Micalizzi D, Farabaugh S, Ford H. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15(2):117–34.
Article
PubMed Central
PubMed
Google Scholar
Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34(3):1071–7.
CAS
PubMed
Google Scholar
Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850.
Article
PubMed
CAS
Google Scholar
Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F, et al. EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy. 2013;9(7):1104–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Powell D, Blasky A, Britt S, Artinger K. Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. Wiley Interdiscip Rev Syst Biol Med. 2013;5(4):511–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chua K, Sim W, Racine V, Lee S, Goh B, Thiery J. A cell-based small molecule screening method for identifying inxhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One. 2012;7(3):e33183.
Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong W, et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 2011;9(9):e1001162.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rosenmayr-Templeton L. Industry update: The latest developments in therapeutic delivery. Ther Deliv. 2010;1(3):369–74.
Article
Google Scholar
Wallerand H, Cai Y, Wainberg ZA, Garraway I, Lascombe I, Nicolle G, et al. Phospho-Akt pathway activation and inhibition depends on N-cadherin or phospho-EGFR expression in invasive human bladder cancer cell lines. Urol Oncol. 2010;28(2):180–8.
Article
CAS
PubMed
Google Scholar
Thiery J, Acloque H, Huang R, Nieto M. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.
Article
CAS
PubMed
Google Scholar
Bailey J, Singh P, Hollingsworth M. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem. 2007;102(4):829–39.
Article
CAS
PubMed
Google Scholar
Thiery J. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–6.
Article
CAS
PubMed
Google Scholar
Vincent-Salomon A, Thiery J. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 2003;5(2):101–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;10(293):1089–93.
Article
Google Scholar
Kim Y-N, Koo KH, Sung JY, Yun U-J, Kim H. Anoikis Resistance: An Essential Prerequisite for Tumor Metastasis. Int J Cell Biol. 2012;2012:306879.
Article
PubMed Central
PubMed
CAS
Google Scholar
Derksen PWB, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 2006;10(5):437–49.
Article
CAS
PubMed
Google Scholar
Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14(10):21087–113.
Article
PubMed Central
PubMed
CAS
Google Scholar
Byler S, Sarkar S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics. 2014;6(2):161–5.
Article
CAS
PubMed
Google Scholar
Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Campbell L, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution. Cell Cycle. 2007;6(19):2332–8.
Article
CAS
PubMed
Google Scholar
Park S, Gonen M, Kim H, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest. 2010;120(2):636–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meacham C, Morrison S. Tumor heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar S, Goldgar S, Byler S, Rosenthal S, Heerboth S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics. 2013;5(1):87–94.
Article
CAS
PubMed
Google Scholar
Polo J, Hochedlinger K. When fibroblasts MET iPSCs. Cell Stem Cell. 2010;7:5–6.
Article
CAS
PubMed
Google Scholar
Boutet A, Esteban M, Maxwell P, Nieto A. Reactivation of Snail genes in renal fibrosis and carcinogenesis. Cell Cycle. 2007;6(6):638–42.
Article
CAS
PubMed
Google Scholar
Grille S, Bellacosa A, Upson J, Klein-Szanto A, van Roy F, Lee-Kwon W, et al. The protein kinase Akt induces epighelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003;63:2172.
CAS
PubMed
Google Scholar
Vega S, Morales A, Oscaña O, Valdés F, Fabregat I, Nieto A. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1a in hepatocellular carcinoma. BMC Cancer. 2013;13:108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang K, Zhaos J, Liu X, Yan B, Chen D, Gao Y, et al. Activation of NF-kB upregulates Snail and consequent repression of E-cadherin in cholangiocarcinoma cell invasion. Hepatogastroenterology. 2011;58(105):1–7.
CAS
PubMed
Google Scholar
Kim H, Litzenburger B, Cui X, Delgado D, Grabiner B, Lin X, et al. Factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kB and Snail. Mol Cell Biol. 2007;27(8):3165–75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Graham T, Zhau H, Odero-Marah V, Osunkoya A, Kimbro S, Tighiouart M, et al. Insulin-like growth factor-1-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2008;68:2479.
Article
CAS
PubMed
Google Scholar
Lorenzatti G, Huang W, Cabanillas A, Kleer C. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J Cell Sci. 2011;124(10):1752–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neil J, Johnson K, Nemenoff R, Schiemann W. Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-B through a PGE2-dependent mechanisms. Carcinogenesis. 2008;29(11):2227–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang M, Wu M, Chiou S, Chen P, Chang S, Liu C, et al. Direct regulation of TWIST by HIF-1a promotes metastasis. Nat Cell Biol. 2008;10:295–305.
Article
CAS
PubMed
Google Scholar
Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti C, et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell. 2010;17(4):319–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rall C, Rustigi A. CD44 Isoform Expression in Primary and Metastatic Pancreatic Adenocarcinoma. Cancer Res. 1995;55:1831.
CAS
PubMed
Google Scholar
Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 2011;121(3):1064–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Venables J. Aberrant and Alternative Splicing in Cancer. Cancer Res. 2004;64:7647.
Article
CAS
PubMed
Google Scholar
Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, et al. An EMT–Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype. PLoS Genet. 2011;7(8):e1002218.
Article
PubMed Central
CAS
PubMed
Google Scholar
Onder T, Gupta P, Mani S, Yang J, Lander E, Weinberg R. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68:3645.
Article
CAS
PubMed
Google Scholar
Herranz N, Pasini D, Días V, Francí C, Gutierrez A, Dave N, et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 2008;28(15):4772–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu W, Leber B, Andrews D. Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 2001;20(21):5999–6007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.
Article
PubMed
Google Scholar
Shibue T, Weinberg R. Integrin B1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A. 2009;105(25):10290–5.
Article
Google Scholar
Alexander N, Tran N, Rekapally H. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cander Res. 2006;66:3365–9.
Article
CAS
Google Scholar
Mamuya F, Duncan M. aV integrins and TGF-B-induced EMT: a circle of regulation. J Cell Mol Med. 2012;16(3):445–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M, Crotti T, et al. Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J Biol Chem. 2008;283(35):23514–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chaffer C, Weinberg R. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.
Article
CAS
PubMed
Google Scholar
Brinckerhoff C, Matrisian L. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002;3:207–14.
Article
CAS
PubMed
Google Scholar
David J, Rajasekaran A. Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res. 2012;72:2917.
Article
PubMed Central
CAS
PubMed
Google Scholar
Noe V, Fingleton B, Jacobs K, Crawford H, Vermeulen S, Steelant W, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001;114:111–8.
CAS
PubMed
Google Scholar
Sullivan N, Sasser A, Axel A, Vesuna F, Raman V, Ramierz N, et al. Interleukin-6 induces and epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.
Article
CAS
PubMed
Google Scholar
Park S, Cheon S, Cho D. The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol. 2007;4(5):329.
CAS
PubMed
Google Scholar
Chandrasekar B, Mummidi S, Mahimainathan L, Patel D, Bailey S, Imam S, et al. Dependent on NF-kB and AP-1 mediated matrix metalloproteinase-9 expression and IS inhibited by atorvastatin. J Biol Chem. 2006;281:15099–109.
Article
CAS
PubMed
Google Scholar
Wang M, Markel T, Meldrum D. Interleukin 18 in the heart. Shock. 2008;30(1):3–10.
CAS
PubMed
Google Scholar
Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11:R46.
Article
PubMed Central
PubMed
CAS
Google Scholar
Andreopoulou E, Yang L, Rangel K, Reuben J, Hsu L, Krishnamurthy S, et al. Comparison of assay methods for dectection of circulating tumor cells in metastatic breast cancer: AdnaGen Adna Test Breast Cancer Select/Detect versus Veridex Cell Search System. Int J Cancer. 2011;130(7):1590–7.
Article
PubMed
CAS
Google Scholar
Yu M, Bardia A, Wittner BS, Stott SL, Malgorzata ES, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T, et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 2011;130:449–55.
Article
CAS
PubMed
Google Scholar
Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Incidence. SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2011 Sub, Vintage 2009 Pops (2000–2009) <Katrina/Rita Population Adjustment>.
Craene BD, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110.
Article
PubMed
CAS
Google Scholar
Steinestel K, Eder S, Schrader AJ, Steinestel J. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med. 2014;3:17.
Article
PubMed Central
PubMed
Google Scholar
Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67:2187–96.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H, et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther. 2008;7:2725–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9.
Article
CAS
PubMed
Google Scholar
Chen YL, Lv J, Ye XL, Sun MY, Xu Q, Liu CH, et al. Sorafenib inhibits transforming growth factor beta1-mediated epithelial-mesenchymal transition and apoptosis in mouse heptatocytes. Hepatology. 2011;53:1708–18.
Article
CAS
PubMed
Google Scholar
Shao R, Bao S, Bai X, Blanchette C, Anderson R, Dang T, et al. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol. 2004;24(9):2993–4003.
Article
CAS
Google Scholar
Sasaki H, Yu C, Dai M, Tam C, Loda M, Auclair D, et al. Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. Breast Cancer Res Treat. 2003;77(3):245–52.
Article
CAS
PubMed
Google Scholar
Li M, Li C, Li D, Xie Y, Shi J, Li G, et al. Periostin, a stroma-associated protein, correlates with tumor invasiveness and progression in nasopharyngeal carcinoma. Clin Exp Metastasis. 2012;29(8):865–77.
Article
PubMed
CAS
Google Scholar
Pirinen R, Leinonen T, Böhm J, Johansson R, Ropponen K, Kumpulainen E, et al. Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol. 2005;36(1):44–50.
Article
CAS
PubMed
Google Scholar
Catto JWF, Alcaraz A, Bjartell AS, De Vere WR, Evans CP, Fussel S, et al. MicroRNA in Prostate, Bladder, and Kidney Cancer: A Systematic Review. Eur Urol. 2011;59(5):671–81.
Article
CAS
PubMed
Google Scholar
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.
Article
CAS
PubMed
Google Scholar
Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004;15:1–12.
Article
CAS
PubMed
Google Scholar
Wang T, Li Y, Wang W, Tuerhanjiang A, Wu Z, Yang R, et al. Twist2, the key Twist isoform related to prognosis, promotes invasion of cervical cancer by inducing epithelial-mesenchymal transition and blocking senescence. Hum Pathol. 2014;45(9):1839–46.
Article
CAS
PubMed
Google Scholar
Lee M, Chou C, Tang M, Shen M. Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res. 2008;14(15):4743–50.
Article
CAS
PubMed
Google Scholar
Schlegel NC, von Planta A, Widmer DS, Dummer R, Christofori G. PI3K signalling is required for a TGFβ-induced epithelial-mesenchymal-like transition (EMT-like) in human melanoma cells. Exp Dermatol. 2014, doi:10.1111/exd.12580.
Woods K, Pasam A, Jayachandran A, Andrews MC, Cebon J. Effects of epithelial to mesenchymal transition on T cell targeting of melanoma cells. Front Oncol. 2014;4:367.
Article
PubMed Central
PubMed
Google Scholar
King M, Marks J, Mandell J, The New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.
Article
CAS
PubMed
Google Scholar
Cheng S, Han L, Guo J, Yang Q, Zhou J, Yang X. The essential roles of CCR7 in epithelial-to-mesenchymal transition induced by hypoxia in epithelial ovarian carcinomas. Tumour Biol. 2014;35(12):12293–8.
Article
CAS
PubMed
Google Scholar
Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. Tumour Biol. 2014;35(10):9523–30.
Article
CAS
PubMed
Google Scholar
Choi MJ, Cho KH, Lee S, Bae YJ, Jeong KJ, Rha SY, et al. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene. 2014 Aug 25;0. doi: 10.1038/onc.2014.270. [Epub ahead of print] PubMed PMID: 25151968
Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80:1529–37.
Article
CAS
PubMed
Google Scholar
Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN, et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL, et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res. 2007;13:6122–9.
Article
CAS
PubMed
Google Scholar
Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, et al. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol. 1993;142:987–93.
PubMed Central
CAS
PubMed
Google Scholar
Jerónimo C, Henrique R, Hoque M, Mambo E, Ribeiro F, Varzim G, et al. A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res. 2004;10:8472.
Article
PubMed
Google Scholar
Li L, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R. Frequent Methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res. 2000;60:702–6.
CAS
PubMed
Google Scholar
Bilimoria K, Bentrem D, Ko C, Ritchey J, Stewart A, Winchester D, et al. Validation of the 6th edition AJCC pancreatic cancer staging system. Cancer. 2007;110(4):738–44.
Article
PubMed
Google Scholar
Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, et al. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One. 2011;6:e16530.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maier HJ, Wirth T, Beug H. Epithelial-Mesenchymal Transition in Pancreatic Carcinoma Cancers (Basel). Cancers. 2010;2:2058–83.
Article
PubMed Central
PubMed
Google Scholar
El-Serag H, Rudolph KL. Hepatoceullar carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.
Article
CAS
PubMed
Google Scholar
Giannelli G, Bergamini E, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-beta 1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology. 2005;129:1375–83.
Article
CAS
PubMed
Google Scholar
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Chen Y, Ji G, Fang W, Gao Z, Liu Y, et al. Sorafenib inhibits epithelial-mesenchymal transition through an epigenetic-based mechanism in human lung epithelial cells. PLOS. 2013;8(5):e64954.
Article
CAS
Google Scholar
Palena C, Fernando RI, Hamilton DH. An immunotherapeutic intervention against tumor progression: targeting a driver of the epithelial-to-mesenchymal transition. Oncoimmunology. 2014;3:e27220.
Article
PubMed Central
PubMed
Google Scholar
Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68:2391–9.
Article
CAS
PubMed
Google Scholar
Sihoe A, Yim A. Lung cancer staging. J Surg Res. 2004;117(1):92–106.
Article
PubMed
Google Scholar
Clintron J, Pearl R. Colorectal cancer and peritoneal carcinomatosis. Semin Surg Oncol. 1996;12(4):267–78.
Article
Google Scholar
Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41:211–8.
CAS
PubMed
Google Scholar
Paláez-García A, Barderas R, Torres S, Hernández-Varas P, Teixidó J, Bonilla F, et al. FGFR4 role in epithelial-mesenchymal transition and its therapeutic value in colorectal cancer. PLoS One. 2013;8:e63695.
Article
CAS
Google Scholar
Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-I M, Ikeda I, et al. Quantitative evaluation of vimentin expression in tumor stroma of colorectal cancer. Br J Cancer. 2007;96:986–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown S, Brown E, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5(8):497–508.
Article
CAS
PubMed
Google Scholar
Muthusami S, Prabakaran D, Yu J, Park W. EGF-induced expression of Fused Toes Homolog (FTS) facilitates epithelial-mesenchymal transition and promotes cell migration in ME180 cervical cancer cells. Cancer Lett. 2014;351(2):252–9.
Article
CAS
PubMed
Google Scholar
Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.
Article
CAS
PubMed
Google Scholar
Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med. 1972;135:719–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sonmez H, Suer S, Karaarslan I, Baloglu H, Kokoglu E. Tissue fibronectin levels of human prostatic cancer, as a tumor marker. Cancer Biochem Biophys. 1995;15:107–10.
CAS
PubMed
Google Scholar
Roberts DD. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 1996;10:1183–91.
CAS
PubMed
Google Scholar
Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, et al. Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res. 1998;4:963–71.
CAS
PubMed
Google Scholar
Ibrahim SN, Lightner VA, Ventimiglia JB, Ibrahim GK, Walther PJ, Bigner DD, et al. Tenascin expression in prostatic hyperplasia, intraepithelial neoplasia, and carcinoma. Hum Pathol. 1993;24:982–9.
Article
CAS
PubMed
Google Scholar
Albrecht M, Renneberg H, Wennemuth G, Möschler O, Janssen M, Aumüller G, et al. Fibronectin in human prostatic cells in vivo and in vitro: expression, distribution, and pathological significance. Histochem Cell Biol. 1999;112:51–61.
Article
CAS
PubMed
Google Scholar
Rennebeck G, Martelli M, Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there are role in prostate cancer metastasis? Cancer Res. 2005;65:11230–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lange T, Samatov TR, Tonevitsky AG, Schumacher U. Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydr Res. 2014;389:39–45.
Article
CAS
PubMed
Google Scholar
Becker-Sanos DD, Guo Y, Ghaffari M, Vickers ED, Lehman M, Altamirano-Dimas M, et al. Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis. 2012;33:2558–67.
Article
CAS
Google Scholar
Greenspoon JN et al. Fractionated stereotactic radiosurgery with concurrent temozolomide chemotherapy for locally recurrent glioblastoma multiforme: a prospective cohort study. Oncol Targets Ther. 2014;7:485–90.
Article
CAS
Google Scholar
Zhao Y, Xu Y, Li Y, Xu W, Luo F, Wang B, et al. NF-κB-mediated inflammation leading to EMT via miR-200c is involved in cell transformation induced by cigarette smoke extract. Toxicol Sci. 2013;135(2):265–76.
Article
CAS
PubMed
Google Scholar
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. Genet Epigenet. 2014;6:9–19.
PubMed Central
CAS
PubMed
Google Scholar
Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;19:1438–49.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miettinen P, Ebner R, Lopez A, Derynck R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Bol. 1994;127:2021–36.
Article
CAS
Google Scholar
Yoshikawa M, Hishikawa K, Marumo T, Fujita T. Inhibition of histone deacetylases activity suppresses epithelial-to-mesenchymal transition induced by TGF- β1 in human renal epithelial cells. J Am Soc Nephrol. 2005;18(1):158–65.
Google Scholar
Mataga M, Rosenthal S, Heerboth S, Devalapalli A, Kokolus S, Evans L, et al. Anti-breast cancer effects of histone deacetylases inhibitors and calpain inhibitor. Anticancer Res. 2012;32(7):2525–9.
Google Scholar
Sarkar S, Abujamra A, Loew J, Forman L, Perrine S, Faller D. Histone deacetylases inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res. 2011;31(9):2723–32.
CAS
PubMed
Google Scholar
Sarkar S, Longacre M, Tatur N, Heerboth S, and Lapinska K: Histone deacetylases (HDACs): function, mechanism, and inhibition. Encyclopedia of Analytical Chemistry 2014, doi: 10.1002/9780470027318.a9365.
Yan P, Venkataramu C, Ibrahim A, Liu J, Shen R, Diaz N, et al. Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res. 2006;12(22):6626–36.
Article
CAS
PubMed
Google Scholar
Muller A, Homey B, Soto H, Ge N, Cantron D, Buchanan M, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.
Article
CAS
PubMed
Google Scholar
Teschendorff A, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift. Hum Mol Genet. 2013;22:R7–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Samavarchi-Tehrani P, Golipour A, David L, Sung H, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7:64–77.
Article
CAS
PubMed
Google Scholar
Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem. 2012;287:465–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song S, Poliseno L, Song M, Ala U, Webster K, Beringer G, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154(2):311–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song S, Ito K, Ala U, Kats L, Webster K, Sun S, et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hepatopoietic stem cell self-renewal and transformation. Cell Stem Cell. 2013;13(7):87–101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lv L, Deng H, Zhang C, Liu X, Liu Q, Zhang D, et al. The DNA methylation-regulated miR-193a-3p dictates the multichemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis. 2014;5:e1402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung H, Davis A, Lee T, Pang A, Nagrani S, Rennert O, et al. Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene. 2011;30(31):3404–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333(2):213–21.
Article
CAS
PubMed
Google Scholar
Takai D, Gonzales FA, Tsai YC, Thayer MJ, Jones PA. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Hum Mol Genet. 2001;10(23):2619–26.
Article
CAS
PubMed
Google Scholar
Ying L, Chen Q, Wang Y, Zhou Z, Huanga Y, Qiu F. Show Affiliations Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012;8:2289–94.
Article
CAS
PubMed
Google Scholar
Sun T, Wong N. Transforming growth factor-β–induced long noncoding RNA promotes liver cancer metastasis via RNA–RNA crosstalk. Hepatology. 2015, doi: 10.1002/hep.27599.
Sun M, Liu X-H, Lu K-H, Nie F-Q, Xia R, Kong R, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial–mesenchymal transition. Cell Death Dis. 2014;5:e1298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu P, Yang J, Hou Y, Zhang H, Zeng Z, Zhao L, et al. LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal. 2014;26(1):83–93.
Article
CAS
PubMed
Google Scholar
Cristofanili M, Budd T, Ellis M, Stopeck A, Matera J, Miller C, et al. Circulating tumor cells, disease progression, and survival in breast cancer. N Engl J Med. 2004;351:781–91.
Article
Google Scholar
Samorodnitsky E, Ghosh E, Mazumder S, Sarkar S. Methylation by DNMT1 is more Efficient in Chronic Lymphocytic Leukemia Cells than in Normal Cells. J Proteomics Bioinform. 2014;S10:004.
Google Scholar
Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013;23(5):800–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes. Cell. 2014;159:374–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taberlay PC, Statham AL, Kelly TK, Clark SJ, Jones PA. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer. Genome Res. 2014;24:1421–32.
Article
PubMed Central
CAS
PubMed
Google Scholar