et al (2015) Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep 5:13674
Article
PubMed
PubMed Central
Google Scholar
Yang M, Ma C, Liu S, Shao Q, Gao W, Song B et al (2010) HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol 88(2):165–171
Article
CAS
PubMed
Google Scholar
Naldini A, Morena E, Pucci A, Miglietta D, Riboldi E, Sozzani S et al (2012) Hypoxia affects dendritic cell survival: role of the hypoxia-inducible factor-1α and lipopolysaccharide. J Cell Physiol 227(2):587–595
Article
CAS
PubMed
Google Scholar
Amedei A, Niccolai E, Benagiano M, Della Bella C, Cianchi F, Bechi P et al (2013) Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunol Immunother 62(7):1249–1260
Article
CAS
PubMed
Google Scholar
Kim H, Cantor H (2014) CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2(2):91–98
Article
CAS
PubMed
Google Scholar
Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES (2015) The correlations between IL-17 vs Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4(2):e984547
Article
PubMed
PubMed Central
CAS
Google Scholar
Liao Y, Wang B, Huang Z, Shi M, Yu X, Zheng L et al (2013) Increased circulating Th17 cells after transarterial chemoembolization correlate with improved survival in stage III hepatocellular carcinoma: a prospective study. PLoS ONE 8(4):e60444
Article
CAS
PubMed
PubMed Central
Google Scholar
Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66(12):1609–1617
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755
Article
CAS
PubMed
Google Scholar
Grage-Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag-Wolf S et al (2014) L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol 8(5):982–997
Article
CAS
PubMed
PubMed Central
Google Scholar
Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ et al (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4(134):134ra62
Article
PubMed
PubMed Central
CAS
Google Scholar
Gnanaprakasam JNR, Sherman JW, Wang R (2017) MYC and HIF in shaping immune response and immune metabolism. Cytokine Growth Factor Rev 35:63–70
Article
CAS
PubMed
Google Scholar
Hsu T, Lai M (2018) Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 104(5):911–918
Article
CAS
PubMed
Google Scholar
Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci USA 109(41):2784
Article
Google Scholar
Dang EV, Barbi J, Yang H, Jinasena D, Yu H, Zheng Y et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5):772–784
Article
CAS
PubMed
PubMed Central
Google Scholar
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230
Article
CAS
PubMed
Google Scholar
Bakshi RK, Cox MA, Zajac AJ. Cytotoxic T Lymphocytes. Encyclopedia of Medical Immunology: Springer: New York; 2014. p. 332–2
Hoyer S, Prommersberger S, Pfeiffer IA, Schuler-Thurner B, Schuler G, Dörrie J et al (2014) Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: it takes three to tango. Eur J Immunol 44(12):3543–3559
Article
CAS
PubMed
Google Scholar
Oberg H, Peipp M, Kellner C, Sebens S, Krause S, Petrick D et al (2014) Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res 74(5):1349–1360
Article
CAS
PubMed
Google Scholar
Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF et al (2012) The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2(7):608–623
Article
PubMed
CAS
Google Scholar
Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167(11):6140–6149
Article
CAS
PubMed
Google Scholar
Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14(11):1173–1182
Article
CAS
PubMed
PubMed Central
Google Scholar
Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J et al (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10(6):735–744
Article
CAS
PubMed
Google Scholar
Takeichi T, Mocevicius P, Deduchovas O, Salnikova O, Castro-Santa E, Büchler MW et al (2012) αL β2 integrin is indispensable for CD8 + T-cell recruitment in experimental pancreatic and hepatocellular cancer. Int J Cancer 130(9):2067–2076
Article
CAS
PubMed
Google Scholar
Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med 13(7):828–835
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicoli F, Paul S, Appay V (2018) Harnessing the induction of CD8 + T-Cell responses through metabolic regulation by pathogen-recognition-receptor triggering in antigen presenting cells. Front Immunol 9:2372
Article
PubMed
PubMed Central
Google Scholar
Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E et al (2018) Naïve CD8 + T-Cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8 + T-cells. Front Immunol 9:2736
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A et al (2017) Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 32(3):391
Article
CAS
Google Scholar
Gou Q, Gong X, Jin J, Shi J, Hou Y (2017) Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 8(36):60704–60709
Article
PubMed
PubMed Central
Google Scholar
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R et al (2016) Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315(15):1600–1609
Article
CAS
PubMed
Google Scholar
Shroff GS, de Groot PM, Papadimitrakopoulou VA, Truong MT, Carter BW (2018) Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol Clin North Am 56(3):485–495
Article
PubMed
Google Scholar
Bauer C, Kühnemuth B, Duewell P, Ormanns S, Gress T, Schnurr M (2016) Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 381(1):259–268
Article
CAS
PubMed
Google Scholar
Kotteas E, Saif MW, Syrigos K (2016) Immunotherapy for pancreatic cancer. J Cancer Res Clin Oncol 142(8):1795–1805
Article
CAS
PubMed
Google Scholar
Kunk PR, Bauer TW, Slingluff CL, Rahma OE (2016) From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 4:14
Article
PubMed
PubMed Central
Google Scholar
Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunotherapy for pancreatic cancer. Cancer Lett 381(1):244–251
Article
CAS
PubMed
Google Scholar
Zheng L (2017) PD-L1 expression in pancreatic cancer. J Natl Cancer Inst. 109:6
Article
CAS
Google Scholar
Chiorean EG, Coveler AL (2015) Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther 9:3529
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkuri KR, Herzenberg LA, Niemi A, Cowan T, Herzenberg LA (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA 104(11):4547–4552
Article
CAS
PubMed
PubMed Central
Google Scholar
Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738
Article
CAS
PubMed
Google Scholar
Tao L, Reese TA (2017) Making Mouse Models That Reflect Human Immune Responses. Trends Immunol. 38(3):181–193
Article
CAS
PubMed
Google Scholar
Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA et al (2016) Recapitulating adult human immune traits in laboratory mice by normalizing environment. Nature 532(7600):512
Article
CAS
PubMed
PubMed Central
Google Scholar
Boj SF, Hwang C, Baker LA, Chio IIC, Engle DD, Corbo V et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338
Article
CAS
PubMed
Google Scholar
Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q et al (2018) Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18(1):335
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimojo Y, Akimoto M, Hisanaga T, Tanaka T, Tajima Y, Honma Y et al (2013) Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis 30(2):143–154
Article
CAS
PubMed
Google Scholar
Kizaka-Kondoh S, Itasaka S, Zeng L, Tanaka S, Zhao T, Takahashi Y et al (2009) Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clin Cancer Res 15(10):3433–3441
Article
CAS
PubMed
Google Scholar
Hajj C, Russell J, Hart CP, Goodman KA, Lowery MA, Haimovitz-Friedman A et al (2017) A combination of radiation and the hypoxia-activated prodrug evofosfamide (TH-302) is efficacious against a human orthotopic pancreatic tumor model. Transl Oncol 10(5):760–765
Article
PubMed
PubMed Central
Google Scholar
Salem A, Asselin M, Reymen B, Jackson A, Lambin P, West CML et al (2018) Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst 110:1
Article
Google Scholar
Belalcazar A, Shaib WL, Farren MR, Zhang C, Chen Z, Yang L et al (2017) Inhibiting heat shock protein 90 and the ubiquitin-proteasome pathway impairs metabolic homeostasis and leads to cell death in human pancreatic cancer cells. Cancer 123(24):4924–4933
Article
CAS
PubMed
Google Scholar
Bobrov E, Skobeleva N, Restifo D, Beglyarova N, Cai KQ, Handorf E et al (2017) Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 8(3):4399–4409
Article
PubMed
Google Scholar
Wigerup C, Påhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 08(164):152–169
Article
CAS
Google Scholar
Li Y, Patel SP, Roszik J, Qin Y (2018) Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol 9:1591
Article
PubMed
PubMed Central
CAS
Google Scholar
Mosquera C, Maglic D, Zervos EE (2016) Molecular targeted therapy for pancreatic adenocarcinoma: a review of completed and ongoing late phase clinical trials. Cancer Genet 209(12):567–581
Article
CAS
PubMed
Google Scholar
De Jesus-Acosta A, Laheru D, Maitra A, Arcaroli J, Rudek MA, Dasari A et al (2014) A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest New Drugs 32(4):739–745
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Neil BH, Scott AJ, Ma WW, Cohen SJ, Leichman L, Aisner DL et al (2015) A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Ann Oncol 26(9):1923–1929
Article
PubMed
PubMed Central
Google Scholar
Ma WW, Messersmith WA, Dy GK, Weekes CD, Whitworth A, Ren C et al (2012) Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and Polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin Cancer Res 18(7):2048–2055
Article
CAS
PubMed
Google Scholar
Kim EJ, Sahai V, Abel EV, Griffith KA, Greenson JK, Takebe N et al (2014) Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin Cancer Res 20(23):5937–5945
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S et al (2016) A phase i study of FOLFIRINOX Plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45(3):370–375
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitellius C, Fizanne L, Menager-Tabourel E, Nader J, Baize N, Laly M et al (2018) The combination of everolimus and zoledronic acid increase the efficacy of gemcitabine in a mouse model of pancreatic adenocarcinoma. Oncotarget 9(46):28069–28082
Article
PubMed
PubMed Central
Google Scholar
Sanford DE, Porembka MR, Panni RZ, Mitchem JB, Belt BA, Plambeck-Suess SM et al (2013) A study of zoledronic acid as neo-adjuvant, perioperative therapy in patients with resectable pancreatic ductal adenocarcinoma. J Cancer Ther 4(3):797–803
Article
PubMed
PubMed Central
CAS
Google Scholar
Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumor progression in murine models of pancreatic cancer. Gut 67(2):320
Article
CAS
PubMed
Google Scholar
Goumas FA, Holmer R, Egberts J, Gontarewicz A, Heneweer C, Geisen U et al (2015) Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. International Journal of Cancer 137(5):1035–1046
Article
CAS
PubMed
Google Scholar
Pu N, Zhao G, Gao S, Cui Y, Xu Y, Lv Y et al (2018) Neutralizing TGF-β promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Central-European Journal of Immunology 43(2):123
Article
PubMed
PubMed Central
Google Scholar
Soares KC, Rucki AA, Kim V, Foley K, Solt S, Wolfgang CL et al (2015) TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget 6(40):43005
Article
PubMed
PubMed Central
Google Scholar
Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG et al (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE et al (2009) Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 182(3):1746–1755
Article
CAS
PubMed
Google Scholar