Amann A, Spanel P, Smith D: Breath analysis: the approach towards clinical applications. Mini Rev Med Chem 2007, 7(2):115–129. 10.2174/138955707779802606
Article
CAS
PubMed
Google Scholar
Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, et al.: Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9: 348. 10.1186/1471-2407-9-348
Article
PubMed Central
PubMed
Google Scholar
Galassetti PR, Novak B, Nemet D, Rose-Gottron C, Cooper DM, Meinardi S, et al.: Breath ethanol and acetone as indicators of serum glucose levels: an initial report. Diabetes Technol Ther 2005, 7(1):115–123. 10.1089/dia.2005.7.115
Article
CAS
PubMed
Google Scholar
Lee J, Ngo J, Blake D, Meinardi S, Pontello AM, Newcomb R, et al.: Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J Appl Physiol 2009, 107(1):155–160. 10.1152/japplphysiol.91657.2008
Article
PubMed Central
CAS
PubMed
Google Scholar
Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Klieber M, et al.: Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med 2009, 47(5):550–560.
Article
CAS
PubMed
Google Scholar
Novak BJ, Blake DR, Meinardi S, Rowland FS, Pontello A, Cooper DM, et al.: Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc Natl Acad Sci U S A 2007, 104(40):15613–15618. 10.1073/pnas.0706533104
Article
PubMed Central
CAS
PubMed
Google Scholar
Shin HW, Rose-Gottron CM, Cooper DM, Newcomb RL, George SC: Airway diffusing capacity of nitric oxide and steroid therapy in asthma. J Appl Physiol 2004, 96(1):65–75. 10.1063/1.1736321
Article
CAS
PubMed
Google Scholar
Allardyce RA, Langford VS, Hill AL, Murdoch DR: Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 2006, 65(2):361–365. 10.1016/j.mimet.2005.09.003
Article
CAS
PubMed
Google Scholar
Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, et al.: On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 2008, 74(7):2179–2186. 10.1128/AEM.02069-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Lechner M, Fille M, Hausdorfer J, Dierich MP, Rieder J: Diagnosis of bacteria in vitro by mass spectrometric fingerprinting: a pilot study. Curr Microbiol 2005, 51(4):267–269. 10.1007/s00284-005-0018-x
Article
CAS
PubMed
Google Scholar
Lechner M, Tilg H, Rieder J: Analysis of volatile compounds emitted by the Helicobacter pylori reference strain NCTC 11637 in vitro . Helicobacter 2006, 11(1):66. 10.1111/j.0083-8703.2006.00372.x
Article
PubMed
Google Scholar
Moularat S, Robine E, Ramalho O, Oturan MA: Detection of fungal development in a closed environment through the identification of specific VOC: demonstration of a specific VOC fingerprint for fungal development. Sci Total Environ 2008, 407(1):139–146. 10.1016/j.scitotenv.2008.08.023
Article
CAS
PubMed
Google Scholar
Zhu J, Bean HD, Kuo YM, Hill JE: Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J Clin Microbiol 2010, 48(12):4426–4431. 10.1128/JCM.00392-10
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamboures MA, Blake DR, Cooper DM, Newcomb RL, Barker M, Larson JK, et al.: Breath sulfides and pulmonary function in cystic fibrosis. Proc Natl Acad Sci U S A 2005, 102(44):15762–15767. 10.1073/pnas.0507263102
Article
PubMed Central
CAS
PubMed
Google Scholar
Lechner M, Karlseder A, Niederseer D, Lirk P, Neher A, Rieder J, et al.: H. pylori infection increases levels of exhaled nitrate. Helicobacter 2005, 10(5):385–390. 10.1111/j.1523-5378.2005.00345.x
Article
CAS
PubMed
Google Scholar
Shin HW, Umber BJ, Meinardi S, Leu SY, Zaldivar F, Blake DR, et al.: Acetaldehyde and hexanaldehyde from cultured white cells. J Transl Med 2009, 7: 31. 10.1186/1479-5876-7-31
Article
PubMed Central
PubMed
Google Scholar
Colman JJ, Swanson AL, Meinardi S, Sive BC, Blake DR, Rowland FS: Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B. Anal Chem 2001, 73(15):3723–3731. 10.1021/ac010027g
Article
CAS
PubMed
Google Scholar
Shin HW, Umber BJ, Meinardi S, Leu SY, Zaldivar F, Blake DR, et al.: Gas signatures from cultured neutrophils and peripheral blood mononuclear cells obtained from healthy humans. J fo Mol Biomark Diagnosis 2012, 2(4):112.
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 1995, 57: 289–300.
Google Scholar
Cañavate JP, Lubian LM: Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar Biol 1995, 124(2):325–334. 10.1007/BF00347136
Article
Google Scholar
Sunda W, Kieber DJ, Kiene RP, Huntsman S: An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418(6895):317–320. 10.1038/nature00851
Article
CAS
PubMed
Google Scholar
Dacey JW, Wakeham SG: Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton. Science 1986, 233(4770):1314–1316. 10.1126/science.233.4770.1314
Article
CAS
PubMed
Google Scholar
Johnston AW, Todd JD, Sun L, Nikolaidou-Katsaridou MN, Curson AR, Rogers R: Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. J Exp Bot 2008, 59(5):1059–1067. 10.1093/jxb/erm264
Article
CAS
PubMed
Google Scholar
Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, et al.: Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 2007, 315(5812):666–669. 10.1126/science.1135370
Article
CAS
PubMed
Google Scholar
Curson AR, Todd JD, Sullivan MJ, Johnston AW: Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 2011, 9(12):849–859. 10.1038/nrmicro2653
Article
CAS
PubMed
Google Scholar
Allardyce RA, Hill AL, Murdoch DR: The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn Microbiol Infect Dis 2006, 55(4):255–261. 10.1016/j.diagmicrobio.2006.01.031
Article
CAS
PubMed
Google Scholar
Alterthum F, Ingram LO: Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 1989, 55(8):1943–1948.
PubMed Central
CAS
PubMed
Google Scholar
Boumba VA, Economou V, Kourkoumelis N, Gousia P, Papadopoulou C, Vougiouklakis T: Microbial ethanol production: experimental study and multivariate evaluation. Forensic Sci Int 2011, 215(1–3):189–198.
Article
PubMed
Google Scholar
Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW: A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 1998, 70–72: 187–198.
Article
PubMed
Google Scholar
Huerta-Beristain G, Utrilla J, Hernandez-Chavez G, Bolivar F, Gosset G, Martinez A: Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 2008, 15(1):55–64. 10.1159/000111993
Article
CAS
PubMed
Google Scholar
Martin GJ, Knepper A, Zhou B, Pamment NB: Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. J Ind Microbiol Biotechnol 2006, 33(10):834–844. 10.1007/s10295-006-0129-9
Article
CAS
PubMed
Google Scholar
Padukone N, Evans KW, McMillan JD, Wyman CE: Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol. Appl Microbiol Biotechnol 1995, 43(5):850–855. 10.1007/BF02431918
Article
CAS
PubMed
Google Scholar
Salaspuro V, Nyfors S, Heine R, Siitonen A, Salaspuro M, Jousimies-Somer H: Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand J Gastroenterol 1999, 34(10):967–973. 10.1080/003655299750025057
Article
CAS
PubMed
Google Scholar
Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC: Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl Microbiol Biotechnol 2010, 88(5):1103–1112. 10.1007/s00253-010-2817-7
Article
CAS
PubMed
Google Scholar
Turner C, Spanel P, Smith D: A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid Commun Mass Spectrom 2006, 20(1):61–68. 10.1002/rcm.2275
Article
CAS
PubMed
Google Scholar
Fuchs P, Loeseken C, Schubert JK, Miekisch W: Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 2010, 126(11):2663–2670.
CAS
PubMed
Google Scholar
Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J, Miekisch W, et al.: Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro . Anticancer Res 2009, 29(1):419–426.
CAS
PubMed
Google Scholar
Filipiak W, Sponring A, Filipiak A, Ager C, Schubert J, Miekisch W, et al.: TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro . Cancer Epidemiol Biomark Prev 2010, 19(1):182–195. 10.1158/1055-9965.EPI-09-0162
Article
CAS
Google Scholar
Filipiak W, Sponring A, Mikoviny T, Ager C, Schubert J, Miekisch W, et al.: Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro . Cancer Cell Int 2008, 8: 17. 10.1186/1475-2867-8-17
Article
PubMed Central
PubMed
Google Scholar
Hazen SL, Hsu FF, D’Avignon A, Heinecke JW: Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Biochemistry 1998, 37(19):6864–6873. 10.1021/bi972449j
Article
CAS
PubMed
Google Scholar
Hazen SL, D’Avignon A, Anderson MM, Hsu FF, Heinecke JW: Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize alpha-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway. J Biol Chem 1998, 273(9):4997–5005. 10.1074/jbc.273.9.4997
Article
CAS
PubMed
Google Scholar
Manolis A: The diagnostic potential of breath analysis. Clin Chem 1983, 29(1):5–15.
CAS
PubMed
Google Scholar
Jain R, Yan Y: Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 2011, 10: 97. 10.1186/1475-2859-10-97
Article
PubMed Central
CAS
PubMed
Google Scholar
Vujasinovic M, Kocar M, Kramer K, Bunc M, Brvar M: Poisoning with 1-propanol and 2-propanol. Hum Exp Toxicol 2007, 26: 975–978. 10.1177/0960327107087794
Article
CAS
PubMed
Google Scholar
Karl T, Prazeller P, Mayr D, Jordan A, Rieder J, Fall R, Lindinger W: Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling. J Appl Physiol 2001, 91(2):762–770.
CAS
PubMed
Google Scholar
Smith D, Spanel P, Enderby B, Lenney W, Turner C, Davies SJ: Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS. J Breath Res 2010, 4(1):017101. 10.1088/1752-7155/4/1/017101
Article
PubMed
Google Scholar
Davies S, Spanel P, Smith D: A new ‘online’ method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant 2001, 16(4):836–839. 10.1093/ndt/16.4.836
Article
CAS
PubMed
Google Scholar
Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R: Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 1995, 30(2):97–103. 10.1007/BF00294190
Article
CAS
PubMed
Google Scholar