Wu S, Huang J, Dong J, Pan D: hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 2003, 114: 445–456.
Article
CAS
PubMed
Google Scholar
Harvey KF, Pfleger CM, Hariharan IK: The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 2003, 114: 457–467.
Article
CAS
PubMed
Google Scholar
Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G: Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 2003, 5: 914–920.
Article
CAS
PubMed
Google Scholar
Pantalacci S, Tapon N, Leopold P: The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 2003, 5: 921–927.
Article
CAS
PubMed
Google Scholar
Jia J, Zhang W, Wang B, Trinko R, Jiang J: The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 2003, 17: 2514–2519.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA: salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 2002, 110: 467–478.
Article
CAS
PubMed
Google Scholar
Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ: Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 2002, 129: 5719–5730.
Article
CAS
PubMed
Google Scholar
Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ: The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 1995, 9: 534–546.
Article
CAS
PubMed
Google Scholar
Xu T, Wang W, Zhang S, Stewart RA, Yu W: Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 1995, 121: 1053–1063.
CAS
PubMed
Google Scholar
Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N: Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 2005, 120: 675–685.
Article
CAS
PubMed
Google Scholar
Wei X, Shimizu T, Lai ZC: Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. Embo J 2007, 26: 1772–1781.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang J, Wu S, Barrera J, Matthews K, Pan D: The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005, 122: 421–434.
Article
CAS
PubMed
Google Scholar
Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007, 21: 2747–2761.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu S, Liu Y, Zheng Y, Dong J, Pan D: The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 2008, 14: 388–398.
Article
CAS
PubMed
Google Scholar
Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J: The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 2008, 14: 377–387.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A: SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008, 18: 435–441.
Article
CAS
PubMed
Google Scholar
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008, 22: 1962–1971.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan D: The hippo signaling pathway in development and cancer. Dev Cell 2010, 19: 491–505.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H: The Hippo pathway in biological control and cancer development. J Cell Physiol 2011, 226: 928–939.
Article
CAS
PubMed
Google Scholar
Yu FX, Guan KL: The Hippo pathway: regulators and regulations. Genes Dev 2013, 27: 355–371.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin JI, Poon CL, Harvey KF: The Hippo size control pathway--ever expanding. Sci Signal 2013, 6: pe4.
PubMed
Google Scholar
Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR: Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012, 23: 770–784.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan D: Hippo signaling in organ size control. Genes Dev 2007, 21: 886–897.
Article
CAS
PubMed
Google Scholar
Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D: Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013, 154: 1342–1355.
Article
CAS
PubMed
Google Scholar
Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D: An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 2014, 33: 1218–1228.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Milton CC, Humbert PO, Harvey KF: Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res 2009, 69: 6033–6041.
Article
CAS
PubMed
Google Scholar
Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA: Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007, 130: 1120–1133.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson BJ, Cohen SM: The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 2006, 126: 767–774.
Article
CAS
PubMed
Google Scholar
Nolo R, Morrison CM, Tao C, Zhang X, Halder G: The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol 2006, 16: 1895–1904.
Article
CAS
PubMed
Google Scholar
Ota M, Sasaki H: Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 2008, 135: 4059–4069.
Article
CAS
PubMed
Google Scholar
Zhao B, Kim J, Ye X, Lai ZC, Guan KL: Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 2009, 69: 1089–1098.
Article
CAS
PubMed
Google Scholar
Pobbati AV, Chan SW, Lee I, Song H, Hong W: Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure 2012, 20: 1135–1140.
Article
CAS
PubMed
Google Scholar
Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, et al.: The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 2011, 25: 2594–2609.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S: TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 2009, 284: 13355–13362.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chan SW, Lim CJ, Loo LS, Chong YF, Huang C, Hong W: TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem 2009, 284: 14347–14358.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mahoney WM Jr, Hong JH, Yaffe MB, Farrance IK: The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 2005, 388: 217–225.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO: The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 2012, 109: E2441-E2450.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA: Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012, 26: 1300–1305.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D: Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011, 144: 782–795.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Pasolli HA, Fuchs E: Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 2011, 108: 2270–2275.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tian W, Yu J, Tomchick DR, Pan D, Luo X: Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci U S A 2010, 107: 7293–7298.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 2010, 24: 290–300.
Article
PubMed Central
PubMed
CAS
Google Scholar
Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H: Structural insights into the YAP and TEAD complex. Genes Dev 2010, 24: 235–240.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cao X, Pfaff SL, Gage FH: YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 2008, 22: 3320–3334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A: Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 2001, 276: 15164–15173.
Article
CAS
PubMed
Google Scholar
Komuro A, Nagai M, Navin NE, Sudol M: WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 2003, 278: 33334–33341.
Article
CAS
PubMed
Google Scholar
Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y: A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. Embo J 1999, 18: 2551–2562.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL: Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. Embo J 2004, 23: 790–799.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H: A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun 2014, 5: 3315.
PubMed Central
PubMed
Google Scholar
Murakami M, Nakagawa M, Olson EN, Nakagawa O: A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci U S A 2005, 102: 18034–18039.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002, 21: 4879–4884.
Article
CAS
PubMed
Google Scholar
Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J: TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 2008, 10: 837–848.
Article
CAS
PubMed
Google Scholar
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al.: The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 2010, 19: 831–844.
Article
CAS
PubMed
Google Scholar
Zhao B, Li L, Tumaneng K, Wang CY, Guan KL: A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010, 24: 72–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hao Y, Chun A, Cheung K, Rashidi B, Yang X: Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 2008, 283: 5496–5509.
Article
CAS
PubMed
Google Scholar
Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D: The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 2010, 285: 37159–37169.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, et al.: cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. Embo J 2013, 32: 1543–1555.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M: Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem 1995, 270: 14733–14741.
Article
CAS
PubMed
Google Scholar
Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E: A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. Embo J 2012, 31: 1109–1122.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL: Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011, 332: 458–461.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ: Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 2011, 4: ra70.
PubMed Central
PubMed
Google Scholar
Wang J, Park JS, Wei Y, Rajurkar M, Cotton JL, Fan Q, et al.: TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol Cell 2013, 51: 211–225.
Article
PubMed Central
CAS
PubMed
Google Scholar
Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S: Role of TAZ as mediator of Wnt signaling. Cell 2012, 151: 1443–1456.
Article
CAS
PubMed
Google Scholar
Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S: YAP/TAZ Incorporation in the beta-Catenin Destruction Complex Orchestrates the Wnt Response. Cell 2014, 158: 157–170.
Article
CAS
PubMed
Google Scholar
Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S: JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell death & disease 2010, 1: e29.
Article
CAS
Google Scholar
Sun G, Irvine KD: Ajuba family proteins link JNK to Hippo signaling. Sci Signal 2013, 6: ra81.
PubMed
Google Scholar
Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C: The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006, 8: 27–36.
Article
CAS
PubMed
Google Scholar
Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T: The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 2009, 16: 411–420.
Article
CAS
PubMed
Google Scholar
Oh H, Reddy BV, Irvine KD: Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Dev Biol 2009, 335: 188–197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D: Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18: 288-299.
Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H: The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 2010, 18: 309–316.
Article
CAS
PubMed
Google Scholar
Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N: Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 2010, 18: 300–308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C: The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 2006, 16: 2090–2100.
Article
CAS
PubMed
Google Scholar
Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H: The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 2006, 16: 2081–2089.
Article
CAS
PubMed
Google Scholar
Bennett FC, Harvey KF: Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 2006, 16: 2101–2110.
Article
CAS
PubMed
Google Scholar
Feng Y, Irvine KD: Fat and expanded act in parallel to regulate growth through warts. Proc Natl Acad Sci U S A 2007, 104: 20362–20367.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD: Delineation of a Fat tumor suppressor pathway. Nat Genet 2006, 38: 1142–1150.
Article
CAS
PubMed
Google Scholar
Rauskolb C, Pan G, Reddy BV, Oh H, Irvine KD: Zyxin links fat signaling to the hippo pathway. PLoS Biol 2011, 9: e1000624.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen CL, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C: The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A 2010, 107: 15810–15815.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y: The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 2010, 107: 10532–10537.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robinson BS, Huang J, Hong Y, Moberg KH: Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 2010, 20: 582–590.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE: Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 2010, 20: 573–581.
Article
CAS
PubMed
Google Scholar
Poon CL, Lin JI, Zhang X, Harvey KF: The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 2011, 21: 896–906.
Article
CAS
PubMed
Google Scholar
Boggiano JC, Vanderzalm PJ, Fehon RG: Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 2011, 21: 888–895.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E: Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 2013, 15: 61–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Poon CL, Zhang X, Lin JI, Manning SA, Harvey KF: Homeodomain-interacting protein kinase regulates Hippo pathway-dependent tissue growth. Curr Biol 2012, 22: 1587–1594.
Article
CAS
PubMed
Google Scholar
Chen J, Verheyen EM: Homeodomain-interacting protein kinase regulates Yorkie activity to promote tissue growth. Curr Biol 2012, 22: 1582–1586.
Article
CAS
PubMed
Google Scholar
Enderle L, McNeill H: Hippo gains weight: added insights and complexity to pathway control. Sci Signal 2013, 6: re7.
Article
PubMed
Google Scholar
Irvine KD: Integration of intercellular signaling through the Hippo pathway. Semin Cell Dev Biol 2012, 23: 812–817.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staley BK, Irvine KD: Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 2012, 241: 3–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boggiano JC, Fehon RG: Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012, 22: 695–702.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grusche FA, Richardson HE, Harvey KF: Upstream regulation of the hippo size control pathway. Curr Biol 2010, 20: R574-R582.
Article
CAS
PubMed
Google Scholar
Polesello C, Huelsmann S, Brown NH, Tapon N: The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 2006, 16: 2459–2465.
Article
PubMed Central
CAS
PubMed
Google Scholar
Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J: Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 2004, 381: 453–462.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP: RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 2007, 17: 700–705.
Article
CAS
PubMed
Google Scholar
Guo C, Zhang X, Pfeifer GP: The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem 2011, 286: 6253–6261.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D: RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 2007, 27: 962–975.
Article
PubMed Central
CAS
PubMed
Google Scholar
Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T, Kolch W: Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res 2010, 70: 1195–1203.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J: The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010, 19: 27–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M: Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev 24: 1718-1730. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M: Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver.Genes Dev24:1718-1730.
Lavado A, He Y, Pare J, Neale G, Olson EN, Giovannini M: Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development 2013, 140: 3323–3334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L: Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140: 477-490.
Kim NG, Koh E, Chen X, Gumbiner BM: E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 2011, 108: 11930–11935.
Article
PubMed Central
CAS
PubMed
Google Scholar
Genevet A, Tapon N: The Hippo pathway and apico-basal cell polarity. Biochem J 2011, 436: 213–224.
Article
CAS
PubMed
Google Scholar
Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH: Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012, 150: 780–791.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mo JS, Yu FX, Gong R, Brown JH, Guan KL: Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 2012, 26: 2138–2143.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM: Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 2012, 19: 955–962.
Article
CAS
PubMed
Google Scholar
Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y: Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 2013, 27: 1223–1232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fan R, Kim NG, Gumbiner BM: Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A 2013, 110: 2569–2574.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reddy BV, Irvine KD: Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 2013, 24: 459–471.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M: Role of YAP/TAZ in mechanotransduction. Nature 2011, 474: 179–183.
Article
CAS
PubMed
Google Scholar
Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N: A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013, 154: 1047–1059.
Article
CAS
PubMed
Google Scholar
Brade T, Pane LS, Moretti A, Chien KR, Laugwitz KL: Embryonic heart progenitors and cardiogenesis. Cold Spring Harbor perspectives in Med 2013, 3: a013847.
Article
CAS
Google Scholar
Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S: A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001, 106: 709–721.
Article
CAS
PubMed
Google Scholar
von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN: YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 2012, 109: 2394–2399.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S: Evidence for cardiomyocyte renewal in humans. Science 2009, 324: 98–102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M: Mammalian heart renewal by pre-existing cardiomyocytes. Nature 2013, 493: 433–436.
Article
PubMed Central
CAS
PubMed
Google Scholar
Poss KD, Wilson LG, Keating MT: Heart regeneration in zebrafish. Science 2002, 298: 2188–2190.
Article
CAS
PubMed
Google Scholar
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J: The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 2010, 24: 1106–1118.
Article
PubMed Central
CAS
PubMed
Google Scholar
Judson RN, Tremblay AM, Knopp P, White RB, Urcia R, De Bari C: The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci 2012, 125: 6009–6019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ, Camargo FD: Hippo pathway activity influences liver cell fate. Cell 2014, 157: 1324–1338.
Article
PubMed Central
CAS
PubMed
Google Scholar
Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T: Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem 2013, 288: 3977–3988.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J: Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 2013, 110: 13839–13844.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PR, Zhou B, Chen J, Seidman JG, Wang DZ, Pu WT: Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine Myocardial Infarction Model. Circ Res 2014. Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PR, Zhou B, Chen J, Seidman JG, Wang DZ, Pu WT: Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine Myocardial Infarction Model.Circ Res 2014.
Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL: Hippo signaling impedes adult heart regeneration. Development 2013, 140: 4683–4690.
Article
PubMed Central
CAS
PubMed
Google Scholar
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN: Transient regenerative potential of the neonatal mouse heart. Science 2011, 331: 1078–1080.
Article
PubMed Central
CAS
PubMed
Google Scholar
Creasy CL, Chernoff J: Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem 1995, 270: 21695–21700.
Article
CAS
PubMed
Google Scholar
Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M: Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. Embo J 1998, 17: 2224–2234.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ: Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest 2003, 111: 1463–1474.
Article
PubMed Central
CAS
PubMed
Google Scholar
Odashima M, Usui S, Takagi H, Hong C, Liu J, Yokota M: Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ Res 2007, 100: 1344–1352.
Article
CAS
PubMed
Google Scholar
Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K: The role of autophagy in the heart. Cell Death Differ 2009, 16: 31–38.
Article
CAS
PubMed
Google Scholar
Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A: Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 2013, 19: 1478–1488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Re DP, Matsuda T, Zhai P, Maejima Y, Jain MR, Liu T: Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol Cell 2014, 54: 639–650.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ardestani A, Paroni F, Azizi Z, Kaur S, Khobragade V, Yuan T: MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med 2014, 20: 385–397.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matsui Y, Nakano N, Shao D, Gao S, Luo W, Hong C: Lats2 Is a Negative Regulator of Myocyte Size in the Heart. Circ Res 2008, 103: 1309–1318.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oceandy D, Pickard A, Prehar S, Zi M, Mohamed TM, Stanley PJ: Tumor suppressor Ras-association domain family 1 isoform A is a novel regulator of cardiac hypertrophy. Circulation 2009, 120: 607–616.
Article
CAS
PubMed
Google Scholar
Del Re DP, Matsuda T, Zhai P, Gao S, Clark GJ, Van Der Weyden L: Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. J Clin Invest 2010, 120: 3555–3567.
Article
PubMed Central
CAS
PubMed
Google Scholar
Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 2006, 103: 12405–12410.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D: Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008, 39: 1582–1589.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D: The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 2010, 24: 2383–2388.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS: The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 2010, 107: 8248–8253.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB: The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene 2011, 30: 2810–2822.
Article
CAS
PubMed
Google Scholar
Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E: Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A 2011, 108: E1312-E1320.
Article
PubMed Central
CAS
PubMed
Google Scholar
Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R: YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007, 17: 2054–2060.
Article
CAS
PubMed
Google Scholar
Chen Z, Friedrich GA, Soriano P: Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 1994, 8: 2293–2301.
Article
CAS
PubMed
Google Scholar
Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG: Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 2006, 26: 77–87.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC: c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 2014, 509: 337–341.
Article
PubMed Central
CAS
PubMed
Google Scholar