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Abstract 

It has become increasingly clear that both normal and cancer tissues are composed of heterogeneous populations. 
Genetic variation can be attributed to the downstream effects of inherited mutations, environmental factors, or 
inaccurately resolved errors in transcription and replication. When lesions occur in regions that confer a proliferative 
advantage, it can support clonal expansion, subclonal variation, and neoplastic progression. In this manner, the com-
plex heterogeneous microenvironment of a tumour promotes the likelihood of angiogenesis and metastasis. Recent 
advances in next-generation sequencing and computational biology have utilized single-cell applications to build 
deep profiles of individual cells that are otherwise masked in bulk profiling. In addition, the development of new tech-
niques for combining single-cell multi-omic strategies is providing a more precise understanding of factors contribut-
ing to cellular identity, function, and growth. Continuing advancements in single-cell technology and computational 
deconvolution of data will be critical for reconstructing patient specific intra-tumour features and developing more 
personalized cancer treatments.

Keywords:  Single-cell sequencing, Cancer, Mutation, Gene expression, Methylation, Heterogeneity, Multi-omics

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
DNA serves as the source code for specific mechanisms 
that regulate cellular identity, function, and growth. The 
genome is generally replicated with high-fidelity. How-
ever, stochastic somatic alterations can occur at an aver-
age rate of 3 mutations per cell division in normal cells 
[1, 2]. These genetic changes can be the effect of inher-
ited mutations, environmental factors, or inaccurately 
resolved errors in transcription or replication. Mutations 
typically occur in non-coding regions of the genome and 
have no immediately apparent effect on the phenotype 
of the cell [2–5]. However, as mutations accumulate over 
time, they increase genetic variations and the likelihood 
of developing a neoplasm. Communities of mutations, or 
alterations to driver genes, can lead to increases in pro-
liferation, a higher frequency of errors in transcription 
and replication, and/or the enabling of apoptotic evasion 

[6, 7]. Finally, recent studies indicate that metastases 
may also derive from early disseminated cancer cells [8]. 
These features are hallmarks of cancer that subsequently 
facilitate neoplastic progression (Fig. 1) [9].

To better interpret cellular heterogeneity, research-
ers have developed various high-throughput applica-
tions to generate a more comprehensive cellular atlas 
of the human body. Tang et  al. [10] initially reported a 
single-cell RNA-seq experiment, where only one cell 
was sequenced in a single run. This cell was manually 
separated under the microscope. Since then, the tech-
nology has improved several times, each time providing 
a higher cell count and/or expression sensitivity in a sin-
gle run. Notably, published in 2012, SMART-seq allowed 
for greater sensitivity and capturing of full-length tran-
scripts, however cells had to be manually picked in that 
experiment limiting practical cell capture counts. The 
Fluidigm C1 capture method introduced microflu-
idic chips for more automated larger scale cell capture 
that could be paired with effective library preparation 
technologies. Starting from 2014, a number of emul-
sion-based protocols including  that by 10× Genomics 
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increased this number by another one to two orders of 
magnitude (Table 1).

Catching up with the advances in the technology, meth-
ods to investigate complex populations are only now 

coming to fruition with single-cell precision. For exam-
ple, bulk high-throughput sequencing has been previously 
used to reveal that intra-tumour genetic and epigenetic 
heterogeneity progress through sub-clonal branched 
evolution rather than through linear expansion (Fig.  2) 
[11, 12]. However, for similar studies, single-cell tools for 
phylogenetic reconstruction of clonal evolution are more 
complicated due to lower coverage than bulk samples [13–
16]. Characterizing the branched sub-clonal evolution of 
a neoplasm is critical for identifying key sub-population 
driver mutations promoting diversification, expansion, 
invasion, and eventually colonization to other parts of the 
body. In addition, the aggregated effect of tumour hetero-
geneity is important to resolve because resistance in one 
or more clonal subsets of a global tumour cellular popu-
lation can impact chemotherapeutic efficacy (Fig. 2) [17]. 
In fact, chemotherapies have a modest overall median 
survival benefit of 2.1  months while costing around 
$100,000/year in the U.S. [18, 19]. One option to miti-
gate this inefficiency is to remodel patient specific intra-
tumour heterogeneity computationally using single-cell 
genomics data and determine functional pathways at a 
high resolution [20–22]. While the circulating tumor cells 
provide an opportunity to directly profile the difference 
when comparing to the primary tumor samples retrospec-
tively, investigating different tumor subgroups allows one 
to reconstruct the evolution of single tumor cells relative 
to each other in a more continuous fashion. To assemble 

Fig. 1  Heterogeneity and metastasis. a Normal healthy tissues have a naturally occurring degree of somatic heterogeneity. These mutations can 
arise due to environmental factors and inaccurately resolved errors in transcription or replication. b As mutations stochastically arise, some will be 
neutral, thus having no apparent affect on the phenotype, while others may occur in ‘driver’ gene regions and have more immediately observable 
traits. For example, mutated DNA damage response (DDR) genes can drive tumorigenesis because they leave the cell without the necessary path-
ways to resolve lesions. c Driver gene mutations can confer an advantage in the founder clone and promote subsequent expansion. d Secondary 
mutations that occur in subclones further drive heterogeneity and can lead to metastasis. Additionally, recent research suggests that metastases 
may also derive from early disseminated cancer cells

Table 1  Notable advancements in single-cell techniques

This is a non-comprehensive list of peer-reviewed studies that advanced single-
cell isolation and preparation techniques
a  The “range” lists the largest relative population that can or has been studied 
using this technique
b  This method involves mechanical separation and isolation of individual 
blastomeres into single wells

Year introduced Notable technology 
advancements

Method cell rangea

2009 Tang et al. [10] 1b

2011 STRT-seq [23] < 100

2012 SMART-seq [24] < 100

2012 CEL-Seq [25] < 100

2013 Fluidigm C1 (IFC) [26] < 800

2013 Smart-seq 2 [27] < 1000

2014 MARS-seq [28] 10,000 s

2015 Drop-seq [29] 10,000 s

2015 inDrop [30] 10,000 s

2016 Chromium (10× Genomics) 
[31]

10,000 s

2017 ddSeq (Bio-Rad) [32] 10,000 s

2017 SPLiT-seq [33] 10,000 s

2017 Seq-well [34] 10,000 s
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a comprehensive cellular map of the body, accurate and 
reproducible experimental protocols, and computational 
analysis pipelines will be critical to extract and interpret 
heterogeneous information. Here, we provide a review 
of current single-cell genomics strategies developed for 
investigating cellular heterogeneity.

Single‑cell partitioning
The standard workflow of single-cell investigations 
includes dissociating a bulk-cell sample into individual 
cells, isolating those cells, preparing them for the desired 
application, acquiring data, and analyzing data. Today, 
methods for separating cells still include mechanical per-
turbation or enzymatic digestion to separate bulk samples 
into single cells. However, the downstream methods for 
isolation, preparation, data generation, and analysis have 
made rapid advancements. Partitioning bulk samples and 
isolating individual cells can be technically challenging 
and necessitates optimization, often on a tissue-specific 
level. This initial step for investigating heterogeneity 
through single-cell applications can be complicated by 
the inefficient separation, which results in higher doublet 
capture rates in fluidics and droplet-based technologies. 
Caution should also be taken not to induce unnecessary 
mechanical or chemical stress on the cell during this pro-
cess. Performing a clean isolation will also avoid unneces-
sary molecular debris that can impact the ability to assign 
individual unique molecular identifiers (UMIs) to single 
cells during the process of demultiplexing on the cellular 
and transcript/allele levels.

After separating and suspending the population of 
tumour cells from biopsy tissue, single cells can either be 
processed in bulk or sorted and enriched to select specific 
sub-populations. Most commonly, single cells can be iso-
lated by flow-cytometry, laser capture microdissection, 
serial dilution, using antibody-coated magnetic beads, or 
microfluidic-based techniques. Droplet-based technolo-
gies such as Drop-seq, inDrop, Chromium, and ddSeq 
can produce tens  to  hundreds of thousands of uniquely 
barcoded cells (Table  1) [28, 35, 36]. The droplet-based 
approach for isolating and preparing single cells involves 
using bead-based surface chemistry to facilitate molecular 
sample preparation methods while encapsulating the cell 
in an emulsion or aqueous microfluidic partition (Fig. 3a). 
Each bead contains DNA fragments with unique barcode 
sequences that are incorporated with cell material during 
encapsulation. While encapsulated, RNA is also reverse 
transcribed. The emulsions are then broken prior to pooled 
amplification and sequencing. Integrated microfluidic cir-
cuit (IFC) chips offer an alternative approach to isolate and 
process cells individually by capturing them in small cham-
bers [37]. IFC protocols have a natural quality-control step 
whereby doublets can be recorded by microscopy visualiza-
tion before preparing downstream applications (Fig. 3b).

Costs should be considered when deciding the sat-
isfying number of cells to run relevant to the depth of 
heterogeneity in the tissue being interrogated. Isolat-
ing cell populations through a chip limits the number of 
cells that can be captured in a single run. It can be more 
expensive than droplet-based approaches (~ $3.5 versus 

Fig. 2  Clonal phylogeny in cancer and resistance. A Darwinian tree model best describes clonal evolution. a Multiregion biopsies have been used 
to investigate intra-tumour heterogeneity. This involves taking biopsies from different regions of the same tumour then preparing high-throughput 
sequencing libraries. b Phylogenetic reconstruction of clonal evolution gives a detailed understanding of heterogeneity in the tumour. A muta-
tion occurring at the ‘trunk’ of the tree and promotes clonal expansion. Subclones arise due to subsequent mutations that diversify the population. 
Driver mutations can also occur later in clonal evolution and infer resistant properties that were not present in the initial driver mutation. If chemo-
therapy fails to knock out unique trunks, a drug-resistant population will remain and serve as the dominant feature during relapse
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$0.10  per  cell) [38]. In addition to financial differences, 
these recent approaches and their derivatives each have 
unique technical concerns and limitations that have been 
reported in Svensson et al. [39]. After isolating the single-
cell population of interest, the subsequent preparation 
steps vary widely depending on the desired application. 
Below, we elaborate on exemplary applications for study-
ing single-cell heterogeneity.

Single‑cell whole genome and whole exome 
sequencing
Fundamental technical concerns exist with generating 
and analyzing single-cell genetic, epigenetic, and expres-
sion data, because of the low amount of starting mate-
rial. Single cells have ~ 6 pg of genomic DNA, 10–30 pg 

of total RNA that must be amplified before sequencing, 
and roughly 250–300 pg of protein that can be analyzed. 
A battery of computational models have been developed 
to address false-positives due to nonlinear amplifica-
tion, false-negative allelic drop-out due to amplification 
bias, non-uniform coverage, and noise that arises during 
single-cell genome or transcript amplification (Table  2) 
[40]. For this reason, bioinformatics and computational 
biology applications are critical for analyzing NGS out-
put files and accurately identifying genetic variation. 
Single-cell whole-genome and whole-exome sequenc-
ing (scWGS and scWES, respectively) provide amplified 
genomic DNA variant datasets that can then be used 
to reconstruct clonal evolution or to measure genetic 
heterogeneity.

Fig. 3  Single-cell isolation and preparation. a One method for isolating single-cells is by droplet microfluidics. In the first channel, individual cells 
are coupled with uniquely bar-coded beads that continue down the pipe until they are captured by an oil droplet. The oil droplets are then pooled 
in high quantities, and PCR is performed on the population. b A second approach for isolating single-cells is to pre-enrich cells by FACS then pass 
them through an IFC chip, which collects them into individual wells. IFC chips are available in different cell size ranges which assists in limiting the 
capture more than 1 cell/well. Unlike the droplet approach, PCR is performed on individual cells. This method results in lower overall cell counts 
than the droplet approach, however, there is a reported trade-off in sensitivity. Overall, droplet-based methods will yield higher numbers of cells 
per experiment, but the quality of data is more sparse, whereas, microfluidic chip methods provide a deeper cellular profile but with fewer cells. 
Researchers have to weigh the trade-off of single cell read depth or single-cell population breadth
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Experimental methods
To date, three primary techniques are used for whole 
genome amplification (WGA) which include: (1) 
PCR-based methods such as multiple annealing and 
looping-based amplification cycles (MALBAC), (2) 
degenerate oligonucleotide-primed polymerase chain 
reaction (DOP-PCR); and (3) non-PCR based method 
using random hexamers or non-specific priming like 
multiple displacement amplification (MDA) [41–43]. 
Each of the three primary techniques becomes unreli-
able when there is less than 1.5 pg of genomic material. 
The smaller starting volumes are susceptible to environ-
mental contamination and require optimal sterile work-
ing conditions to avoid the creation of false positives [44]. 
Each method used for single-cell genomic DNA amplifi-
cation has biases to consider and can be affected by poor 
coverage or uneven sequencing depth, which will result 
in noisy and inaccurate read counts.

MALBAC tends to have GC bias, but reports find that 
MALBAC libraries are more reproducible than those 
generated with MDA [45]. Some analytic tools, such as 
the Ginkgo web platform (http://qb.cshl.edu/ginkgo), 
take measures to reduce or eliminate these amplification 
biases. According to the authors of Ginkgo, of the three 
genetic amplification techniques used, MDA has non-
uniform coverage and worse GC bias than either DOP-
PCR or MALBAC. Reports suggest that despite moderate 
physical coverage DOP-PCR is the most reliable method 
[42, 46]. While this Review was being prepared, an 
approach that uses linear amplification via transposon 
insertion (LIANTI) was reported that may prove to have 
less amplification bias and high (97%) genome coverage 
[47].

Exemplary applications
With new isolation, amplification, and computational 
modelling techniques becoming available there has been 
a general progression toward increased populations of 
cells or higher quality coverage in rare populations. In 
2012, scWGA by MDA of 58  cells was used to demon-
strate mutational contributions of SESN2 and NTRK1 in 
neoplasm progression. In this study, more than 90% of the 
single-cell genomic data mapped back to the reference 
genome and they had an 11% allele dropout rate [48]. In 
another early example, Xu et al. performed scWES-seq of 
25 single cells by MDA amplification which was used to 
reconstruct clonal mutations occurring within PBRM1 
and VHL in kidney cancer. Here, the MDA approach 
yielded a false positive rate of 2.67 × 10−5 and an allele 
dropout rate of 16.43% [49]. A more recent study by Gao 
et  al. used DOP-PCR to amplify genomic content from 
1000  cells and reported that the majority of subclonal 
CNV occurs shortly after the onset of the primary driver 

mutation in breast cancer. While the false discovery rate 
was not mentioned in this article, their data suggests that 
20–40 single cells were required for detecting subpopula-
tions with 95% power [50]. It is clear that the number of 
cells being reported in a single study has changed rapidly. 
However, while the available number of cells per analy-
sis has been used to reach up to nearly 1500 cells (using 
MDA), the average number of reads per cell decreases 
as the number of cells increase. Thus, much like scRNA-
seq, there is a tradeoff between the individual cell qual-
ity and the total number of cells analyzed within a batch 
[39]. The shortcoming of large batches emphasizes the 
need for computational tools that can correct such bias 
(Table 2).

Single‑cell RNA sequencing
The most broadly developed method for single-cell analy-
sis is single-cell RNA sequencing (scRNA-seq). High-
throughput RNA-seq of bulk samples from scores of 
patients have provided novel insights into many cancer 
types [51–53]. However, deploying RNA-seq analysis at 
single-cell resolution can provide an even deeper level of 
understanding the heterogeneous composition of tumour 
samples by identifying constituents otherwise masked 
in bulk RNA-seq [54, 55]. The first scRNA-seq was per-
formed in 2009 using single mouse embryo blastomeres 
[10]. Since then, there has been an increasing surge of 
sc-RNA-seq publications. Compared to bulk level RNA-
seq, scRNA-seq has at least two advantages. First, a more 
accurate and sensitive presentation of the cell-to-cell 
variability can be discerned. Second, these data can be 
reorganized into pseudo-temporal arrangements that can 
more accurately reconstruct clonal evolution. Beyond 
experimental advantages, monitoring the dynamics of 
sub-clonal populations across the course of treatment 
also has the potential to inform and allow more precise 
adjustment of therapies.

Experimental and computational methods
There are several platforms available for isolating and 
preparing RNA from single cells. One of the greatest 
technical concerns is in amplifying these low concentra-
tions without introducing significant bias. Data gener-
ated by droplet-based approaches permit 10,000 s of cells 
to be counted, while other platforms that use chip-based 
systems process only 100 s of cells at a time but are more 
sensitive to calling the number of genes per cell [39]. 
After successful isolation of single cells, there are a wide 
number of molecular approaches to creating scRNA-
seq libraries such as SMART-seq, SUPeR-seq, BAT-seq, 
CEL-seq, and STRT-seq amongst others. The SMART-
seq approach can generate full-length cDNA, whereas 
approaches like STRT-seq (targeting 5′ end of mRNA) 

http://qb.cshl.edu/ginkgo
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and CEL-seq (targeting 3′ end of mRNA) can be used for 
multiplexing samples [23, 25, 27]. SMART-seq employs 
a special reverse-transcriptase that anchors both ends of 
cDNA with distinct nucleotides. The absence of one of 
these ends eliminates incompletely reverse-transcribed 
RNA molecules after a subsequent cloning step. It is 
important to note that sensitivity and accuracy become 
concerns when the experiments scale up to larger num-
bers. Here, sensitivity is defined as the smallest quantity 
of input RNA molecules required for a gene to be con-
fidently called. Accuracy is defined here as the closeness 
between the estimated and the actual abundance levels 
of input molecules. Whereas studies have shown that the 
droplet-based microfluidic approaches permit greater 
numbers of cells to be counted, chip-based systems 
appear to be more sensitive [39].

Computationally, many tools have been tailored to take 
advantage of the high-resolution of scRNA-seq data and 
deconvolute noise [56]. For example, Monocle2 is an 
unsupervised algorithm designed to analyze the hetero-
geneity among cells and reconstruct the micro-evolution 
timeline from scRNA-seq data [57]. Other tools such as 
scLVM [58], PseudoGP [59], and SPADE [60] have pro-
vided various solutions to analyze heterogeneity with 
scRNA-seq data computationally. With the scRNA-seq 
analysis toolbox expanding rapidly, graphical user inter-
face (GUI) pipelines such as Granatum (http://garmire-
group.org/granatum/app) have recently been developed 
to ensure that accessing the latest development in com-
putational methods is amenable for clinical and non-
informatics researchers [61]. In addition, with datasets 
accumulating at an astonishing speed, there have been 
efforts like the RIKEN Single-Cell Project (http://single-
cell.riken.jp/en/) to consolidate, index, and organize pub-
lically available datasets [62].

Exemplary applications
scRNA-seq has been used broadly to provide data on 
genetic expression and has now been widely applied 
to a variety of cancer types. Since there are many more 
techniques developed and reported for scRNA-seq, we 
will only highlight a few applications as examples of how 
scRNA-seq is impacting the discussion on heterogene-
ity. In one example, the SMART-seq protocol was used 
to profile full-length mRNA from 430 primary glioblas-
tomas to reveal an intratumor spectrum of differentiation 
states [63]. The SMART-seq protocol was later improved 
to increase mRNA yield, coverage, sensitivity, accuracy 
and reintroduced as Smart-seq  2 [27]. Smart-seq  2 is 
now a widely used approach in scRNA-seq. In one case, 
it was used to profile 4347  cells from six oligodendro-
gliomas and revealed subgroups of undifferentiated cells 
with a stem-cell-like expression that may be the source of 

oligodendrogliomas [54]. These data highlight that  one 
benefit of performing expression analysis at single-cell 
resolution is it can reveal subpopulations otherwise 
masked in bulk data. In addition, enhancing sensitivity 
for clonal-level therapies alongside offers the potential 
for discovering novel, previously undetectable biomark-
ers on an individual level.

Currently, one of the most interesting shifts in research 
to recognize is that scRNA-seq is progressing to include 
a broader range of samples in addition to a deeper pool 
from a single source. Thus, as the cost of performing 
scRNA-seq continues to drop, it will facilitate simultane-
ous inter- and intra-tumour investigations. For example, 
a recent report using 9879 cells from 10 IDH-A tumours 
and 4347 cells from six IDH-O tumours were compared 
with 165 TCGA bulk samples to identify a common pro-
genitor for IDH mutant gliomas [64]. This report is repre-
sentative of the growing trend to combine available bulk 
data with single-cell data cohorts for broader and deeper 
data mining potential. In addition to profiling tissue sam-
ples, scRNA-seq is also used to investigate circulating 
tumour cells (CTC), which is particularly valuable for 
prospective monitoring [65]. The SMART-seq method 
was initially reported in an investigation on CTCs and 
was proposed as a method for identifying candidate can-
cer biomarkers [24]. Isolating and analyzing expression 
in CTCs alongside monitoring circulating cell-free DNA 
(ccfDNA) burden has high direct translational potential 
for identifying personalized biomarker panels to guide 
treatment in real-time.

Single‑cell chromosome conformation capture
Developments in studying single-cell genomic archi-
tecture have become increasingly deployed to under-
stand the relationship between topology and phenotype. 
Topology is interesting because single nucleotide varia-
tions (SNV), point mutations, and insertions or deletions 
(indels) can indirectly impact the expression of a distant 
gene by rearranging the genetic architecture [66]. Since 
the expression of some genes is affected by long-distance 
interactors, another level of heterogeneity to consider 
is the arrangement and proximity of chromosome ter-
ritories within the nucleus [67]. Genomic architecture 
is described as being organized in A/B compartments, 
topologically associated domains (TADs), and loops. Per-
turbation at any level of these structures can have a sig-
nificant role in determining domain accessibility which 
can either improve or inhibit activity in that region. These 
physical genomic folding structures have been revealed 
using long-range genomic interaction maps derived from 
high-throughput sequencing data [68]. When integrated 
with other techniques such as scWES or single-cell RNA-
seq, Hi-C provides an informative tool for identifying the 

http://garmiregroup.org/granatum/app
http://garmiregroup.org/granatum/app
http://singlecell.riken.jp/en/
http://singlecell.riken.jp/en/
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relationship between the 3D architecture of the genome 
and gene expression [69].

Experimental methods
To analyze single-cell nuclear DNA structure, high-
throughput sequencing is coupled with a high-resolution 
chromatin conformation capture (3C) assay (sciHi-C) 
[70]. The chromatin architecture of single cells is recon-
structed by generating short and long-range interaction 
maps. Briefly, interaction is inferred by fixing the DNA, 
followed by enzymatic restriction digestion, adaptor 
ligation, and proximity ligation. This sequence of steps 
allows interacting loops and TADs to be ligated together 
and will thereby yield a higher number of reads due to 
more frequent interaction [71]. Pipelines for analyzing 
multiplexed scHi-C data have recently become open-
sourced [71]. On a more local scale, single-cell ATAC-seq 
(scATAC-seq) is used to profile open (transcription-per-
missive) chromatin. During scATAC-seq, isolated nuclei 
are processed by Tn5 tagmentation, which inserts adapt-
ers into nucleosome-free regions [72, 73].

Exemplary applications
scHi-C methods give detailed information about the 
state of the chromatin accessibility and long-range inter-
actions. These methods are currently being adopted to 
define how architecture evolves throughout the cell-cycle 
at single-cell resolution [74]. A recent publication used 
scHi-C to reveal the architecture during pronuclear for-
mation of G1 zygotes. In the zygote, maternal and pater-
nal pronuclei have different levels of organization with 
maternal DNA lacking A/B compartments. This suggests 
that organization of paternal compartmentalization is 
likely inherited from the sperm [75]. The organization of 
loops, TADs, and compartments is significant because it 
infers which regions are more active and perhaps more 
prone to mutations [7]. On a more localized level, a sepa-
rate study used a modified sciATAC-SEQ approach called 
SCI-seq was demonstrated on 16,000 single cells from 
different cancer types. SCI-seq uses a lithium-assisted 
nucleosome depletions strategy to remove histones fol-
lowed by cross-linking than by the scATAC-seq protocol 
[76]. Together, these techniques provide information on 
the organization of DNA in the nucleus.

Single‑cell epigenetics
Epigenetic diversity involves heritable changes that 
affect genomic expression but that do not affect the 
DNA information. This includes direct modification of 
nucleic acids (i.e. 5mC, 6mA, m6A, and pseudouridine), 
and post-translational modification of histones (e.g. 
methylation, and acetylation) [77, 78]. DNA methylation 
adds another layer of complexity to our understanding of 

how heterogeneity affects cellular identity and function. 
Hypermethylation of DNA is associated with transcrip-
tional repression, while the reverse is true for hypometh-
ylation. Single-cell epigenetics studies have advanced 
more rapidly than those that deal with proteins. Elucidat-
ing epigenetic heterogeneity at the single-cell level add a 
deeper understanding of how methylation patterns are 
maintained on a clonal level across cell populations and 
across individuals. However, it should be noted that the 
most significant roadblock to generating single-cell res-
olution methylation data is that current techniques are 
harsh and result in massive loss of DNA template. Also, 
these techniques often include amplification methods 
that remove the ability to detect epigenetic modifications.

Experimental methods and applications
Amongst the experimental approaches inferring cytosine 
modification, single-cell bisulfite sequencing (scBS) is 
the most widely used technique. scBS-seq preferentially 
de-aminates unmethylated cytosine thereby convert-
ing unmethylated cytosines to thymines. However, dur-
ing this bisulfite treatment step, nicks and fragmentation 
in the DNA occur that reduce the quality and quantity 
of the input. This is followed by primary and secondary 
adapter ligation and PCR [79–81]. Single-cell reduced 
representation bisulfite sequencing (scRRBS) has lower 
coverage of total CpG sites but higher coverage of CpG 
islands [82]. Aligned reads generated from this technique 
require special tools such as Bismark for read mapping 
and methylation calling [83]. A third technique known as 
single-cell whole-genome bisulfite sequencing (scWGBS-
seq) was developed that does not include the pre-amplifi-
cation step that takes place in scBS-seq but this approach 
has lower coverage complexity [84]. Comparatively, 
the scRRBS method only covers 1% CpG sites across 
the genome, in contrast to 48.4% of CpG sites by scW-
GBS. Single-cell methylase assisted bisulfite sequencing 
(scMAB-seq) and CpG island methylation sequencing 
for single-cell (scCGI-seq) have also recently been pro-
posed [85, 86]. Future comparative studies of these vari-
ous methods will assist in determining the differences in 
mapping and cost efficiency.

Cytosine methylation studies on cancer samples at 
the single-cell level currently lag behind other -omics 
approaches. The technical difficulties of bisulfite treat-
ment yield poor coverage, thus these methods might 
not be able to unveil untargeted features of different cell 
populations. For this reason, Farlik et al. inferred cell line 
drug response in developing the scWGBS approach [84]. 
Finally, recent single-cell studies proposed different ana-
lytical tools to correct the input features, such as the use 
of a deep neural network to reconstruct noisy and miss-
ing CpG data [87]. Using computational methods to fill in 
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sparse data will not only rescue poorly resolved data but 
may also be applied to identify biomarkers, project clonal 
evolution, or rank potential drug responses.

Single‑cell proteomics
There are many layers to deciphering cell-to-cell hetero-
geneity. Since there is not a direct 1:1 turnover of mRNA 
occurrence to protein translation, adopting single-cell 
proteomic studies provides information on the final layer 
of inter- and intra-tumour heterogeneity. Unlike genetic 
or expression analysis, proteomic investigations at the 
single-cell level lack a way to amplify the starting mate-
rial. Therefore, single-cell proteomic studies have the 
technical challenge of developing more sensitive methods 
for detection.

Experimental and computational methods
Quantifying proteins at single-cell resolution is a devel-
oping technology complicated by the transient nature 
of functional proteins. Much like other  -omics sections 
covered earlier, investigating the proteome at single-cell 
resolution requires accounting for low input levels [88]. 
Single-cell time-of-flight mass cytometry (CyTOF) is 
one method used to address this issue. CyTOF targets 
epitopes of interest utilizing antibodies coupled with 
transient metal element isotopes. Single-cell droplets are 
introduced to inductively coupled argon plasma where 
the cell is vaporized, and the atomic constituents are ion-
ized before time-of-flight sampling [89]. Since CyTOF is 
limited to around 50 parameters, this approach yields a 
much lower throughput than scRNA-seq. However, it is 
more affordable than scRNA-seq and can help to deter-
mine if an enrichment (e.g. FACS) step is necessary 
before transcriptome analysis. Another mass spectrom-
etry approach recently proposed is a method known as 
single-cell proteomics by mass spectrometry (SCoPE-
MS). The SCoPE-MS workflow was designed to isolate 
protein from single-cells and prepare each cell for MS. 
SCoPE-MS attempts to resolve the issue of protein loss 
during transfer and low starting material by manually 
separating and lysing cells. This method includes tan-
dem mass tags for reporter ion relative abundance quan-
tification [90]. Alternatively, non-MS approaches for 
single-cell proteomic studies can utilize chip-based iso-
lation. In the single-cell barcoded chip (SCBC) method, 
cells are isolated into wells and probed with antibody 
arrays which are analyzed by a microarray scanner [91]. 
Antibody arrays are also utilized in single-cell western 
blotting (scWB) for which isolated cells are lysed, and 
SDS-PAGE is applied to each well. Relative to the MS 
approaches, scWB is limited to probing the sample with a 
smaller panel of antibodies.

There are a variety of statistical tools available for infer-
ring subpopulations and subpopulation specific markers 
from single-cell protein data including SPADE, Pheno-
graph, and Wishbone [92]. For example, histoCAT is a 
new powerful integrative method used to integrate sin-
gle-cell CyTOF measurement with image-based spatial 
information to detect spatial and phenotype interaction 
at the cellular level [93]. Also, new studies propose dif-
ferent methods to construct dynamic protein signalling 
networks using single-cell protein measurement [94, 
95]. In particular, one new approach created a dynamic 
regulation network from CyTOF measurements to model 
the drug perturbation of the epithelial-to-mesenchymal 
transition [96]. This type of approach can then facilitate 
the discovery of critical events correlated with a cell state 
transition.

Exemplary applications
One example of the SCBC method for single-cell chip-
based proteomic investigation first heavily dilutes a FACS 
enriched population before loading them into micro-
chambers. Wei et al. used a phosphoproteomic antibody 
array to profile mTORki resistant glioblastomas [97]. This 
SCBC study, cells were lysed after isolation, and the pro-
tein contents were captured using custom antibody bar-
codes. Chip-based methods can assay a relatively larger 
number of proteins (n > 40) than other techniques cur-
rently available, but still fewer the MS approaches [88]. 
For this reason, the continuing development of single-cell 
mass spectrometry strategies such as CyTOF will be the 
technology that unlocks single-cell proteomic scalability. 
As a recent example, a panel of more than 30 antibodies 
was used in CyTOF to analyze tumour cells, adjacent nor-
mal tissue, and blood from 28 patients with lung adeno-
carcinoma [98]. The CyTOF data reported here revealed 
that tumour-infiltrating myeloid cells likely shape the 
composition of anti-tumour T-cells. Thus, the ability to 
profile large population of single-cell surface markers has 
powerful implication in immunology.

Single‑cell multi‑omics
Single-cell multi-omic strategies capture the most accu-
rate state of factors that contribute to the cellular phe-
notype. Ultimately, the integration of several layers of 
data will be necessary for deconvoluting the relation-
ship between expression, function, and identity. This is 
because bulk level analysis can only describe the general 
trends in a population that can mask cellular subtypes 
[99]. Multi-omic studies are complicated by the tech-
nical requirement of separating and preserving differ-
ent molecular layers from the same cell. Bioinformatics 
and computational biology provide critical support for 
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reconstructing features that may become noisy as a result 
of sample loss during multi-omic sample preparation.

Experimental methods
The most cutting-edge research calls for investigators to 
combine all of the techniques discussed to reconstruct 
multi–omic single-cell profiles (Fig.  4). Achieving this 
level of resolution will provide the most comprehensive 
profile of cell-to-cell diversity in normal and tumour tis-
sue and inform researchers on the impact of single-cell 
genetic and epigenetic heterogeneity. Bock et  al. pro-
posed that molecules collected from the same cell can be 
assayed by one of several approaches depending on the 
desired downstream application [100]. For example, two 
methods described involve either separating the molecu-
lar layers (e.g. DNA and RNA) into their equivalents or 

splitting the sample itself into different fractions and pro-
ceeding with the desired isolation within the given frac-
tion. Alternatively, multi-omic methods can be combined 
into a single workflow [100]. Taken together, the cluster 
of data generated by multi-omic approaches can infer 
the underlying triggers of cellular identity and function. 
As these techniques in cell isolation and amplification 
continue to improve, multiple layers of heterogeneity 
reconstruction can be used to identify neoplastic predis-
position markers and provide a refined map for precise 
drug treatment regimen.

Exemplary applications
Since multi-omic strategies are at the frontier of single-
cell research, the body of literature remains relatively 
nascent. The majority of current available single-cell 

Fig. 4  Single-cell multi-omics analysis workflow. a Multi-omic technologies can produce reads from the transcriptome (RNA-seq), the genome 
(exome sequencing), and/or the methylome, from the same cells. b Read alignments, quality control (QC), and specific processing steps create 
“feature expression” matrices, where cells are represented as vectors and genomic features (e.g. gene expression, methylation) represented as col-
umns. c The different omic matrices can then be analyzed independently, for detecting cell subpopulations and ranking the genomic features etc. d 
Finally, multi-omics integration can be performed to identify coherent features from different omics that separate different subpopulations
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multi-omics technologies are focused on the link between 
epigenetic and transcriptional variations. Macaulay 
et  al. established scG&T-seq to simultaneously measure 
genetic variation and gene expression via separation of 
gDNA from polyA RNA using a biotinylated oligo-dT 
primer [101]. scG&T-seq equips Smart-seq  2 for whole 
transcriptome analysis and offers various methods for 
DNA amplification depending on the downstream appli-
cation (MDA, PicoPlex etc.). In contrast to conventional 
scRNASeq sequencing methods, scG&T-seq utilizes 
ERCC-spike-ins to assess the number of genes expressed 
and transcript coverage lengths. Angermueller et  al. 
developed another method called scM&T-seq to evalu-
ate the relationship between methylation and transcrip-
tion variations in heterogeneous cell populations through 
scRNASeq and scBS-seq techniques [102]. scM&T-seq 
was applied in discriminating 61 mouse serum ESCs 
(embryonic stem cells) and 16 ESCs grown in 2i media. 
The results showed that the connection strength between 
methylome and transcriptome varies from cell to cell. 
Another similar method called scMT-seq applied Smart-
seq 2 and scRRBS for single-cell transcriptome sequenc-
ing and methylome sequencing, respectively [103]. 
Compared to scM&T-seq, scMT-seq provides similar 
CpG islands overlap in a more cost-effective way. This 
study helped to reveal the relationship of gene expres-
sion and DNA methylation in gene body and promoter 
regions in neuron single cells.

Regarding simultaneous measurement of gene expres-
sion with another omics data generated from the same 
cell, DR-Seq is an example of pioneering work on single-
cell DNA and RNA parallel sequencing [104]. Without 
manually separating the nucleus and cytosolic mRNA, 
DR-Seq applies a quasi-linear amplification method with 
predefined adaptors to quantify gDNA and mRNA. Addi-
tionally, the comparison of DR-Seq and CEL-Seq showed 
that the additional steps for amplification of gDNA 
would not affect the mRNA results. However, this sin-
gle-pot strategy requires in silico masking of the coding 
sequences (exonic region) of the genome to determine 
copy number variation, which leads to incomplete tran-
scripts from the cell. Another recently published work by 
Stoeckius et al. developed CITE-seq to integrate cellular 
protein markers and transcriptome in single cells through 
oligonucleotide-labeled antibodies [105]. CITE-Seq not 
only enabled to differentiate cellular subgroups based on 
surface protein expression, but also achieved a consistent 
output of protein detection with currently standardized 
flow cytometry. Compared to scRNA-seq alone, CITE-
Seq demonstrates both the highly consistent protein and 
RNA profiles with literature and also an enhancement of 
characterization of cell phenotypes based on immune cell 
experiments.

From the analytical perspective, certain additional lay-
ers can be reconstructed given one layer is provided. For 
example, SNVs can be directly extracted from RNA-seq 
reads and then correlated to gene expression [106]. In 
addition, by using the input fastq files it is now possible 
to highlight predictive DNA motifs linked to methyla-
tion profiles [87]. However, most of the high-throughput 
scRNA-seq pipelines are designed specifically for mRNA 
expression counting. Since the library products are quite 
short, there is fairly limited capability to do this without 
modifying more commercial protocols.

Three-omics single-cell assays also became possible. 
Recently, Hou et al. established scTrio-seq to simultane-
ously sequence and analyze single cell’s genomic copy 
number variations, DNA methylation and transcrip-
tomic gene expression together [107]. scTrio-seq demon-
strated its ability to efficiently measure DNA methylome, 
transcriptome and genome copy number compared to 
scRRBS, bulk cell RNA-seq and bulk cell RRBS and bulk 
cell WGBS. The integration of triple omics information 
via scTrio-seq on 25 HCC cancer cells identifies two het-
erogeneous subpopulations with different malignancy 
and metastasis potential.

Conclusions
High-throughput sequencing techniques provide clini-
cians with a more comprehensive understanding of the 
genetic and epigenetic heterogeneity in normal and can-
cer cells. Moreover, future personalized treatments might 
integrate as a routine single-cell strategy to unveil intra-
tumour heterogeneity and thus provide a more accurate 
therapy regimen. Multi-omics approaches that detail 
inter- and intra-tumour heterogeneity within individ-
ual patients will continue to evolve and provide critical 
insight to informing more accurate treatment regimens 
based on prognosticated drug response. In addition, 
these emerging molecular techniques when combined 
with computational analysis tools will advance research 
in other areas such as developmental biology, biotechnol-
ogy, pathology and more. As larger amounts of single-cell 
data become publicly available, there will be increased 
opportunities to identify subclonal-specific biomarkers 
at a personalized level. User-friendly data portals for sin-
gle-cell analysis, such as Granatum, will become increas-
ingly integral in the bench-to-bedside transition [61]. 
The comprehensive annotation and analysis of single-cell 
datasets will be the foundation of understanding how 
cell-to-cell variability in normal and cancer cells influ-
ence cellular identity and function in the human body.
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