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PERSPECTIVE

Merging perspectives: 
genotype‑directed molecular therapy 
for hereditary diffuse gastric cancer (HDGC) 
and E‑cadherin–EGFR crosstalk
Dandan Li1, Winifred Lo1,2 and Udo Rudloff1*

Abstract 

Hereditary diffuse gastric cancer is a cancer predisposition syndrome associated with germline mutations of the 
E-cadherin gene (CDH1; NM_004360). Male CDH1 germline mutation carriers have by the age of 80 years an esti-
mated 70% cumulative incidence of gastric cancer, females of 56% for gastric and of 42% for lobular breast cancer. 
Metastatic HDGC has a poor prognosis which is worse than for sporadic gastric cancer. To date, there have been no 
treatment options described tailored to this molecular subtype of gastric cancer. Here we review recent differential 
drug screening and gene expression results in c.1380del CDH1-mutant HDGC cells which identified drug classes 
targeting PI3K (phosphoinositide 3-kinase), MEK (mitogen-activated protein kinase), FAK (focal adhesion kinase), PKC 
(protein kinase C), and TOPO2 (topoisomerase II) as selectively more effective in cells with defective CDH1 function. 
ERK1-ERK2 (extracellular signal regulated kinase) signaling measured as top enriched network in c.1380delA CDH1-
mutant cells. We compared these findings to synthetic lethality and pharmacological screening results in isogenic 
CDH1−/− MCF10A mammary epithelial cells with and without CDH1 expression and current knowledge of E-cad-
herin/catenin–EGFR cross-talk, and suggest different rationales how loss of E-cadherin function activates PI3K, mTOR, 
EGFR, or FAK signaling. These leads represent molecularly selected treatment options tailored to the treatment of 
CDH1-deficient familial gastric cancer.
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Background
Hereditary diffuse gastric cancer (HDGC) is a cancer pre-
disposition syndrome which accounts for up to 19–40% 
of familial gastric cancers and is associated with an auto-
somal-dominant inheritance pattern due to germline 
CDH1 variants [1–3]. While initially a syndrome used to 
describe familial inheritance of diffuse gastric cancer, it 
is now recognized that the syndrome includes increased 
risk for lobular breast cancer (LBC), possibly colorectal 
cancer, and non-cancerous but significant conditions like 

cleft lip palate syndrome [2–8]. Lifetime cumulative risk 
for gastric cancer in male CDH1 mutation carriers is 70% 
by age 80; similar risk for female CDH1 mutation car-
riers is 56% for diffuse gastric cancer and 42% for LBC 
[3]. Overall, the majority of CDH1 germline variants 
are truncating CDH1 mutations, followed by missense 
variants, and variants affecting splice sites [3, 9]. While 
CDH1 variants have been reported to affect each of the 
16 exons of the gene, there is a non-random distribution 
with some hotspots reported including the truncating 
mutations c.1003C>T, c.1212delC, c.1137G>A, 1792C>T, 
or 2398delC [3, 9].

With recent advances in the understanding of the syn-
drome’s natural history and genetics, detailed guidelines 
have been developed for genetic testing and preventative 

Open Access

*Correspondence:  rudloffu@mail.nih.gov 
1 Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, 
Bethesda, MD, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-018-0184-7&domain=pdf


Page 2 of 6Li et al. Clin Trans Med  (2018) 7:7 

interventions via endoscopic surveillance, prophylactic 
gastrectomy, and breast imaging [2, 3, 10]. Despite these 
measures, effective systemic therapies for patients who 
develop HDGC malignancies remain elusive. Patients 
with metastatic HDGC typically receive the same, largely 
ineffective chemotherapies as patients with sporadic 
gastric cancer; however, HDGC patients experience 
inferior outcomes to sporadic gastric cancer or gastric 
cancer with non-pathogenic CDH1 mutations [10, 11]. 
Thus, there remains a need for identification and selec-
tion of effective systemic agents for this unique patient 
subpopulation.

High‑throughput drug screening in cell‑based 
models of HDGC
As no effective systemic therapies are available for 
HDGC, an initial broad evaluation of potential drug 
targets is desirable. Our group conducted a differen-
tial high-throughput drug screen in gastric cancer cells 
derived from a stage IV HDGC patient with a truncating 
c.1380delA CDH1 germline mutation and gastric cancer 
cells derived from a liver lesion of a gastric cancer patient 
with wild type CDH1 [12]. The drug library utilized for 
screening was enriched for oncology compounds and 
contained multiple compounds per class to detect class 

effects. In addition, pathway enrichment was derived 
from differentially expressed gene set(s) (DEG) in heredi-
tary c.1380delA HDGC cells in comparison to a panel 
of sporadic gastric cancer cell lines. c.1380delA CDH1-
mutant cells were selectively sensitive to inhibition of 
the EGFR effectors PI3K, mTOR, MEK, c-Src, FAK, and 
TOPO2 inhibition. The drug phenotype overlapped with 
the top two signaling networks found enriched by Meta-
Core analysis in c.1380delA cells [12]. The highest-rank-
ing network predicted to be enriched in c.1380delA cells 
included a number of signaling regulators of the enriched 
epidermal growth factor receptor signaling pathway or 
inositol triphosphate (IP3)/diacylglyercol (DAG) signal-
ing which directly or indirectly overlapped with the drug 
phenotype of enhanced sensitivity against MEK, mTOR, 
FAK, or PKC activity anti-PKC, c-Src kinase, and FAK 
activity. Table 1 lists the drug classes with selective activ-
ity in gastric cancer cells with hereditary CDH1 mutation 
compared to sporadic gastric cancer cells.

Sensitivity to PI3K, mTOR, and EGFR inhibition was 
independently observed in another sentinel report on 
this subject conducted in MCF10A cells, a non-tumo-
rigenic mammary epithelial cell line [13]. Telford et  al. 
performed a broad, comparative genome-wide siRNA 
screen of isogenic MCF10A cells with and without CDH1 

Table 1  Drug sensitivities derived from in vitro models of HDGC

Quantitative high-throughput drug screening of MCF10A mammary epithelial cells vs isogenic CDH1−/− MCF10A cells and hereditary c.1380del CDH1 gastric cancer 
cells vs sporadic CDH1 wild type SB.msgc-1 cells. Listed are vulnerabilities selective in CDH1−/−-mutant MCF10A and c.1380del CDH1 cells, shared drug classes are 
highlighted in italics

Active in both c.1380delA CDH1 mutant hereditary SB.mhdgc-1 and control CDH1 wild type SB.msgc-1 gastric cancer cells

CDH1 MCF10A (−/−) 
[13]

CDH1 MCF10A (−/−) [13] c.1380delA CDH1 HDGC 
[12]

c.1380delA CDH1 HDGC [12]

qHTS drug phenotype Lethality by siRNA target or 
target ligand

qHTS drug phenotype Target kinase in enriched top 
network

Drug class

 PI3K inhibitor Yes PIK3CA, PIK3CG, PIK3R5, 
PIK3CB, PIK3CD, PIK3C2B

Yes No

 AKT1 No AKT1 No No

 mTOR inhibitor Yes Yes Yes

 EGFR and PDGFR family 
inhibitor

Yes PDGFD, EGFR, ERBB3, NRG1 No Yes

 Src kinase inhibitor Yes No Yes

 FAK inhibitor ? Yes Yes

 ALK/ROS1-like tyrosine  kinase 
inhibitor

Yes ROS1, ALK Yes No

 JAK family inhibitor Yes JAK2 No No

 BCL2 inhibitor Yes BCL2 No No

 Aurora kinase inhibitor Yes Yes No

 HDAC inhibitor Yes HDAC3, HDAC9, SIN3A, RERE No

 ROCK inhibitor No Yes No

 Protein kinase C inhibitor No Yes Yes
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expression. G-Protein-coupled receptor (GPCR) signal-
ing proteins and cytoskeletal proteins were selectively 
lethal upon siRNA-mediated knockdown in the CDH1−/− 
null MCF10A cells. These genetic vulnerabilities over-
lapped with selective drug response profiles derived from 
a 4057 drug screen in the CDH1 isogenic MCF10A cell 
lines. Drugs and drug classes with increased sensitivity 
in the CDH1−/− null MCF10A compared to CDH1 wild 
type cells included HDAC, PI3K, mTOR, JAK, BCL2, or 
aurora kinase inhibitors. Thus, when aligning drug phe-
notypes derived from both in  vitro models of HDGC, 
CDH1−/− null MCF10A and c.1380delA CDH1 HDGC 
cells, gastric cancer cells with defective CDH1 function 
showed selective overlapping sensitivity to PI3K, mTOR, 
ALK/ROS-1 like tyrosine, and aurora kinase inhibition 
in both systems. Table  1 list selective genetic and phar-
macological vulnerabilities in CDH1−/− null MCF10A 
and drug phenotype and enriched gene expression aber-
rations in c.1380delA HDGC cells. Differences in line-
age and evolvement of screened cells, like pre-neoplastic 
primary mammary epithelial MCF10A cells versus meta-
static cells derived from the ascites of a CDH1 germline 
mutation carrier with stage IV gastric cancer, or different 
coverages of the used drug libraries, might explain dif-
ferences in observed drug phenotype like lack of HDAC 
inhibition, anti-Bcl2, and anti-XIAP sensitivity in the 
c.1380delA CDH1 cells or lack of sensitivity to MEK inhi-
bition in the CDH1−/− null MCF10A cells.

Indications of potential vulnerability to PI3KmTOR, 
or FAK inhibition are, in part, also corroborated by tis-
sue studies on early T1a stage and  >  T2 lesions from 
CDH1-mutation carriers. Detailed pathology analysis of 
the early, non-proliferative intramucosal T1a lesions in 
prophylactic gastrectomy specimens of multiple family 
members with a c.1008G>T CDH1 germline mutation 
showed as the earliest, disease-initiating change reduced 
or absent expression of β-actin, p120 catenin, and Lin-7 
compared to surrounding mucosa with general loss of 
organization of adherens junctions; [14]. Loss of adhe-
sion function in the intramucosal stage was followed 
upon progression towards  >  T2 lesions by activation of 
c-Src kinase and FAK activation, and epithelial to mes-
enchymal transition (EMT). β-Catenin activation (as a 
result of p120 loss; measured by nuclear catenin stain-
ing) and mTOR activation (measured by staining with 
anti-phospho-mTOR Ser2448) was also observed in 
T1a lesions isolated in gastrectomy specimens of CDH1 
mutation carriers with del124_126CCCinsT, c.521dupA, 
and c.1565+1G>A variants [9]. These observations of 
activation of the c-Src–FAK axis, catenin and mTOR 
signaling in clinical specimens appears to be in line with 
the drug phenotypes derived from the in vitro models.

E‑Cadherin/catenin–EGFR cross talk and potential 
mechanisms for pharmacologic targeting
Early broad pharmacologic screens in in  vitro mod-
els of diffuse gastric cancer indicate that dysregulated 
EGFR receptor and downstream effector signaling may 
be involved in aberrant signal transduction selective for 
CDH1-deficient gastric cancer cells. While c-Src kinase 
and FAK activation might be a direct result of elevated 
GPCR signaling, activation of ERK signaling in addition 
to enhanced PI3K and mTOR sensitivity suggest activa-
tion of upstream receptor tyrosinase kinase signaling in 
HDGC cells. Thus, how is E-cadherin/catenin complex 
dysfunction able to activate EGFR signaling and how can 
loss of CDH1 function explain above signal perturbation 
and drug phenotype? E-Cadherin/catenin signaling has 
long been known a downstream effector of EGFR sign-
aling [15–18]. Upon ligand activation, EGFR promotes 
loss of cellular adhesion and increased migration and 
invasion, among other mechanisms, through phospho-
rylation of E-cadherin bound β-catenin, plakoglobin 
(γ-catenin) and p120ctn (δ-catenin 1), leading to destabi-
lization of the E-cadherin/catenin/actin complex (Fig. 1) 
[17, 19–21]. As suggested by observed co-localization 
and cooperativity of the EGFR and E-cadherin/catenin 
complexes in the cell membrane of epithelial cells, phos-
phorylated EGFR directly interacts with both β- and 
δ-catenins [22–25].

Recently, there is increased appreciation of reverse 
E-cadherin/catenin–EGFR cross-talk as part of a bidirec-
tional signaling axis in cancer pathogenesis. Inhibition of 
ligand-activated EGFR signaling by E-cadherin is hereby 
dependent on the integrity of the extracellular domains 
of E-cadherin and independent of β-catenin or p120ctn 
binding [26]. CDH1 missense mutant cell lines derived 
from families with missense mutations in the extracel-
lular domains of E-cadherin were correspondingly less 
able to suppress EGFR signaling than cell lines with wild 
type E-cadherin [27–29]. Similarly, deleting mutations 
(exons 8 and 9 of CDH1) affecting the extracellular cad-
herin-binding domains of E-cadherin show increased 
EGFR activation [30]. Hence, loss of suppression of EGFR 
signaling by lack of E-cadherin/catenin–EGFR interac-
tion in HDGC families with CDH1 germline mutations 
might explain the increased sensitivity to EGFR and PI3K 
kinase inhibition in CDH1-deficient HDGC (Fig. 1).

The increased sensitivity to FAK inhibition, or to the 
c-Src kinase inhibitor saracatinib and the selective loss of 
viability upon GPCR knockdown in CDH1−/− MCF10A 
mutant cells, might be explained by increased GPCR 
signaling. GPCR signaling directly activates c-Src, and 
increased GPCR signaling has been suggested by ele-
vated intracellular phosphatidylinositol 4,5-bisphosphate 
(PIP2) and phosphatidylinositol 3,4,5-trisphosphate 
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(PIP3) levels (second messenger intermediates of GPCR 
signaling) in c.del1380 CHH1 HDGC cells. Of note, acti-
vation of the c-Src kinase and FAK system was inferred 
after loss of adherens function including reduced levels 
of actin, p120ctn, or Lin in the progression of intramu-
cosal T1a lesions in CDH1 germline mutation carriers 
[14]. Loss of p120ctn is a pro-tumorigenic driver event 
in epithelial cancers with augmentation of EGFR signal-
ing in breast cancer, elevated levels and activation states 
of c-Src kinase and FAK have been found to be associ-
ated with accelerated progression and shorter survival in 
epithelial malignancies including gastric cancer [31–33]. 
Inhibition of the Src kinase–FAK pathway can restore cell 
adhesion, reduce cell migration, and promote an epithe-
lial phenotype [34].

Activation of the EGFR downstream PI3K-mTOR 
pathway in CDH1-mutant cells may also be caused by 
the disruption of a negative feedback group of β-catenin 
and PTEN [35]. E-Cadherin loss is associated with 
enhanced nuclear β-catenin translocation, suppression 
of nuclear expression of EGR-1 and PTEN, and increased 

cytoplasmatic PI3K-AKT signaling promoting tumor cell 
growth (Fig. 2). A similar reciprocal relation of reduced 
E-cadherin expression levels and increased PI3K-AKT 
activation was seen in T1a lesions in prophylactic gas-
trectomy specimens from CDH1-mutation carriers; T1a 
lesions from three out of four CDH1 mutation carriers 
from different HDGC families with different truncating 
CDH1 mutations harbored activation of mTOR (meas-
ured by staining with anti-phospho-mTOR Ser2448) and 
catenin (measured by increased nuclear catenin staining) 
[9]. Thus, activation of PI3K-mTOR signaling in CDH1-
deficient gastric cancer cells might be the result of mul-
tiple signal transduction aberrations including lack of 
suppression of ligand-mediated EGFR activation (Fig. 1) 
or lack of negative feedback inhibition of the PI3K–Akt 
axis via reduced PTEN levels (Fig. 2).

Conclusions
Drug screening studies in isogenic CDH1−/−-mutant 
mammary epithelial MCF10A and c.1380delA CDH1-
mutant gastric cancer cells show considerable overlap in 

Fig. 1  Bidirectional E-cadherin/catenin–EGFR cross talk in epithelial biology. Protein–protein interaction with the extracellular cadherin-binding 
domains of E-cadherin inhibits ligand-mediated activation of EGFR signaling (right); loss of E-cadherin–EGFR interaction leads to increased activa-
tion of PI3K, c-Src, and MAPK kinase pathway activation and phosphorylation and destabilization of the E-cadherin/catenin complex (left)
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sensitivity to PI3K, mTOR, or ALK/ROS-1 like tyrosine 
kinase inhibition. These pharmacological vulnerabilities 
are supported by comparative synthetic lethality, gene 
expression, and correlative tissue studies in clinical speci-
mens of CDH1 mutation carriers, which indicate select 
perturbations of GPCR, actin-related, ERK1–ERK2, or 
FAK and c-Src kinase activity as signaling alterations and 
possible targets selective for CDH1-mutant gastric can-
cer cells. These pharmacological vulnerabilities are also 
supported by an improved understanding of the bidirec-
tional cross-talk between E-cadherin/catenin and EGFR. 

E-Cadherin exerts direct and indirect negative regulation 
onto EGFR signaling, supporting blockade of the EGFR–
PI3K kinase axis as therapy in this molecular subtype of 
gastric cancer. Considering that both anti-mTOR, anti-
PI3K, and anti-EGFR therapies are already in routine 
clinical use or in late clinical development for a number 
of other cancer histologies, these observations suggest 
that PI3K and mTOR inhibitors may be considered for 
molecular-targeted therapies within clinical studies for 
patients with HDGC in the near future.
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