Siegel R, Naishadham D, Jemal A (2013) Cancer statistics 2013. CA Cancer J Clin 63:11–30
Article
PubMed
Google Scholar
Saedi B, Razmpa E, Sadeghi M et al (2009) The epidemiology of laryngeal cancer in a country on the esophageal cancer belt. Indian J Otolaryngol Head Neck Surg 61:213–217
Article
PubMed
PubMed Central
Google Scholar
Tran GD, Sun XD, Abnet CC et al (2005) Prospective study of risk factors for esophageal and gastric cancers in the linxian general population trial cohort in China. Int J Cancer 113:456–463
Article
CAS
PubMed
Google Scholar
Brücher BL, Kitajima M, Siewert JR (2014) Undervalued criteria in the evaluation of multimodal trials for upper GI cancers. Cancer Invest 32:497–506
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu SZ, Wang B, Zhang F et al (2013) Incidence, survival and prevalence of esophageal and gastric cancer in Linzhou City from 2003 to 2009. Asian Pac J Cancer Prev 14:6031–6034
Article
PubMed
Google Scholar
Jemal A, Murray T, Ward E et al (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30
Article
PubMed
Google Scholar
Solaymani-Dodaran M, Card TR, West J (2013) Cause-specific mortality of people with barrett’s esophagus compared with the general population: a population-based cohort study. Gastroenterology 144:1375–1383
Article
PubMed
Google Scholar
Lee JH, Kim KM, Cheong JH et al (2012) Current management and future strategies of gastric cancer. Yonsei Med J 53:248–257
Article
CAS
PubMed
PubMed Central
Google Scholar
Marshall BJ (1985) The pathogenesis of non-ulcer dyspepsia. Med J Aust 143:319
CAS
PubMed
Google Scholar
Pisani P, Parkin DM, Muñoz N et al (1997) Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev 6:387–400
CAS
PubMed
Google Scholar
Conlin VS, Curtis SB, Zhao Y et al (2004) Helicobacter pylori infection targets adherens junction regulatory proteins and results in increased rates of migration in human gastric epithelial cells. Infect Immun 72:5181–5192
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorward DW, Garon CF et al (1989) DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:4196–4201
CAS
PubMed
PubMed Central
Google Scholar
Aravindan N, Aravindan S, Pandian V et al (2014) Acquired tumor cell radiation resistance at the treatment site is mediated through radiation-orchestrated intercellular communication. Int J Radiat Oncol Biol Phys 88:677–685
Article
PubMed
PubMed Central
Google Scholar
Brücher BLDM, Jamall IS (2014) Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14:1–15
Article
CAS
Google Scholar
Brücher BLDM, Jamall IS (2014) Cell-Cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34:213–243
Article
PubMed
CAS
Google Scholar
Zhang Y, Pan KF, Zhang L et al (2015) Helicobacter pylori, cyclooxygenase-2 and evolution of gastric lesions: results from an intervention trial in China. Carcinogenesis 36:1572–1579
CAS
PubMed
Google Scholar
Blattner WA (1999) Human retroviruses: their role in cancer. Proc Assoc Am Physicians 111:563–572
Article
CAS
PubMed
Google Scholar
Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044
Article
CAS
PubMed
Google Scholar
Tomlinson IP, Novelli MR, Bodmer WF (1996) The mutation rate and cancer. Proc Natl Acad Sci USA 93:14800–14803
Article
CAS
PubMed
PubMed Central
Google Scholar
Brücher BLDM, Lyman G, van Hillegersberg R et al (2014) Imagine a world without cancer. BMC Cancer 14:1–8
Article
CAS
Google Scholar
Balogh LP (2015) Caging cancer. Nanomedicine 11:867–869
CAS
PubMed
Google Scholar
Brücher BLDM, Li Y, Schnabel P et al (2016) Biotechnologie und Krebs. CHAZ 2016(17):17–27
Google Scholar
Kleppe K, Ohtsuka E, Kleppe R et al (1971) Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. J Mol Biol 56:341–361
Article
CAS
PubMed
Google Scholar
Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273
Article
CAS
PubMed
Google Scholar
Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
Article
CAS
PubMed
Google Scholar
Bernard PS, Wittwer CT (2002) Real-time PCR technology for cancer diagnostics. Clin Chem 48:1178–1185
CAS
PubMed
Google Scholar
Kurimoto K, Yabuta Y, Ohinata Y et al (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42
Article
PubMed
PubMed Central
CAS
Google Scholar
Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39
Article
CAS
PubMed
Google Scholar
Huggett J, Dheda K, Bustin S et al (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284
Article
CAS
PubMed
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomasetti CB, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 110:1999–2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Lorenzo A, Hauer J, Vicente-Duenas C et al (2015) Infection exposure is a causal factor in B-precursor acute lymphoblastic leukemia as a result of Pax inherited susceptibility. Cancer Discov 5:1328–1343
Article
CAS
PubMed
Google Scholar
Nguyen LV, Makarem M, Carles A et al (2014) Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14:253–263
Article
CAS
PubMed
Google Scholar
Harris R, Law E, Sieuwerts A et al (2015) Tamoxifen resistance driven by the DNA cytosine deaminase APOBEC3B in recurrent estrogen receptor positive breast cancer. San Antonio Breast Cancer Symposium (SABC) 2015; Abstract S4–07
Ling S, Hu Z, Yang Z et al (2015) Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci USA 112:E6496
Article
CAS
PubMed
Google Scholar
Vu V, Verster AJ, Schertzberg M et al (2015) Natural Variation in gene expression modulates the severity of mutant phenotypes. Cell 162:391–402
Article
CAS
PubMed
Google Scholar
Cvijović I, Good BH, Jerison ER et al (2015) Fate of a mutation in a fluctuating environment. Proc Natl Acad Sci USA 112:E5021–E5028
Article
PubMed
PubMed Central
CAS
Google Scholar
Supek F, Lehner B (2015) Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521:81–84
Article
CAS
PubMed
PubMed Central
Google Scholar
Holstege H, Pfeiffer W, Sie D (2014) Somatic mutations found in the healthy blood compartment of a 115-year-oldwoman demonstrate oligoclonal hematopoiesis. Genome Res 24:733–742
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence MS, Stojanov P, Mermel CH et al (2014) Discovery and saturation analysis of cancer genes across 21 tumor types. Nature 505:495–501
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenfeld S (2013) Are the somatic mutation and tissue organization field theories of carcinogenesis incompatible? Cancer Inform 12:221–229
Article
PubMed
PubMed Central
CAS
Google Scholar
Versteeg R (2014) Cancer: tumours outside the mutation box. Nature 506:438–439
Article
CAS
PubMed
Google Scholar
Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang CP, Cheng CM, Su HL et al (2015) Syndecan-4 promotes epithelial tumor cells spreading and regulates the turnover of PKCα Activity under mechanical stimulation on the elastomeric substrates. Cell Physiol Biochem 36:1291–1304
Article
CAS
Google Scholar
Beerenwinkel N, Antal T, Dingli D et al (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225
Article
PubMed
PubMed Central
CAS
Google Scholar
Tuch BB, Laborde RR, Xu X et al (2010) Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS One 5:e9317
Article
PubMed
PubMed Central
CAS
Google Scholar
Pflueger D, Terry S, Sboner A et al (2011) Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 21:56–67
Article
CAS
PubMed
PubMed Central
Google Scholar
Maher CA, Kumar-Sinha C, Cao X et al (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97–101
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma S, Bao JY, Kwan PS et al (2012) Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma. Gastroenterology 143(675–686):e1–e12
Google Scholar
Hu X, MacDonald DM, Huettner PC et al (2009) A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 114:457–464
Article
CAS
PubMed
Google Scholar
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
Article
CAS
PubMed
Google Scholar
Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677
Article
CAS
PubMed
Google Scholar
Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770
Article
CAS
PubMed
Google Scholar
Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261
Article
CAS
PubMed
PubMed Central
Google Scholar
Budhu A, Jia HL, Forgues M et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47:897–907
Article
CAS
PubMed
Google Scholar
Zhao Y, Jia HL, Zhou HJ et al (2009) Identification of metastasis-related microRNAs of hepatocellular carcinoma in hepatocellular carcinoma cell lines by quantitative real time PCR. Zhonghua Gan Zang Bing Za Zhi 17:526–530
CAS
PubMed
Google Scholar
Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Shi S, Cai X et al (2012) microRNA signature for human pancreatic cancer invasion and metastasis. Exp Ther Med 4:181–187
CAS
PubMed
PubMed Central
Google Scholar
Brendle A, Lei H, Brandt A et al (2008) Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: iTGB4 as prognostic marker. Carcinogenesis 29:1394–1399
Article
CAS
PubMed
Google Scholar
Sung H, Jeon S, Lee KM et al (2012) Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 28:195
Article
CAS
Google Scholar
He H, Jazdzewski K, Li W et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102:19075–19080
Article
CAS
PubMed
PubMed Central
Google Scholar
Calin GA, Pekarsky Y, Croce CM (2007) The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20:425–437
Article
CAS
PubMed
Google Scholar
Feber A, Xi L, Luketich JD et al (2008) MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 135:255–260
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishima T, Akagi I, Miyashita M et al (2009) Study of MicroRNA expression profiles of esophageal cancer. J Nippon Med Sch 76:43
Article
PubMed
Google Scholar
Hu Y, Correa AM, Hoque A et al (2011) Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer 128:132–143
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinozuka E, Miyashita M, Mizuguchi Y et al (2013) SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun 430:101–106
Article
CAS
PubMed
Google Scholar
Mathé EA, Nguyen GH, Bowman ED et al (2009) MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 215:6192–6200
Article
CAS
Google Scholar
Hiyoshi Y, Kamohara H, Karashima R et al (2009) MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res 15:1915–1922
Article
CAS
PubMed
Google Scholar
Guo Y, Chen Z, Zhang L et al (2008) Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68:26–33
Article
CAS
PubMed
Google Scholar
Mori Y, Ishiguro H, Kuwabara Y et al (2009) MicroRNA-21 induces cell proliferation and invasion in esophageal squamous cell carcinoma. Mol Med Rep 2:235–239
CAS
PubMed
Google Scholar
Tjalsma H, Bolhuis A, Jongbloed JD et al (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547
Article
CAS
PubMed
PubMed Central
Google Scholar
Agrawal GK, Jwa NS, Lebrun MH et al (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827
Article
CAS
PubMed
Google Scholar
Komatsu S, Ichikawa D, Takeshita H et al (2011) Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer 105:104–111
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurashige J, Kamohara H, Watanabe M et al (2012) Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J Surg Oncol 106:188–192
Article
CAS
PubMed
Google Scholar
Drahos J, Schwameis K et al (2015) MicroRNA profiles of Barrett’s esophagus and esophageal adenocarcinoma: Differences in glandular non-native epithelium. Cancer Epidemiol Biomarkers Prev Nov 24: pii: cebp.0161.2015
Yu Y, Kanwar SS, Patel BB et al (2012) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 33:68–76
Article
PubMed
PubMed Central
CAS
Google Scholar
Ng R, Song G, Roll GR et al (2012) A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 122:1097–1108
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XC, Zhang ZB, Wang YY et al (2013) Increased miRNA-22 expression sensitizes esophageal squamous cell carcinoma to irradiation. J Radiat Res 54:401–408
Article
CAS
PubMed
PubMed Central
Google Scholar
Allawi HT, Dahlberg JE, Olson S et al (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10:1153–1161
Article
CAS
PubMed
PubMed Central
Google Scholar
Neely LA, Patel S, Garver J et al (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3:41–46
Article
CAS
PubMed
Google Scholar
Fassan M, Volinia S, Palatini J et al (2011) MicroRNA expression profiling in human Barrett’s carcinogenesis. Int J Cancer 129:1661–1670
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson PT, Baldwin DA, Kloosterman WP et al (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Li X, Li Y et al (2013) Cell-specific detection of miR-375 downregulation for predicting the prognosis of esophageal squamous cell carcinoma by miRNA in situ hybridization. PLoS One 8:e53582
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarzenbach H, Nishida N et al (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145–156
Article
CAS
PubMed
Google Scholar
Anwaar SL, Lehmann U (2015) MicroRNAs: emerging novel clinical biomarkers for hepatocellular carcinomas. J Clin Med 18:1631–1650
Article
Google Scholar
Hur K, Toiyama Y et al (2015) Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut, pii: gutjnl-2014-308737
Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85
Article
PubMed
PubMed Central
CAS
Google Scholar
Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500
Article
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148
Article
CAS
PubMed
Google Scholar
Scott GK, Mattie MD, Berger CE et al (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281
Article
CAS
PubMed
Google Scholar
Da Cunha AB (1949) Genetic analysis of the polymorphism of color pattern in Drosophila polymorphia. Evolution 3:239–251
Article
Google Scholar
National Center for Biotechnology Information, United States National Library of Medicine (2013) NCBI dbSNP build 138 for human: http://www.ncbi.nlm.nih.gov/mailman/pipermail/dbsnp-announce/2013q3/000133.html
Xue Y, Wang Q, Long Q et al (2009) Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr Biol 19:1453–1457
Article
CAS
PubMed
PubMed Central
Google Scholar
Human genome project (2013) http://web.ornl.gov/sci/techresources/Human_Genome/project/info.shtml
Ensemble database at the European Bioinformatics Institute (EBI) and Wellcome Trust Sanger (2013) http://useast.ensembl.org/Homo_sapiens/Location/Chromosome?r=1
Watson JD, Baker TA, Bell SP et al (2004) Molecular biology of the gene, 5th edn, In Peason Benjamin Cummings, Cold Spring Harbor, Cold Spring Harbor Laboratory Press
Brouha B (2003) Hot L1 s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci 100:5280–5285
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett EA, Keller H, Mills RE et al (2008) Active Alu retrotransposons in the human genome. Genome Res 18:1875–1883
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982
Article
CAS
PubMed
Google Scholar
Ju YS, Tubio JM, Mifsud W et al (2015) Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 25:814–824
Article
CAS
PubMed
PubMed Central
Google Scholar
Projectmanagement (2013) Requirements management for big data projects. http://www.projectmanagement.com/articles/279834/Requirements-Management-for-Big-Data-Projects
Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357
Article
CAS
PubMed
PubMed Central
Google Scholar
UniProt website (2015) UniProtKB–P68432 (H31_Human) http://www.uniprot.org/uniprot/P68431
Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054
Article
CAS
PubMed
Google Scholar
Nie K, Zhang T, Allawi H et al (2010) Epigenetic down-regulation of the tumor suppressor gene PRDM1/Blimp-1 in diffuse large B cell lymphomas: a potential role of the microRNA let-7. Am J Pathol 177:1470–1479
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaz AM, Grady WM (2012) Epigenetic biomarkers in esophageal cancer. Cancer Lett 342:193–199
Article
PubMed
CAS
Google Scholar
Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36
Article
CAS
PubMed
PubMed Central
Google Scholar
Eads CA, Lord RV, Wickramasinghe K et al (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 61:3410–3418
CAS
PubMed
Google Scholar
Hibi K, Taguchi M, Nakayama H et al (2001) Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res 7:3135–3138
CAS
PubMed
Google Scholar
Meng Y, Wang QG, Wang JX et al (2011) Epigenetic inactivation of the SFRP1 gene in esophageal squamous cell carcinoma. Dig Dis Sci 56:3195–3203
Article
CAS
PubMed
Google Scholar
Meng XY, Zhu ST, Zong Y et al (2011) Promoter hypermethylation of cyclooxygenase-2 gene in esophageal squamous cell carcinoma. Dis Esophagus 24:444–449
Article
CAS
PubMed
Google Scholar
Tong M, Chan KW, Bao JY et al (2012) Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res 72:6024–6035
Article
CAS
PubMed
Google Scholar
Banki F, Mason RJ, Oh D et al (2007) Plasma DNA as a molecular marker for completeness of resection and recurrent disease in patients with esophageal cancer. Arch Surg 142:533–538
Article
CAS
PubMed
Google Scholar
Hauser S, Kogej M, Fechner G et al (2012) Cell-free serum DNA in patients with bladder cancer: results of a prospective multicenter study. Anticancer Res 32:3119–3124
CAS
PubMed
Google Scholar
Martini M, Vecchione L, Siena S et al (2011) Targeted therapies: how personal should we go? Nat Rev Clin Oncol 9:87–97
Article
PubMed
CAS
Google Scholar
Heng HH, Stevens JB, Bremer SW et al (2011) Evolultionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253
Article
CAS
PubMed
Google Scholar
Stepanenko AA, Vassetzky YS, Kavsan VM (2013) Antagonistic functional duality of cancer genes. Gene 529(2):199–207
Article
CAS
PubMed
Google Scholar
Qi Y, Chiu JF, Wang L et al (2005) Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics 5:2960–2971
Article
CAS
PubMed
Google Scholar
Jazii FR, Najafi Z, Malekzadeh R et al (2006) Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 12:7104–7112
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaaij-Visser TB, Graveland AP, Gauci S et al (2009) Differential proteomics identifies protein biomarkers that predict local relapse of head and neck squamous cell carcinomas. Clin Cancer Res 15:7666–7675
Article
CAS
PubMed
Google Scholar
Wang LD, Wang DC, Zheng S et al (2006) Serum proteomic profiles of the subjects with esophageal precancerous and cancerous lesions from Linzhou, an area with high incidence of esophageal cancer in Henan Province, Northern China. Ai Zheng 25:549–554
CAS
PubMed
Google Scholar
Gourin CG, Zhi W, Adam BL (2009) Proteomic identification of serum biomarkers for head and neck cancer surveillance. Laryngoscope 119:1291–1302
Article
CAS
PubMed
Google Scholar
Voskuil J (2015) How difficult is the validation of clinical biomarkers? F1000Res 4:101
PubMed
PubMed Central
Google Scholar
Ferreira R, Oliviera P, Martins T et al (2015) Comparative proteomic analyses of urine from rat urothelial carcinoma chemically induced by exposure to N-butyl-N-(4-hydroxybutyl)-nitrosamine. Mol BioSyst 11:11594–11602
Article
CAS
Google Scholar
Ha GH, Lee SU, Kang DG et al (2002) Proteome analysis of human stomach tissue: separation of soluble proteins by two-dimensional polyacrylamide gel electrophoresis and identification by mass spectrometry. Electrophoresis 23:2513–2524
Article
CAS
PubMed
Google Scholar
Paulo JA, Lee LS, Wu B et al (2010) Proteomic analysis of endoscopically (endoscopic pancreatic function test) collected gastroduodenal fluid using in-gel tryptic digestion followed by LC-MS/MS. Proteomics Clin Appl 4:715–725
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung JY, Braunschweig T, Hu N et al (2006) A multiplex tissue immunoblotting assay for proteomic profiling: a pilot study of the normal to tumor transition of esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 15:1403–1408
Article
CAS
PubMed
Google Scholar
Du XL, Hu H, Lin DC et al (2007) Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med (Berl) 85:863–875
Article
CAS
Google Scholar
Kashyap MK, Harsha HC, Renuse S et al (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 10:796–810
Article
CAS
PubMed
PubMed Central
Google Scholar
Uemura N, Nakanishi Y, Kato H et al (2009) Transglutaminase 3 as a prognostic biomarker in esophageal cancer revealed by proteomics. Int J Cancer 124:2106–2115
Article
CAS
PubMed
Google Scholar
Uemura N, Nakanishi Y, Kato H et al (2009) Antibody-based proteomics for esophageal cancer: identification of proteins in the nuclear factor-kappaB pathway and mitotic checkpoint. Cancer Sci 100:1612–1622
Article
CAS
PubMed
Google Scholar
Fu L, Qin YR, Xie D et al (2007) Identification of alpha-actinin 4 and 67 kDa laminin receptor as stage-specific markers in esophageal cancer via proteomic approaches. Cancer 110:2672–2681
Article
CAS
PubMed
Google Scholar
Hu H, Ran Y, Zhang Y et al (2009) Antibody library-based tumor endothelial cells surface proteomic functional screen reveals migration-stimulating factor as an anti-angiogenic target. Mol Cell Proteomics 8:816–826
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie LX, Zhai TT, Yang LP et al (2013) Lymphangiogenesis and prognostic significance of vascular endothelial growth factor C in gastro-oesophageal junction adenocarcinoma. Int J Exp Pathol 94:39–46
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghanibashi M, Jazii FR, Soheili ZS et al (2012) Proteomics of a new esophageal cancer cell line established from Persian patient. Gene 500:124–133
Article
CAS
PubMed
Google Scholar
Moghanibashi M, Rastgar Jazii F, Soheili ZS et al (2013) Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Funct Integr Genomics 13:253–260
Article
CAS
PubMed
Google Scholar
Qi YJ, He QY, Ma YF et al (2008) Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem 104:1625–1635
Article
CAS
PubMed
Google Scholar
Cohen M, Yossef R, Erez T et al (2011) () Serum apolipoproteins C-I and C-III are reduced in stomach cancer patients: results from MALDI-based peptidome and immuno-based clinical assays. PLoS One 6(1):e14540
Article
CAS
PubMed
PubMed Central
Google Scholar
Juan HF, Chen JH, Hsu WT et al (2004) Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics 4:2766–2775
Article
CAS
PubMed
Google Scholar
Metzger R, Bollschweiler E, Hölscher AH et al (2010) ERCC1: impact in multimodality treatment of upper gastrointestinal cancer. Future Oncol 6:1735–1749
Article
CAS
PubMed
Google Scholar
Nishimori T, Tomonaga T, Matsushita K et al (2006) Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics 6:1011–1108
Article
CAS
PubMed
Google Scholar
Zhang LY, Ying WT, Mao YS et al (2003) Loss of clusterin both in serum and tissue correlates with the tumorigenesis of esophageal squamous cell carcinoma via proteomics approaches. World J Gastroenterol 9:650–654
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867
Article
CAS
PubMed
Google Scholar
Hortin GL, Sviridov D, Anderson NL (2008) High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem 54:1608–1616
Article
CAS
PubMed
Google Scholar
Wang P, Whiteaker JR, Paulovich AG (2009) The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biol Ther 8:1083–1094
Article
CAS
PubMed
PubMed Central
Google Scholar
Omenn GS, States DJ, Adamski M et al (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245
Article
CAS
PubMed
Google Scholar
Haab BB, Geierstanger BH, Michailidis G et al (2005) Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics 5:3278–3291
Article
CAS
PubMed
Google Scholar
Rai AJ, Gelfand CA, Haywood BC et al (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–3277
Article
CAS
PubMed
Google Scholar
Nanjappa V, Thomas JK, Marimutu A (2014) Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res 42:D959–D965 ((Database issue))
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho JY, Lee HJ, Jeong SK (2015) Combination of multiple spectral libraries improves the current search methods used to identify missing proteins in the chromosome-centric human proteome project. J Proteome Res 14:4959–4966
Article
CAS
PubMed
Google Scholar
Neimark J (2014) The dirty little secret in cancer research. 2nd Oct: http://discovermagazine.com/2014/nov/20-trial-and-error
Gey GO, Coffman WD, Kubicek MT (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265
Google Scholar
Jenkin HM, Hung SC (1967) Effect of vancomycin on the growth of psittacosis-trachoma agents cultivated in eggs and cell culture. Appl Microbiol 15:10–12
CAS
PubMed
PubMed Central
Google Scholar
Dirks WG, Drexler HG (2011) Online verification of human cell line identity by STR DNA typing. Methods Mol Biol 731:45–55
Article
CAS
PubMed
Google Scholar
Ando T, Ishiguro H, Kuwabara Y et al (2008) Relationship between expression of 5-fluorouracil metabolic enzymes and 5-fluorouracil sensitivity in esophageal carcinoma cell lines. Dis Esophagus 21:15–20
CAS
PubMed
Google Scholar
Domcke S, Sinha R, Levine DA et al (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 4:2126
Article
PubMed
PubMed Central
CAS
Google Scholar
Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483:531–533
Article
CAS
PubMed
Google Scholar
Van Noorden R (2015) Interdisciplinary research by the numbers. Nature 525:306–307
Article
PubMed
CAS
Google Scholar