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Cytokines, breast cancer stem cells 
(BCSCs) and chemoresistance
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Abstract 

Chemotherapy resistance of breast cancer poses a great challenge to the survival of patients. During breast cancer 
treatment, the development of intrinsic and acquired drug resistance tends to further induce adverse prognosis, such 
as metastasis. In recent years, the progress of research on cytokine-modulated tumor microenvironment and breast 
cancer stem cells (BCSCs) has shed light on defining the mechanisms of drug resistance gradually. In this review, we 
have discussed cytokine regulation on breast cancer chemoresistance. Cytokines can affect tumor cell behavior or 
reprogram tumor niche through specific signaling pathways, thereby regulating the progress of drug resistance. In 
addition, we summarized the mutually regulatory networks between cytokines and BCSCs in mediating chemoresist-
ance. Cytokines in the tumor microenvironment can regulate the self-renewal and survival of BCSCs in a variety of 
ways, sequentially promoting chemotherapeutic resistance. Therefore, the combinational treatment of BCSC targeting 
and cytokine blockade may have a positive effect on the clinical treatment of breast cancer.
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Introduction
Breast cancer has been seriously endangering the pub-
lic health because of its high incidence in women [1, 2]. 
According to the expression of molecular markers (estro-
gen receptor, progesterone receptor, and HER2), breast 
cancer can be divided into several subtypes: luminal A, 
luminal B, HER2+, and triple-negative [3]. According 
to the different subtypes, there are different therapeutic 
strategies in clinic. Commonly used treatments for breast 
cancer include surgery, radiotherapy, chemotherapy, 
endocrine therapy, targeted therapy and so on. With the 
development of new drugs, chemotherapy is widely used 
in the treatment of breast cancer. However, some sub-
types of breast cancer are prone to be drug-resistant to 
chemotherapy, resulting in that the treatment efficacy is 
very limited, which brings great challenge to clinicians in 
improving survival of breast cancer patients.

Cancer stem cells are a small population of cells in 
solid tumors or leukaemia [4, 5]. They are characterized 
as stem cell-like phenotype, capable of self-renewal and 
differentiation [6, 7]. Many studies have shown that the 
role of cancer stem cells can not be ignored in many pro-
cesses such as tumorigenesis, tumor growth, metastasis 
and tumor progression [4, 8–13]. In the course of chemo-
therapy for breast cancer patients, common chemothera-
peutic drugs target non-cancer stem cells, but the cancer 
stem cells can survive and further cause recurrence or 
even metastasis due to their own characteristics. There-
fore, breast cancer stem cells are considered to be the key 
population leading to drug resistance of breast cancer 
[14, 15]. With the development of molecular markers of 
breast cancer stem cells, researchers have found that a 
small population of cells, selected by markers, can lead to 
the initiation of tumors, which further confirms the vital 
role of cancer stem cells in tumor initiation [16, 17].

Cytokine plays important roles in the development 
of multiple cancers in addition to regulating innate 
immunity and adaptive immunity, blood cell genera-
tion, cell growth and repair of damaged tissue. On one 
hand, some cytokines can directly regulate the behavior 
of tumor cells in an either autocrine or paracrine way, 
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and regulate tumor progression, including chemothera-
peutic resistance [18, 19]. On the other hand, cytokines 
can function through affecting other types of cells, such 
as endothelial cells, fibroblasts and immune cells in the 
tumor niche. It can further reprogram the tumor micro-
environment indirectly, resulting in tumor promotion or 
tumor suppression and affecting sensitivity to chemo-
therapeutic agents [20–22]. In addition, studies have 
shown that some cytokines can also regulate cancer stem 
cells and further affect the drug resistance of tumor cells 
[23, 24]. Cancer stem cells can also secrete some specific 
cytokines and promote their own resistance to chemo-
therapy drugs to survive [22, 23, 25].

In this review, we summarized recent studies on the 
roles of cytokines and BCSCs in mediating breast can-
cer chemoresistance, and discussed the potential of 
cytokines as therapeutic target to provide new strategies 
for clinicians to improve the treatment to breast cancer 
patients.

Cytokines and chemoresistance
Direct regulation of cytokines on tumor cells to promote 
chemoresistance
With the progression of cancer, tumor cells may also 
express specific cytokine receptors to receive signal stim-
uli from the corresponding cytokine ligands in the man-
ner of autocrine or paracrine, regulate intracellular signal 
transduction, and promote the resistance of tumor cells 
to chemotherapeutic drugs.

IL‑6
Interleukin-6 (IL-6) was initially identified as B cell stim-
ulating factor 2, enhancing immunoglobulin synthesis 
through activating B cells and was a prototypical cytokine 
with pleiotropic and redundant activities of a wide range 
in immune regulation, hematopoiesis, inflammation and 
oncogenesis. It helps the host to defend against infection 
and tissue damage as an inflammatory and immunomod-
ulatory cytokine. However, the persistent IL-6 synthesis 
leads to the development of various diseases, including 
cancers [26].

The IL-6 signaling is aberrantly hyper activated in 
many types of cancer and is generally associated with a 
poor clinical prognosis [27]. IL-6 was the most highly 
expressed cytokine in the human colorectal cancer-
derived mesenchymal stem cells conditioned medium, 
and promoted the progression of colorectal cancer cells 
through IL-6/JAK2/STAT3 signaling, which activated 
PI3K/AKT signaling. Besides, anti-IL-6 antibody abol-
ished the migration and invasion of colon cancer cells 
induced by IL-6-activated pathway [28]. Human liver 
cancer tissues contained high ratio of Tim-3-expressing 
hepatocytes and HBV involved in Tim-3 upregulation 

in malignant hepatocytes. The hepatocyte-Tim-3 recep-
tor activates NF-kappa B phosphorylation, which in turn 
stimulates IL-6 secretion and STAT3 phosphorylation, 
resulting in tumor growth both in vitro and in vivo [29]. 
In head and neck cancer, IL-6 can induce its expression 
as upstream of OPN, and OPN promotes the growth, 
migration and invasion of cancer cells through activating 
integrin αvβ3-NF-kappa B axis [30].

IL-6 also participated in breast cancer chemoresist-
ance. Local IL-6 paracrine loop act as exogenous IL-6 
rich niche for chemo-sensitive breast cancer cells, lead-
ing to de novo acquired drug resistance [31]. As one of 
the principal oncogenic molecules, IL-6 treatment could 
induce upregulation of HIF-1 alpha via the activation 
of STAT3, which consequently contributed to its effect 
against chemotherapeutic drug-induced cytotoxicity 
and cell apoptosis [32]. In the established MDA-MB-231 
metastatic breast cancer cell line, knockdown of endog-
enous VCAM-1 expression reduced cell proliferation and 
inhibited IL-6 mediated cell migration, and increased 
chemosensitivity [33]. Treatment with a genotoxic drug 
combination (5-fluorouracil, doxorubicin, and cyclo-
phosphamide) activated an NF-kappaB-IL6-dependent 
inflammatory signaling that imparted stemness to non-
stem cancer cells, induced multidrug resistance in breast 
cancer [34]. The role of JAK-STAT3 in mediating the pro-
motion of IL-6 on drug resistance has been confirmed 
[26]. IL-6 mainly promotes the expression of multiple 
genes through STAT3, thus regulating breast cancer drug 
resistance (Fig. 1a).

IL‑8
Interleukin-8 (IL-8), also known as chemokine CXCL8, is 
a cytokine secreted by a wide range of cell populations. 
IL-8 has cellular chemotaxis to neutrophils to regulate 
the inflammatory response through combining with 
chemokine receptor interleukin-8 receptor alpha (IL8RA, 
also called CXCR1) and interleukin-8 receptor beta 
(IL8RB/CXCR2), and has multiple cell targets in addition 
to neutrophils. IL-8 involves in various human diseases, 
such as atherosclerosis, cancer, inflammatory bowel dis-
ease, infection, sepsis, chronic obstructive pulmonary 
disease, psoriasis and rheumatoid arthritis [35].

The chemokine IL-8 is overexpressed in multiple 
cancer types, including triple-negative breast cancer 
(TNBC), where it promotes the acquisition of mesen-
chymal features, stemness, and chemoresistance. The 
current research explores the utility of a clinical-stage 
monoclonal antibody that neutralizes IL-8 as a potential 
therapeutic option for TNBC [36]. IL-8 showed increased 
expressions in paclitaxel-treated advanced breast cancer 
and this over-production effect was inhibited in TLR4-
silenced cells. The acquired TLR4-mediated paclitaxel 
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resistance in advanced breast cancer is explained partly 
by the paracrine effect of IL-8 release [37]. Cytokines 
produced by breast cancer cells after chemotherapy with-
drawal activate both Wnt/beta-catenin and NF-kappa-B 
pathways, which in turn further promote breast cancer 
cells to produce and secrete cytokines, forming an auto-
crine inflammatory forward-feedback loop to facilitate 
the enrichment of drug-resistant breast cancer cells [38]. 
Moreover, such an autocrine forward-feedback loop 
can also be diminished by IL-8 neutralizing antibody or 
blockade of IL-8 receptors CXCR1/2 with reparixin, and, 
in a human xenograft model, administration of reparixin 
after chemotherapy withdrawal effectively attenuates 
tumor masses [38]. Breast cancer patients treated with 
chemotherapeutic drugs exhibited poor survival rate and 
shorter disease-free survival time if their tumor sam-
ples expressed high level of IL-8, or its receptor, CXCR1, 
CXCR2 [38].

The downstream signals activated by IL-8-CXCR1/2 
are context-specific, and the effector proteins that medi-
ate IL-8 signals are also pleiotropic, and these effec-
tors may also affect each other. The activation of GPCR 
(CXCR1 and CXCR2) activated by IL-8 promotes the 
activation of a variety of downstream pathways, includ-
ing but may not be limited to PLC-PKC, PI3K-AKT, Rho-
GTPase family, FAK/Src of non-receptor tyrosine kinases 

and MAPK cascade signals (Fig.  1b), which ultimately 
affect the progression of cancer, angiogenesis, metas-
tasis, and cancer stem cell activation [39]. Although Src 
and NF-κB have been found to be drug-resistant causes 
in prostate and colon cancer respectively, the specific 
mechanism in chemoresistance and critical downstream 
pathways of IL-8 signal in breast cancer are still not well 
described, and more research is needed to clarify this 
point.

TGF‑β
In addition to the essential roles in germ-layer specifi-
cation and patterning during embryonic development, 
transforming growth factor-β (TGF-β) signaling is also 
involved in human diseases including fibrosis, cardiovas-
cular, cancer, reproductive or wound-healing disorders 
through control of cellular functions in proliferation, 
adhesion, invasion, differentiation, apoptosis, and cellular 
microenvironment [40, 41].

Through analyzing RNA expression in matched pairs of 
primary breast cancer biopsies before and after chemo-
therapy, researchers found that biopsies after chemo-
therapy displayed increased RNA transcripts of TGF-β 
signaling. And also, in TNBC cell lines and mouse xeno-
grafts, the chemotherapeutic drug paclitaxel upregulated 
autocrine TGF-β signaling [42]. In addition, treatment 

Fig. 1 The IL-6 and IL-8 signal transduction pathways. a The binding of IL-6 to its receptor IL-6R leads to homodimerization of gp130, resulting 
in phosphorylation of JAKs which further phosphorylates and activates STAT3. The activated STAT3 binds with other STAT proteins (STATs) to 
form homodimers or heterodimers, which facilitates the transcription of diverse downstream genes. b IL-8 binds to its receptor CXCR1 or CXCR2 
(belonging to GPCR superfamily), activating G protein. The G protein subunits activate PLC and PI3K, which further lead to the phosphorylation of 
PKC and AKT, respectively. Besides, the Rho-GTPase family and non-receptor tyrosine kinases (such as Src and FAK) can be activated by IL-8 signaling. 
And activated MAPK signaling cascade (Raf-1/MEK/ERK) also transduces the IL-8 stimuli
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of TNBC xenografts with LY2157299, the TGF-β type I 
receptor kinase inhibitor, prevented relapse of tumors 
after paclitaxel treatment, suggesting that chemotherapy-
induced TGF-β signaling enhances tumor recurrence and 
that TGF-β pathway inhibitors prevent the development 
of drug-resistant breast cancer cells [42]. Vinorelbine is 
one of the most active cytotoxic agents in breast cancer, 
especially metastatic breast cancer and bioinformat-
ics analysis indicated that TGF-β signaling pathway may 
associate with drug resistance of breast cancer cells to 
vinorelbine [43].

The strong implication of TGF-β in mammary epi-
thelial-to-mesenchymal transition (EMT) promotion is 
becoming increasingly accepted. PARP3 was upregu-
lated in the course of TGF-β-induced EMT and PARP3 
responded to TGF-β-induced signaling to enhance the 
TG2-Snail-E-cadherin axis during EMT, which demon-
strates the critical role of PARP3 in mediating the promo-
tion of TGF-β to EMT [44]. The phenotype switch is now 
indicated as an important contributor to the acquisition 
of drug resistance, a clinically relevant issue involved in 
the preservation of high mortality rates among breast 
cancer cases [45]. As the regulators of TGF-β, numer-
ous miRNAs are involved in TGF-β signaling [46]. They 
can intervene in the progression of drug resistance in 
breast cancer and function as enhancers or inhibitors for 
chemotherapeutic agents. On the contrary, TGF-β can 
also regulate the micro-RNA signaling to affect the drug 
resistance of breast cancer (Fig.  2). TGF-β can induce 
miR-21 expression, which targeted the 3’ untranslated 
region of MSH2 mRNA and downregulated its expres-
sion. Furthermore, by downregulating MSH2, TGF-β 
contributed to resistance to DNA-damaging chemo-
therapy agents (cisplatin, methyl methanesulfonate, and 
doxorubicin) in breast cancer cells [47].

In addition to IL-6, IL-8 and TGF-β, cytokines which 
can directly determine the effect of chemotherapy for 
breast cancer, also includes other factors such as M-CSF, 
TNFα, IL-1β and so on [18]. They lead to breast cancer 
resistance to various chemotherapeutic agents includ-
ing paclitaxel, cisplatin, anthracycline and doxorubicin 
through differential signaling pathways.

Clinical trials in cancer therapies through targeting cytokine 
signals
These cytokines, closely related to chemotherapeu-
tic resistance, have also attracted the interest of phar-
macologists and clinicians, who are trying to develop 
monoclonal antibodies or small molecular inhibitors 
targeting these factors to improve the effectiveness of 
chemotherapies. Therapy through targeting IL-6 signals 
has been widely applied in inflammatory diseases such 
as Rheumatoid arthritis [48]. Although no dose-related 

or cumulative toxicity was apparent in the phase I, 
open-label study of Siltuximab, an anti-IL-6 mono-
clonal antibody, in patients of B-cell Non-Hodgkin’s 
Lymphoma or multiple myeloma (NCT00412321), no 
responses were seen in patients with relapsed or refrac-
tory multiple myeloma treated with single-agent Sil-
tuximab (Table 1). And combining Siltuximab with the 
bortezomib–melphalan–prednisone (VMP) regimen 
did not improve complete response (CR), progression 
free survival, or overall survival but gained very good 
partial response in multiple myeloma (NCT00911859). 
In addition, no objective responses were seen in the 
phase 1/2, multiple-dose, dose-escalation study of sil-
tuximab, suggesting that IL-6 inhibition alone is insuf-
ficient in treating advanced or refractory solid tumors 
including ovarian, pancreatic, colorectal, head & neck 
cancer and non-small-cell lung carcinoma (NSCLC) 
(Table 1).

CXCR1 is thought to be a receptor selectively 
expressed in breast cancer stem cells (BCSCs). 

Fig. 2 The interplay between microRNAs and TGF-β signaling in 
regulating chemoresistance of cancer cells. There exists reciprocal 
modulation between TGF-β and diverse microRNAs. On one hand, 
TGF-β can affect the transcription of some microRNAs via specific 
effectors; On the other hand, TGF-β ligand or its receptor TGFBR are 
the targets of the corresponding microRNAs. These processes control 
the expression of EMT-related genes, leading to the morphology 
alteration accompanied with drug resistance in breast cancer



Page 5 of 13Chen et al. Clin Trans Med  (2018) 7:27 

Reparixin is an allosteric inhibitor of IL-8 (CXCL8) 
receptor CXCR1/2 has the activity against BCSCs in 
xenografts of breast cancer [53]. CXCR1 is thought 
to be a receptor selectively expressed in breast can-
cer stem cells. Reparixin is an allosteric inhibitor of 
IL-8 (CXCL8) receptor CXCR1/2 and has the activity 
against BCSCs in xenografts of breast cancer. It was 
confirmed that reparixin monotherapy or paclitaxel 

plus reparixin were appeared to be safe and tolerable in 
early or metastatic breast cancer (MBC), respectively 
(NCT01861054, NCT02001974) (Table  1). However, 
further studies in the clinical trial to observe the action 
of reparixin on cancer therapy is still needed.

Small molecule inhibitor, LY215799 monohydrate 
also known as galunisertib, blocks TGF-beta signaling 
through inhibiting TGFβ receptor I and reduce tumor 

Table 1 Clinical trials in cancer therapies related to IL-6, IL-8 and TGF-β signals

The data are summarized based on the clinical studies from 2013 to 2018. ALK1 is a member of transforming growth factor-beta (TGF-β) receptor I. Galunisertib, also 
known as LY2157299 monohydrate

N/A not available

Compound and strategy Cancer type Phase Description Trial numbers References

Siltuximab; anti-IL-6 mAb B-cell Non-Hodgkin’s lymphoma, 
multiple myeloma

Phase I No dose-related or cumulative toxic-
ity was apparent across all disease 
indications

NCT00412321 [49]

Siltuximab; anti-IL-6 mAb Multiple myeloma Phase II Randomized study of bortezomib–
melphalan–prednisone with or 
without siltuximab (anti-IL-6) in 
multiple myeloma

NCT00911859 [50]

Siltuximab; anti-IL-6 mAb Multiple myeloma Phase II The safety and efficacy of siltuximab 
with or without dexamethasone for 
patients with relapsed or refractory 
multiple myeloma

N/A [51]

Siltuximab; anti-IL-6 mAb Advanced solid tumors Phase I/II Siltuximab monotherapy appears to 
be well tolerated but without clini-
cal activity in solid tumors

N/A [52]

Reparixin; CXCR1/2 antagonist HER-2 negative metastatic breast 
cancer (MBC)

Phase Ib Weekly paclitaxel plus reparixin in 
MBC appeared to be safe and 
tolerable

NCT02001974 [53]

Reparixin; CXCR1/2 antagonist Early breast cancer Phase II Reparixin 1000 mg t.i.d. for 21 con-
secutive days appeared to be well 
tolerated

NCT01861054 [54]

Galunisertib; TGFBR1 inhibitor Advanced cancer and glioma Phase I Based on the safety, PK and antitu-
mor activity in glioma patients, 
the intermittent administration of 
LY2157299 at 300 mg/day is safe for 
future clinical investigation

N/A [55, 56]

Galunisertib; TGFBR1 inhibitor Advanced hepatocellular carcinoma 
(HCC)

Phase II HCC patients with normal AFP and 
with TGFβ1 reduction showed 
improvement in OS compared to 
patients with non-TGFβ1 reduction

NCT01246986 [57]

Galunisertib; TGFBR1 inhibitor Recurrent glioblastoma Phase II Galunisertib + lomustine failed to 
demonstrate improved OS relative 
to placebo + lomustine

NCT01582269 [58, 59]

Galunisertib; TGFBR1 inhibitor Advanced solid tumors Phase I Galunisertib had an acceptable 
tolerability and safety profile in 
Japanese patients with advanced 
cancers

NCT01722825 [60]

Galunisertib; TGFBR1 inhibitor Pancreatic cancer Phase II GG (galunisertib + gemcitabine) 
resulted in improvement of OS 
and PFS in patients with PC, with 
a manageable toxicity profile 
as compared to GP (gemcit-
abine + placebo)

NCT01373164 [61]

PF-03446962; Anti-ALK1 mAb Urothelial cancer Phase II They do not recommend further 
investigation outside of the com-
bination with agents targeting the 
VEGF receptor axis

NCT01620970 [62]
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progression in preclinical models [55]. Besides, Galuni-
sertib has acceptable tolerability and safety in advanced 
cancer patients (NCT01722825). In advanced hepato-
cellular carcinoma (HCC), patients treated with Gal-
unisertib showed improvement in overall survival in a 
phase 2 study (NCT01246986). However, the mono-
antibody of ALK1 [a member of transforming growth 
factor-beta (TGF-β) receptor I], PF-03446962, had no 
activities as a single drug in refractory urothelial can-
cer (NCT01620970). The combination of galunisertib 
and gemcitabine showed improvement of OS and PFS 
in patients with unresectable pancreatic cancer (PC) 
compared to gemcitabine + placebo (NCT01373164). 
Unfortunately, in patients with recurrent glioblas-
toma, Galunisertib plus lomustine failed to demon-
strate improved OS relative to placebo plus lomustine 
(NCT01582269) (Table  1). In general, it is still very 
promising to improve the therapeutic effect of cancers 
via blockade of TGF-β signaling, which requires more 
clinical studies to confirm.

Indirect influence of cytokines on tumor chemoresistance 
via remodeling tumor microenvironment
The tumor microenvironment (TME) comprises immune 
system elements (such as macrophages and lympho-
cytes), fibroblast, cells composing blood vessels, myofi-
broblast, mesenchymal stem cells, adipocytes and 
extracellular matrix (ECM). Tumor microenvironment 
(or the tumor niche) plays a vital role in the progression 
of cancer [63–68], and affects many processes such as 
tumor growth, metastasis, relapse and drug resistance 
[69–73].

Cytokines and macrophages
Tumor-associated macrophages (TAM) are the promi-
nent components of TME in breast cancers. Mac-
rophages exhibit a high plasticity in response to various 
external signals and participate in innate and adoptive 
immune responses to control numerous factors of TME 
[74]. Depending on the microenvironmental signal pre-
sent, macrophages undergo different types of activation, 
including the “classic” pro-inflammatory phenotype (also 
called M1) and the “alternative” anti-inflammatory phe-
notype (also called M2) or even in the transitional state 
between these two kinds of macrophages. TAMs closely 
resemble the M2-polarized. Clinicopathological stud-
ies have suggested that TAM accumulation in tumors 
correlates with a poor clinical outcome [74]. However, 
the characteristics of tumor-infiltrated macrophages 
are complex. TAMs show pleiotropic effects on tumor 
behavior due to be stimulated by differential cytokines. 
Some chemokines may increase the infiltration of TAM 
and form suitable conditions for tumor outgrowth. 

Once infiltrated, macrophages may also be regulated by 
cytokines, changing the gene expression, releasing fac-
tors that are beneficial to the progression of tumor and 
the factors associated with immunosuppression. Finally, 
multiple behaviors of macrophages affected by cytokines 
can remodel the tumor microenvironment and promote 
breast cancer chemotherapy resistance.

Breast cancer-associated macrophages express high 
levels of insulin-like growth factors 1 and 2 (IGFs) and 
are the main source of IGFs within both primary and 
metastatic tumors [73]. In total, 75% of breast cancer 
patients show activation of insulin/IGF-1 receptor signal-
ing and this correlates with increased macrophage infil-
tration and advanced tumor stage. In addition, blockade 
of IGF in combination with paclitaxel showed a signifi-
cant increase in chemosensitivity of tumor compared to 
paclitaxel monotherapy [73]. TAMs and its supernatants 
significantly prevent breast tumor cells from apoptosis 
caused by paclitaxel and the high level of IL-10 secreted 
by TAMs was responsible for drug resistance of breast 
cancer [75]. The possible TAMs-modulated drug resist-
ance mechanism involved may be associated with eleva-
tion of bcl-2 gene expression and up-regulation of STAT3 
signaling in tumor cells, forming IL-10/STAT3/bcl-2 
signaling axis accounting for chemoresistance of breast 
cancer [75].

Cytokines and fibroblasts
The presence of cancer-associated fibroblasts (CAFs) was 
found in almost all solid tumors. However, their abun-
dance varies widely among different types of cancer. For 
example, breast, prostate and pancreatic cancer contain 
more CAFs, while CAFs in brain, kidney and ovarian 
tumors is rare. CAFs are markedly different from tumo-
rigenic malignant cells [76]. They have undergone epithe-
lial-to-mesenchymal transition and show fibroblast-like 
morphology. In addition, there is a great difference 
between cancer cells and CAF cells that the karyotype is 
relatively stable, and there are few genetic alterations in 
CAFs. They are defined as all the fibroblastic, nonneo-
plastic, nonvascular, nonepithelial, and noninflammatory 
cells found in a tumor [77].

CAFs may lead to the resistance of cancer cells to anti-
tumor drugs by means of soluble factors. Chemokine- 
or cytokine-signaling pathway perhaps drive CAF to 
remodel the extracellular matrix (ECM) in the tumor 
microenvironment and the CAF-remodeled ECM can 
provide favorable soil for the change of EMT charac-
teristics of tumor cells, conferring chemotherapeutic 
resistance [78, 79]. The EMT process usually promotes 
chemoresistance by inducing cell cycle arrest or alter-
ing the expression of transporters enabling chemothera-
peutic drugs uptake of tumor cells [80–82]. Stimuli from 
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proinflammatory cytokine IL-6 expressed by tumor cells, 
is sufficient to induce the expression of Twist1 in nor-
mal fibroblasts and transdifferentiate them into CAFs 
through the activation of STAT3 pathway [83]. In the 
xenograft tumor model of breast cancer, ectopic expres-
sion of IL-6 can significantly increase the infiltration of 
Twist1-positive CAFs, and Twist1 is necessary and suffi-
cient for the trans-differentiation formation of CAFs. In 
addition, CXCL12 is the target gene of Twist1 transcrip-
tional regulation as the downstream signaling [83]. These 
studies elucidate that cytokine (IL-6) can promote the 
remodeling of tumor microenvironment by promoting 
CAFs formation, infiltration and promoting downstream 
cytokines expression.

The collagen type I secreted by CAFs was found to 
reduce the uptake of chemotherapeutic drugs in the 
tumor, and therefore plays a vital role in regulating the 
chemosensitivity of cancer to multiple forms of chemo-
therapy [84]. Accordingly, targeting CAFs can increase 
the drug absorption inside the tumor, inhibit growth 
and metastasis of primary tumor cells, and the growth of 
breast cancer that are resistant to multiple drugs in mice 
[84]. Taken together, cytokines affect the formation and 
infiltration of CAFs, and CAFs can reshape the charac-
teristics of ECM in microenvironment and subsequently 
influence the drug resistance of breast cancer cells. On 
the other hand, CAFs can secrete specific cytokines to 
further reprogram the microenvironment.

Synergic regulation of multiple cytokines 
on chemoresistance
Due to the complexity of the tumor microenvironment, 
the diversity of cytokines and the existence of pleiotropic 
regulatory networks among them, the effects of cytokines 
on tumor progression are often not independent on each 
other [85–87]. Similarly, in the regulation of cytokines 
on chemotherapy resistance in breast cancer, some 
cytokines will exhibit synergistic or inter-dependent phe-
nomena. It is possible that specific context-dependent 
cytokines can simultaneously regulate the same or differ-
ent signaling pathways in breast cancer to promote drug 
resistance; or a cytokine from breast cancer cells or stro-
mal cells in microenvironment promotes the production 
of another cytokine from the tumor cells; it may also be 
the combination of the two cytokines above and the more 
complex cascade response.

Previous studies have shown that cisplatin treatment 
can significantly alter the secretory phenotype and 
behavior of mesenchymal stromal cells (MSCs). After cis-
platin treatment, the MSCs not only changed the phos-
phorylation level of many kinases, but also increased the 
secretion of IL-6 and IL-8, which increased the chemo-
therapeutic resistance of breast cancer cells to cisplatin 

[88]. TGF-β can promote paclitaxel resistance in triple-
negative breast cancer which is mediated by SMAD4 
[42]. In addition, SMAD4 regulates taxane resistance 
by promoting the expression of IL-8 [42]. The forma-
tion of TGF-β-SMAD4-IL-8 axis in breast cancer cells 
shows a synergistic regulation of multiple cytokines in 
chemotherapeutic resistance of breast cancer. In brief, in 
promoting breast cancer chemotherapy resistance, some-
times cytokines are not “fighting” alone. In response to 
the various effects (necrosis, apoptosis and senescence) 
on tumor cells produced by chemotherapeutic stimula-
tion, the tumor cells and other cells in TME secrete pleio-
tropic cytokines, which act on themselves or other cells 
in manner of autocrine or paracrine, and jointly promote 
the survival of tumor cells under the treatment of anti-
tumor drugs.

Interplay between cytokines and BCSCs 
on chemoresistance
BCSCs drive chemoresistance
BCSCs are a special group of cells in breast cancer, which 
can maintain self-renewal and differentiation. The thera-
peutic effect of treatments to advanced breast cancer, 
such as radiotherapy and chemotherapy, is prone to be 
limited because of the presence of BCSCs in the tumor, 
and they may further lead to recurrence, metastasis and 
chemoresistance [89–94].

In 2003,  CD24−CD44+lineage− cells were identified 
as BCSCs for the first time, which had a strong ability to 
initiate breast tumor, which was confirmed and used as 
a biomarker for BCSCs repeatedly [95]. Aldehyde dehy-
drogenase (ALDH) is a family of enzymes performing 
the function of the oxidation of intracellular aldehydes 
to carboxylic acids and retinoic acid (RA). Ginestier et al. 
found that in normal and malignant mammary cells, 
about 8% of normal mammary epithelial cells showed the 
activity of ALDH identified by ALDEFLUOR assay [16]. 
In addition, breast cancer cells with the ALDH activ-
ity  (ALDH+) identified by ALDEFLUOR assay can initi-
ate the xenograft tumor with as little as 500 cells. Even 
50,000 ALDH-negative breast cancer cells from the same 
tumor can not initiate the xenograft tumor. Moreover, 
if the  ALDH+CD24−CD44+ phenotype, as little as 20 
breast tumor cells can form breast tumor [16]. Besides, 
many evidences from other solid tumors also indicate 
that ALDH can serve as the marker of CSCs [89, 96–100]. 
Therefore,  CD24−CD44+ and  ALDH+ are the most com-
monly used biomarkers for identification and isolation of 
BCSCs.

RA produced from aldehyde oxidation catalyzed by 
ALDH can bind to the nuclear retinoic acid receptors 
(RARs) or retinoid X receptors (RXRs). The heterodimer 
formed by RARs and RXRs recognizes a direct repeat of 
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a 6 base pair DNA sequence motif with a 2 or 5 base pair 
spacer at the promoter region of many retinoid-inducible 
genes [101, 102]. In addition, RXR also can bind to DNA 
and regulate gene expression and cell differentiation as a 
homodimer [101]. ALDH can regulate gene expression 
through RAR signaling pathway, explaining the reason 
why ALDH plays an important role in the survival and 
differentiation of BCSCs (Fig. 3). Furthermore, the repro-
gramming of ALDH on genes expression profiling related 
to drug effects (genes involved in ABC transporter, DNA 
damage repair, clearance of reactive oxygen species) also 
explains the effect of  ALDH+ BCSC on chemotherapeu-
tic resistance [103].

A lot of signaling pathways in cells increasing stemness 
property, cell re-population, and self-renewal of BCSCs, 
indirectly promote BCSC-mediated chemoresistance of 
breast cancer [90, 93, 94, 104–109]. These studies provide 
evidences that in promoting breast cancer chemoresist-
ance, BCSCs resemble a “hub” integrating drug resistance 
signalling. It can directly defend against the cytotoxic 
effects of anticancer drugs, or it can also be triggered by 
other signals to drive breast cancer cell resistance.

Cytokines promote chemotherapy resistance 
through enhancing BCSCs
Several studies have shown that IL-6 can regulate the 
self-renewal of BCSCs [110]. Furthermore, a stable equi-
librium between BCSC and non-stem breast cancer 
cells was maintained by the amount of IL-6 secreted by 
BCSCs, expression level of IL-6 receptor and the whole 
response of non-BCSC to IL-6 [110]. Mechanistically, 

IL-6-JAK1-STAT3 signaling axis plays a key role in the 
conversion from non-BCSCs to BCSCs through regulat-
ing the expression of OCT4 gene [111]. In the study of 
Ibrahim et  al, Syndecan-1 (CD138), a heparan sulfate 
proteoglycan, promotes the breast cancer stem cell phe-
notype via regulation of IL-6/STAT3 signaling pathways 
[112]. And Lin et al showed that tanshinone IIA has the 
potential of targeting and killing BCSCs, and can inhibit 
BCSCs growth in  vivo and in  vitro by downregulating 
the IL-6/STAT3/NF-κB signaling pathway [113]. These 
studies suggest that the promotion of IL-6 to BCSCs is 
generally achieved through activation of STAT3, but the 
effector signaling associated with the BCSCs property 
caused by the STAT3 activity are variegated because of 
the differences in the research object and the experimen-
tal system.

In addition, BCSCs rely on activated Notch signals to 
maintain cell survival and proliferation, and the activa-
tion of this pathway is closely related to the growth of 
breast tumors [114]. Inhibition of Notch1 in tumors can 
significantly inhibit tumor outgrowth, which is caused 
by promoting apoptosis and reducing the frequency 
of BCSCs [115]. In addition to Notch signaling, other 
embryonic signals are also important for stem cell regula-
tion, such as Hedgehog and Wnt [116–119]. These path-
ways are closely related to the regulation of IL-6 and their 
interactions with IL-6 also affect the characteristics of 
breast cancer stem cells. In conclusion, given the critical 
role of BCSCs in conferring chemoresistance, enhance-
ment of IL-6 to BCSCs population reveals the clew of 
that it can promote the resistance of breast cancer cells to 
chemotherapeutic drugs [34].

In addition to IL-6, some studies suggested that IL-8, 
CCL2 and TGF-β can also promote the characteristics of 
BCSCs and give rise to chemotherapeutic resistance [38, 
42, 120–123].

Therapeutic implications of interfering 
the interactions between cytokines and BCSCs 
in chemoresistance
The interaction between cytokines and BCSCs is piv-
otal for the formation of chemotherapy resistance. 
Cytokines can act on the surface receptors on breast 
cancer stem cell membrane through autocrine or par-
acrine, and promote the proliferation, survival and 
self-renewal of BCSCs. In response, BCSCs may also 
increase the secretion of specific factors under the 
stress of chemotherapeutic drugs to regulate their 
survival signaling. The augment in the levels of spe-
cific cytokines will trigger the response of non-tumor 
cells in tumor microenvironment, such as secreting 
cytokines to remodel the BCSCs niche, which may 
be more conducive to the survival of BCSCs (Fig.  4). 

Fig. 3 Retinoic acid signaling catalyzed by ALDH modulates the 
chemoresistance of cancer cells. Retinal is oxidized into retinoic acid 
by ALDH and then binds with RARs or RXRs. Activated RAR and RXR 
forms heterodimer to bind with retinoic acid response element, 
promoting the transcription of retinoic acid-responsive genes of 
which some play a vital role in driving chemotherapeutic resistance. 
In addition, RXRs can assemble into a homodimer to modulate the 
transcription while RARs cannot
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When BCSCs are influenced by cytokines, the expres-
sion of genes affiliated with resistance may be altered, 
such as the increase in the level of transporter pro-
tein, expression of anti-apoptotic genes, and activation 
of DNA repair genes. Eventually, BCSCs and specific 
cytokines collude in doing evil as chemotherapy resist-
ance through reciprocal modulation.

Therefore, interfering the interaction between BCSC 
and cytokines may bring great benefits to the improve-
ment of chemotherapy resistance in breast cancer. 
In view of the role of IL-8 in mediating BCSC self-
renewal and breast cancer chemoresistance, several 
IL-8 releasing inhibitors, small-molecule CXCR1/2 
inhibitors and neutralizing antibodies against IL-8 
and CXCR1/2 have been reported during the past two 
decades [68]. Combination of blocking IGF signal-
ing and paclitaxel can significantly reduce tumor cell 
proliferation and pulmonary metastasis compared 
with treatment of paclitaxel alone [73]. This provides 
a theoretical basis for the further development of com-
binatorial strategy of paclitaxel and IGF blockers in the 
treatment of invasive breast cancer. Moreover, IGF-
positive stromal cells may be designated as potential 
biomarker for auxiliary diagnosis [73].

Conclusion and perspective
Chemotherapy resistance in breast cancer is often 
accompanied with alterations of specific cytokine lev-
els in tumor tissues. The mutual regulation between 
these cytokines and BCSCs has weakened the effect of 
chemotherapy and reduced the survival of breast cancer 
patients.

There also exists great heterogeneity in the popula-
tions of BCSCs, which leads to limited therapy efficacy of 
targeting BCSCs directly [124]. Taking into account the 
necessity of cytokines for BCSC self-renewal and sur-
vival, and the combinational therapeutic strategy of tar-
geting BCSCs and neutralizing cytokines may bring great 
hope to the improvement of the survival for breast cancer 
patients (Fig. 4).
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