Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81. https://doi.org/10.1016/j.canlet.2008.12.028
Article
PubMed
CAS
Google Scholar
Alvarez S, Suazo C, Boltansky A, Ursu M, Carvajal D, Innocenti G et al (2013) Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transpl Proc 45:3719–3723. https://doi.org/10.1016/j.transproceed.2013.08.079
Article
CAS
Google Scholar
Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27:14394–14400. https://doi.org/10.1021/la2038763
Article
PubMed
PubMed Central
CAS
Google Scholar
Naslund TI, Paquin-Proulx D, Paredes PT, Vallhov H, Sandberg JK, Gabrielsson S (2014) Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. Aids 28:171–180. https://doi.org/10.1097/QAD.0000000000000159
Article
PubMed
Google Scholar
Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372. https://doi.org/10.1016/j.tcb.2015.01.004
Article
PubMed
CAS
Google Scholar
Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978. https://doi.org/10.1016/0092-8674(83)90040-5
Article
PubMed
CAS
Google Scholar
Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948. https://doi.org/10.1083/jcb.101.3.942
Article
PubMed
CAS
Google Scholar
Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339
Article
PubMed
CAS
Google Scholar
Johnstone RM (1992) Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70:179–190. https://doi.org/10.1139/o92-028
Article
PubMed
CAS
Google Scholar
Johnstone R, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74:1844–1851
PubMed
CAS
Google Scholar
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172
Article
PubMed
CAS
Google Scholar
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4:594–600. https://doi.org/10.1038/nm0598-594
Article
PubMed
CAS
Google Scholar
Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N et al (2001) Intestinal epithelial cells secrete exosome—like vesicles. Gastroenterology 121:337–349. https://doi.org/10.1053/gast.2001.26263
Article
PubMed
Google Scholar
Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303. https://doi.org/10.1038/85438
Article
PubMed
CAS
Google Scholar
Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007
Article
PubMed
CAS
Google Scholar
van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21. https://doi.org/10.1093/jb/mvj128
Article
PubMed
CAS
Google Scholar
de Menezes-Neto A, Fidalgo Sáez MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Estanyol Ullate JM et al (2015) Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles 4:27378
Article
PubMed
CAS
Google Scholar
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565. https://doi.org/10.1242/jcs.128868
Article
PubMed
CAS
Google Scholar
van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P et al (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21:708–721. https://doi.org/10.1016/j.devcel.2011.08.019
Article
PubMed
PubMed Central
CAS
Google Scholar
Schuh AL, Audhya A (2014) The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 49:242–261. https://doi.org/10.3109/10409238.2014.881777
Article
PubMed
PubMed Central
CAS
Google Scholar
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113:E968–E977. https://doi.org/10.1073/pnas.1521230113
Article
PubMed
PubMed Central
CAS
Google Scholar
Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F et al (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288:11649–11661. https://doi.org/10.1074/jbc.M112.445304
Article
PubMed
PubMed Central
CAS
Google Scholar
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247. https://doi.org/10.1126/science.1153124
Article
PubMed
CAS
Google Scholar
Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A (2014) Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 281:2214–2227. https://doi.org/10.1111/febs.12775
Article
PubMed
CAS
Google Scholar
Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci CMLS 75:193–208. https://doi.org/10.1007/s00018-017-2595-9
Article
PubMed
CAS
Google Scholar
Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
Article
PubMed
CAS
Google Scholar
Stein JM, Luzio JP (1991) Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J 274:381–386
Article
PubMed
PubMed Central
CAS
Google Scholar
Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwège V et al (1994) Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153:3245–3255
PubMed
CAS
Google Scholar
Scolding NJ, Morgan BP, Houston WA, Linington C, Campbell AK, Compston DA (1989) Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339:620–622. https://doi.org/10.1038/339620a0
Article
PubMed
CAS
Google Scholar
Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94:3791–3799
PubMed
CAS
Google Scholar
Gasser O, Hess C, Miot S, Deon C, Sanchez J-C, Schifferli JA (2003) Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 285:243–257. https://doi.org/10.1016/s0014-4827(03)00055-7
Article
PubMed
CAS
Google Scholar
Surman M, Stepien E, Hoja-Lukowicz D, Przybylo M (2017) Deciphering the role of ectosomes in cancer development and progression: focus on the proteome. Clin Exp Metastasis 34:273–289. https://doi.org/10.1007/s10585-017-9844-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31:15–26. https://doi.org/10.1161/ATVBAHA.109.200956
Article
PubMed
CAS
Google Scholar
Li B, Antonyak MA, Zhang J, Cerione RA (2012) RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31:4740–4749. https://doi.org/10.1038/onc.2011.636
Article
PubMed
PubMed Central
CAS
Google Scholar
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596
Article
PubMed
CAS
Google Scholar
Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. https://doi.org/10.1038/ncb1800
Article
PubMed
PubMed Central
CAS
Google Scholar
Giri PK, Schorey JS (2008) Exosomes derived from M. bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS ONE 3:e2461. https://doi.org/10.1371/journal.pone.0002461
Article
PubMed
PubMed Central
CAS
Google Scholar
Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3:10. https://doi.org/10.1186/1479-5876-3-10
Article
PubMed
PubMed Central
CAS
Google Scholar
Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM et al (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3:9. https://doi.org/10.1186/1479-5876-3-9
Article
PubMed
PubMed Central
CAS
Google Scholar
Pitt JM, Andre F, Amigorena S, Soria JC, Eggermont A, Kroemer G et al (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126:1224–1232. https://doi.org/10.1172/JCI81137
Article
PubMed
PubMed Central
Google Scholar
Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421. https://doi.org/10.1016/j.ceb.2004.06.003
Article
PubMed
CAS
Google Scholar
Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045. https://doi.org/10.1038/ncb2574
Article
PubMed
CAS
Google Scholar
Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA, Antonyak MA (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958. https://doi.org/10.1038/ncomms11958
Article
PubMed
PubMed Central
CAS
Google Scholar
Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L (2013) Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol 191:5515–5523. https://doi.org/10.4049/jimmunol.1301885
Article
PubMed
CAS
Google Scholar
Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099. https://doi.org/10.1074/mcp.M900381-MCP200
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM et al (2013) Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 49:1845–1859. https://doi.org/10.1016/j.ejca.2013.01.017
Article
PubMed
CAS
Google Scholar
Zomer A, Maynard C, Verweij FJ, Kamermans A, Schafer R, Beerling E et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057. https://doi.org/10.1016/j.cell.2015.04.042
Article
PubMed
PubMed Central
CAS
Google Scholar
Kunigelis KE, Graner MW (2015) The dichotomy of tumor exosomes (TEX) in cancer immunity: is it all in the ConTEXt? Vaccines 3:1019–1051. https://doi.org/10.3390/vaccines3041019
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y et al (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385. https://doi.org/10.4049/jimmunol.176.3.1375
Article
PubMed
CAS
Google Scholar
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M (2011) Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica 96:1302–1309. https://doi.org/10.3324/haematol.2010.039743
Article
PubMed
PubMed Central
CAS
Google Scholar
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683. https://doi.org/10.4049/jimmunol.1003884
Article
PubMed
CAS
Google Scholar
Gobbo J, Marcion G, Cordonnier M, Dias AM, Pernet N, Hammann A et al (2016) Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv330
Article
PubMed
Google Scholar
Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633. https://doi.org/10.1002/ijc.24249
Article
PubMed
PubMed Central
CAS
Google Scholar
Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753
Article
PubMed
PubMed Central
CAS
Google Scholar
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826. https://doi.org/10.1038/ncb3169
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Mark MT et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756
Article
PubMed
PubMed Central
CAS
Google Scholar
Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr (2016) Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget. https://doi.org/10.18632/oncotarget.13569
Article
PubMed
PubMed Central
Google Scholar
Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH et al (2015) Serum exosome microRNA as a minimally-invasive early biomarker of AML. Sci Rep 5:11295. https://doi.org/10.1038/srep11295
Article
PubMed
PubMed Central
CAS
Google Scholar
Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46. https://doi.org/10.3816/CLC.2009.n.006
Article
PubMed
CAS
Google Scholar
Soldevilla B, Rodriguez M, San Millan C, Garcia V, Fernandez-Perianez R, Gil-Calderon B et al (2014) Tumor-derived exosomes are enriched in DeltaNp73, which promotes oncogenic potential in acceptor cells and correlates with patient survival. Hum Mol Genet 23:467–478. https://doi.org/10.1093/hmg/ddt437
Article
PubMed
CAS
Google Scholar
Kogure T, Yan IK, Lin WL, Patel T (2013) Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 4:261–272. https://doi.org/10.1177/1947601913499020
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen IH, Xue L, Hsu CC, Paez JS, Pan L, Andaluz H et al (2017) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci USA 114:3175–3180. https://doi.org/10.1073/pnas.1618088114
Article
PubMed
PubMed Central
CAS
Google Scholar
Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S et al (2013) MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE 8:e78115. https://doi.org/10.1371/journal.pone.0078115
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi R, Wang PY, Li XY, Chen JX, Li Y, Zhang XZ et al (2015) Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget 6:26971–26981. https://doi.org/10.18632/oncotarget.4699
Article
PubMed
PubMed Central
Google Scholar
Goto T, Fujiya M, Konishi H, Sasajima J, Fujibayashi S, Hayashi A et al (2018) An elevated expression of serum exosomal microRNA-191, − 21, − 451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 18:116. https://doi.org/10.1186/s12885-018-4006-5
Article
PubMed
PubMed Central
Google Scholar
Fu F, Jiang W, Zhou L, Chen Z (2018) Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11:221–232. https://doi.org/10.1016/j.tranon.2017.12.012
Article
PubMed
PubMed Central
Google Scholar
Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z et al (2017) Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8:13048–13058. https://doi.org/10.18632/oncotarget.14369
Article
PubMed
Google Scholar
Provencio M, Rodriguez M, Cantos B, Sabin P, Quero C, Garcia-Arroyo FR et al (2017) mRNA in exosomas as a liquid biopsy in non-Hodgkin Lymphoma: a multicentric study by the Spanish Lymphoma Oncology Group. Oncotarget 8:50949–50957. https://doi.org/10.18632/oncotarget.16435
Article
PubMed
PubMed Central
Google Scholar
Whiteside TL (2015) The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev Mol Diagn 15:1293–1310. https://doi.org/10.1586/14737159.2015.1071666
Article
PubMed
PubMed Central
CAS
Google Scholar
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. https://doi.org/10.1038/nature14581
Article
PubMed
PubMed Central
Google Scholar
Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y et al (2014) Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 147:423–431. https://doi.org/10.1007/s10549-014-3037-0
Article
PubMed
CAS
Google Scholar
Zhang S, Zhang Y, Qu J, Che X, Fan Y, Hou K et al (2017) Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Braz J Med Biol Res 51:e6472. https://doi.org/10.1590/1414-431X20176472
Article
PubMed
PubMed Central
CAS
Google Scholar
Shiozawa K, Shuting J, Yoshioka Y, Ochiya T, Kondo T (2018) Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochem Biophys Res Commun 495:1322–1327. https://doi.org/10.1016/j.bbrc.2017.11.164
Article
PubMed
CAS
Google Scholar
Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M et al (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227:658–667. https://doi.org/10.1002/jcp.22773
Article
PubMed
CAS
Google Scholar
Consortium E-T, van Deun J, Mestdagh P, Agostinis P, Akay O, Anand S et al (2017) EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 14:228–232. https://doi.org/10.1038/nmeth.4185
Article
CAS
Google Scholar
Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, Chiesi A et al (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47:135–138. https://doi.org/10.1016/j.clinbiochem.2013.10.020
Article
PubMed
CAS
Google Scholar
Paolini L, Zendrini A, Noto GD, Busatto S, Lottini E, Radeghieri A et al (2016) Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep 6:23550. https://doi.org/10.1038/srep23550
Article
PubMed
PubMed Central
CAS
Google Scholar
Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319. https://doi.org/10.1038/srep17319
Article
PubMed
CAS
Google Scholar
Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360. https://doi.org/10.3402/jev.v2i0.20360
Article
CAS
Google Scholar
Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology. Wiley, Hoboken
Google Scholar
Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11:879–883. https://doi.org/10.1016/j.nano.2015.01.003
Article
PubMed
CAS
Google Scholar
Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N et al (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS ONE 10:e0145686. https://doi.org/10.1371/journal.pone.0145686
Article
PubMed
PubMed Central
CAS
Google Scholar
Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304. https://doi.org/10.1016/j.ymeth.2012.01.002
Article
PubMed
CAS
Google Scholar
Choi DS, Gho YS (2015) Isolation of extracellular vesicles for proteomic profiling. Methods Mol Biol 1295:167–177. https://doi.org/10.1007/978-1-4939-2550-6_14
Article
PubMed
CAS
Google Scholar
Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13:3354–3364. https://doi.org/10.1002/pmic.201300282
Article
PubMed
CAS
Google Scholar
Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65. https://doi.org/10.1016/j.jim.2014.06.007
Article
PubMed
PubMed Central
CAS
Google Scholar
Lobb RJ, Becker M, Wen Wen S, Wong CSF, Wiegmans AP, Leimgruber A et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. https://doi.org/10.3402/jev.v4.27031
Article
PubMed
Google Scholar
Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3:24858. https://doi.org/10.3402/jev.v3.24858
Article
CAS
Google Scholar
Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208. https://doi.org/10.1074/mcp.M900152-MCP200
Article
PubMed
CAS
Google Scholar
Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P et al (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7:780–788. https://doi.org/10.1016/j.nano.2011.04.003
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P et al (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemos 12:1182–1192. https://doi.org/10.1111/jth.12602
Article
Google Scholar
de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ et al (2013) Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine 8:1443–1458. https://doi.org/10.2217/nnm.12.173
Article
PubMed
CAS
Google Scholar
Anderson W, Lane R, Korbie D, Trau M (2015) Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability. Langmuir 31:6577–6587. https://doi.org/10.1021/acs.langmuir.5b01402
Article
PubMed
CAS
Google Scholar
van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8:2596–2607. https://doi.org/10.1111/j.1538-7836.2010.04074.x
Article
PubMed
Google Scholar
Cizmar P, Yuana Y (2017) Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. In: Kuo WP, Jia S (eds) Extracellular vesicles: methods and protocols. Springer, New York, pp 221–232
Chapter
Google Scholar
Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J (2017) The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 18:1153. https://doi.org/10.3390/ijms18061153
Article
PubMed Central
CAS
Google Scholar
Tatischeff I, Larquet E, Falcon-Perez JM, Turpin PY, Kruglik SG (2012) Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles 1:19179. https://doi.org/10.3402/jev.v1i0.19179
Article
CAS
Google Scholar
Erdbrugger U, Lannigan J (2016) Analytical challenges of extracellular vesicle detection: a comparison of different techniques. Cytometry Part A 89:123–134. https://doi.org/10.1002/cyto.a.22795
Article
CAS
Google Scholar
Welsh JA, Holloway JA, Wilkinson JS, Englyst NA (2017) Extracellular vesicle flow cytometry analysis and standardization. Front Cell Dev Biol 5:78. https://doi.org/10.3389/fcell.2017.00078
Article
PubMed
PubMed Central
Google Scholar
Nolan JP (2015) Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.1–13.14.16. https://doi.org/10.1002/0471142956.cy1314s73
Article
Google Scholar
van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG (2012) Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 10:919–930. https://doi.org/10.1111/j.1538-7836.2012.04683.x
Article
PubMed
CAS
Google Scholar
Nolte-’t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W et al (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8:712–720. https://doi.org/10.1016/j.nano.2011.09.006
Article
PubMed
CAS
Google Scholar
Morales-Kastresana A, Telford B, Musich TA, McKinnon K, Clayborne C, Braig Z et al (2017) Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep 7:1878. https://doi.org/10.1038/s41598-017-01731-2
Article
PubMed
PubMed Central
CAS
Google Scholar
Anderson W, Kozak D, Coleman VA, Jamting AK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330. https://doi.org/10.1016/j.jcis.2013.02.030
Article
PubMed
CAS
Google Scholar
Oosthuyzen W, Sime NE, Ivy JR, Turtle EJ, Street JM, Pound J et al (2013) Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol 591:5833–5842. https://doi.org/10.1113/jphysiol.2013.264069
Article
PubMed
PubMed Central
CAS
Google Scholar
Rodriguez M, Silva J, Herrera A, Herrera M, Pena C, Martin P et al (2015) Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer. Oncotarget 6:40575–40587. https://doi.org/10.18632/oncotarget.5818
Article
PubMed
PubMed Central
Google Scholar
Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159:499–513. https://doi.org/10.1016/j.cell.2014.09.051
Article
PubMed
PubMed Central
CAS
Google Scholar
Eldh M, Lotvall J, Malmhall C, Ekstrom K (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50:278–286. https://doi.org/10.1016/j.molimm.2012.02.001
Article
PubMed
CAS
Google Scholar
Song MN, Moon PG, Lee JE, Na M, Kang W, Chae YS et al (2012) Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC–MS/MS. Arch Pharmacal Res 35:1839–1847. https://doi.org/10.1007/s12272-012-1018-6
Article
CAS
Google Scholar
Schey KL, Luther JM, Rose KL (2015) Proteomics characterization of exosome cargo. Methods 87:75–82. https://doi.org/10.1016/j.ymeth.2015.03.018
Article
PubMed
PubMed Central
CAS
Google Scholar
Abramowicz A, Widlak P, Pietrowska M (2016) Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol BioSyst 12:1407–1419. https://doi.org/10.1039/c6mb00082g
Article
PubMed
CAS
Google Scholar
Madden LA, Vince RV, Sandstrom ME, Taylor L, McNaughton L, Laden G (2008) Microparticle-associated vascular adhesion molecule-1 and tissue factor follow a circadian rhythm in healthy human subjects. Thromb Haemost 99:909–915. https://doi.org/10.1160/TH08-01-0030
Article
PubMed
CAS
Google Scholar
Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239. https://doi.org/10.3402/jev.v4.28239
Article
PubMed
Google Scholar
Gyorgy B, Paloczi K, Kovacs A, Barabas E, Beko G, Varnai K et al (2014) Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res 133:285–292. https://doi.org/10.1016/j.thromres.2013.11.010
Article
PubMed
CAS
Google Scholar
Mora EM, Alvarez-Cubela S, Oltra E (2016) Biobanking of exosomes in the era of precision medicine: are we there yet? Int J Mol Sci 17:13. https://doi.org/10.3390/ijms17010013
Article
CAS
Google Scholar