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Extracellular vesicles: how they interact 
with endothelium, potentially contributing 
to metastatic cancer cell implants
Murray M. Bern* 

Abstract 

Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are 
released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothe-
lial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. 
They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue 
factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of 
their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the 
inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance 
from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent 
tumor growth.
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Definition of extracellular vesicles
Cells shed blebs of their phospholipid bilayer plasma 
membranes as byproducts of cell growth, apoptosis and 
in response to physiologic and pathophysiologic stimuli. 
These vesicles encapsulate small portions of the subjacent 
cytosol, creating a heterogeneous population of phos-
pholipid-walled vesicles. These particles are referred to 
as extracellular vesicles (EV), but also as microparticles, 
microvesicles, microsomes, lipid vesicles, apoptotic blebs 
and exosomes [1–6].

EV’s are characterized by their size (30–100  nm for 
exosomes and 100–1000  nm diameter for the larger 
microvesicles), by their cells of origin including megakary-
ocytes, platelets, red blood cells, endothelial cells and oth-
ers, and by their intravesicular contents [2, 3, 6, 7]. Their 
intravesicular contents depend upon their cells of ori-
gin and can include tissue factor, double stranded DNA, 
mRNA, microRNA, adhesion integrins, growth factors, 

protease inhibitors, P-selectin glycoprotein ligand-1 
(PSGL-1) and ceramides [8–17]. They have been detected 
in blood plasma and other physiologic fluids [3, 4]. Gen-
der, age of subjects and diseases influence their number in 
circulating blood and their size distribution [18, 19].

EVs are also released in response to pathophysiologic 
stimuli including thrombin, shear stress, complement 
activation, sepsis, hypoxia, inflammation, from malignant 
cells and following chemotherapy for malignancies [20–
22]. They may also be byproducts of cell maturation with 
shedding of excess cell membrane [23].

The normal cell membrane is a bilayer structure with 
inner cytosolic layer enriched with phosphatidylserine 
and phosphatidyl-ethanolamine. This structure is main-
tained by enzymes flippase, floppase and scramblase [6]. 
When the EV are created, the endoplasmic reticulum 
releases Ca2+ which inactivates flippase and activates 
floppase and scramblase leading to loss of the normal 
asymmetry of the cell membrane and reversal of the nor-
mal order, creating an outward facing phosphatidylserine 
enriched layer [6, 24]. See Fig. 1. The phosphatidylserine 

Open Access

*Correspondence:  Murraybern@AOL.com 
University of New Mexico Comprehensive Cancer Center, 1201 Camino 
de Salud, Albuquerque, NM 87131, USA

http://orcid.org/0000-0001-9918-6746
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-017-0165-2&domain=pdf


Page 2 of 9Bern ﻿Clin Trans Med  (2017) 6:33 

is then available to be tethered by lactadherin (also 
known as Human Milk Fat globule factor 8 or MFG-E8) 
and Tim 4 to endothelium [25, 26]. See Fig. 2. 

Exosomes are unique subsets of EVs with specific bio-
genesis, measuring 30–100 nm [4, 17]. They are derived 
from endosomal multivesicular bodies, which then fuse 
with plasma membranes and are secreted from the cell 
into extracellular space, a process termed exocytosis. 
The primary function of these endosomes appears to 
be for the cellular uptake and extrusion of macromol-
ecules from and to the extracellular fluids [1–3, 27]. They 
transport bioactive molecules including proteins, DNA, 
functional mRNA and microRNA from cell to cell by 
membranous transfer, thereby influencing other cell sys-
tems [17, 25, 28]. The currently available techniques do 
not allow for clean separation of these exosomes from the 
larger extracellular vesicles.

Apoptotic bodies may co-isolate with extracellular vesi-
cles when isolated in the lab, but based upon origin they 
differ greatly from EV [29]. The EV appear to be gener-
ated continuously from normal, viable cells, while the 
apoptotic bodies are derived following a highly regulated 
programmed cell death, in which the caspase pathway 
plays a central role. Apoptosis involves cell shrinkage and 
nuclear fragmentation, with the debris separated into 
nuclear or cytoplasmic vesicles of various sizes, which 
may be as small as the EV, but also may be up to 5000 nm 

diameter. They do express the “eat me” cellular signal to 
facilitate their phagocytosis by macrophages in the vicin-
ity of the dead cell, using some of the same signals as the 
other EV [29].

Fig. 1  The normal cell membrane is an asymmetrical bilayered structure with phosphatidylserine- and phosphatidyl-ethanolamine-enriched 
cytosolic layers, maintained by flippase, floppase and scramblase. As extracellular vesicles are formed, the flippases is inactivated while floppase and 
scramblase are activated, leading to reversal of the normal asymmetry, creating an outward facing phosphatidylserine enriched layer

Fig. 2  Extracellular vesicle attachment to endothelial cells is depend-
ent upon their exposed PSGL-1 attaching to the P-selectin expressed 
from Weibel–Palade bodies and platelet alpha-granules, and upon 
the tethering of the exposed surface phosphatidylserine to Tim4, 
lactadherin/MFG-E8 and probably other cell adhesion molecules
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Methods of isolation
The methods of isolation and preservation of the EVs 
are improving, but have not reached the ultimate goal 
of allowing analysis of homogeneous EV subpopula-
tions and precise study of their targets [3–5, 30]. Cur-
rently EVs are defined predominantly by the techniques 
used for their isolation (flow cytometry, density gradi-
ent separation, differential centrifugation, size-exclusion 
chromatography, immunoaffinity isolation, polymer pre-
cipitation and others) as they affect the size and density 
of the isolates. Also, pre-analytical manipulation of sam-
ples influence the study results [31]. As of now there is 
overlap of the size subclasses and cells of origin [4, 5]. For 
reporting purposes the EV can be further described by 
flow cytometry, mass spectroscopy and by their specific 
contents such as DNA, microRNA and mRNA [3, 32, 33].

A new technique for isolation of EV was reported using 
affinity-based methodology taking advantage of the T 
cell immunoglobulin domain and mucin-containing pro-
tein 4, known as Tim4, and its adherence to the exter-
nalized plasma membrane phosphatidylserine [34]. In 
this method the extracellular domain of Tim4, normally 
expressed as a transmembrane protein on macrophages, 
is immobilized on magnetic beads. Since Tim4 strongly 
binds to phosphatidylserine it immobilizes the EV on the 
beads [35]. This binding is calcium dependent and thus 
EV can be released when calcium chelators are added. 
Tim4 affinity can also be used in ELISA and flow cytom-
etry formats [34].

Post-translational modifications of EV proteins are 
under study [3, 36, 37]. Exosomes become more rigid 
increasing their stability after they are released from m 
into the extracellular space with its increased pH. They 
also undergo post-translational covalent attachment to 
fatty acids. Acetylation and myristoylation promote pro-
tein sorting and subsequent EV budding [36, 38].

Total mass of EVs in circulation
The total mass of EVs in the circulation at any given time 
can be represented by their rates of release into the cir-
culation and their rates of clearance from the circulation. 
How long they survive in the circulation is unclear [33]. 
Clearance mechanisms include endocytosis, micropi-
nocytosis, phagocytosis and membrane fusion [22, 39]. 
These processes are dependent upon exposed PSGL-1 
on platelet-derived EV attaching to P-selectin expressed 
from the endothelial cell Weibel–Palade bodies and plate-
lets alpha-granules; and upon the phosphatidylserine on 
their surface with tethering to Tim4 and lactadherin/
MFG-E8 [25, 40]. The extent of surface phosphatidyl 
serine exposure in-vivo prior to ex vivo manipulation is 
unknown.

Their rates of clearance have acute and chronic patterns 
of change and appear to be influenced by their cell of ori-
gin [22, 41, 42]. The locales of the macrophage-mediated 
phagocytosis also differ based upon the organ in which 
the macrophages are anchored [43–45]. Endothelial 
receptors may also vary from site to site with different 
organ-specificities, such as the endothelial cell-rich lungs 
[46, 47].

EV activities
The total array of activities of the EVs is still under study. 
They are involved in cell-to-cell communications, trans-
ferring their contents to cell types that differ from their 
cell of origin [9–12]. This affects cell signaling, platelet 
and leukocyte adhesion to subendothelial matrix, vascu-
lar smooth muscle proliferation, inflammation, immune 
response, thrombosis, angiogenesis and angiocrine activ-
ities, and tumor niche formation leading to enhanced 
tumor implantation on endothelial surfaces [4, 47–55].

Contributions to thrombosis
An important and complex picture is emerging of how 
EVs participate in coagulation and fibrinolysis [8, 12, 49, 
56–58].

EVs become anchored to endothelium in two ways. The 
PSGL-1 from platelet-derived EV attaches to the P-selec-
tin released from Weibel–Palade bodies of the activated 
endothelial cell and from the platelet-derived α-granules 
[55, 59–61]. There also appears to be a phosphatidylser-
ine receptor, at least on cultured activated microvascular 
endothelial cells derived from pulmonary and retinal tis-
sues [62]. CD36, also known as platelet glycoprotein IIIB 
and IV among other names, is a scavenger receptor that 
binds several ligands including phosphatidylserine. It is a 
candidate cellular adhesion molecule for anchoring the EV. 
This pathway is blocked when the phosphatidylserine as 
pretreated with annexin V [63]. Subendothelial thrombos-
pondin is another candidate cellular CAM for the exposed 
phosphatidylserine [64]. Other cellular adhesion molecules 
with ability to tether the phosphatidylserine exposed on the 
surface of the EV include Tim4 and lactadherin [25, 26].

EV trigger thrombosis via release of tissue factor they 
contain, supplementing the tissue factor released from 
perivascular tissue following endothelial disruption [9, 
11, 12, 50, 65]. The released tissue factor is activated by 
thiol isomerases, with downstream platelet activation 
and thrombus formation [56, 57, 66, 67]. This has become 
a target of a new class of anticoagulants [68]. As an exam-
ple, quercetin-3-rutinoside suppresses this tissue factor 
activation [56, 68]. Furthermore, the exposed phosphati-
dylserine is a catalytic surface for assembly of the pro-
thrombinase complex [69].



Page 4 of 9Bern ﻿Clin Trans Med  (2017) 6:33 

Increased thrombin-generating activity has been 
recorded for EV derived from platelets and monocytes 
harvested from patients having recurrent thrombosis 
[70].

Suppression of tissue factor with anti-tissue factor anti-
body and the suppression of P-selectin in PSGL-1 knock 
out mice reduce clot formation [12, 56, 58]. Similarly, 
drugs with activity in this domain, such as the HMG-
CoA reductase inhibitors, suppress the levels of soluble 
P-selectin and would consequently be expected to reduce 
the expression of tissue factor [71–74]. Also, the in vitro 
blockade of the phosphatidylserine on EVs with annexin 
V or lactadherin (also known as MFG-E8), both of which 
attach variably to phosphatidylserine, reduces the plate-
let-derived EVs contribution to thrombin generation 
[75–78]. These observations are the basis for new clinical 
studies.

EVs also accelerate fibrin polymerization, supporting 
the formation of denser clots that are more resistant to 
fibrinolysis by tissue plasminogen activator (tPA). Plate-
let-derived EV also attach to the fibrin fibers [79, 80]. 
When EVs are removed from the test sample the final 
clot formation is slowed, with reduced fibrin polymeriza-
tion leading to increased fibrinolysis in response to added 
tPA [80].

Extracellular vesicles and malignancies
The complex relationship of EV and cancers is under 
investigation. These investigations point roles of EV in 
the metastatic process, cancer progression, drug- and 
radiotherapy-resistance and in cancer-related hyperco-
agulation [16, 48, 52–54, 81–86].

EVs derived from ovarian cancer, prostate cancer and 
fibrosarcoma paradoxically have the potential of poten-
tiating fibrinolysis [8, 87–92]. The EV-associated uroki-
nase plasminogen activator appears capable of promoting 
invasion of prostate cancer [89]. The EVs that are shed 
during blood storage loose their fibrinolytic capacity the 
longer the red cells are stored [92]. It is not yet known 
how these findings fit into in  vivo clotting/fibrinolytic 
balance or for the metastatic process.

Activated platelets interact with cancer cells by way of 
P-selectin and the cancer PSGL-1 expressed on malig-
nant cells [93]. Platelet-derived EV promotes tumor 
growth and tumor-induced angiogenesis [94, 95]. Mela-
noma cells release exosomes that change the local and 
systemic microenvironment so as to better support 
tumor growth and metastasis [52, 54]. They prepare the 
sentinel lymph node to trap and support growth of the 
incoming metastatic melanoma cells by inducing lym-
phangiogenesis in preparation of a premetastatic niche 
[53, 96]. This process is dependent upon transmembrane 
proteins. The tetraspanin-integrin complex contributes 

to the binding of exosomes to their target cells, possibly 
mediated by P-selectin/PSGL-1 complex [96–99].

As discussed above, tissue factor is activated by protein 
disulfide isomerases (PDI) [56, 100–104]. It is also known 
that many cancers are dependent upon protein disulfide 
isomerase for survival and metastasis [105]. Thus PDI 
inhibitors may serve both as anticoagulant and as tumor 
suppressant [68].

The EVs derived from cancer cells appear to carry some 
specific physiologic activities, including the increased tis-
sue factor [6, 11, 106–115]. This blood-borne tissue fac-
tor may contribute to the hypercoagulation syndrome 
that accompanies many cancers [6, 110, 113–117]. The 
amount of tissue factor-positive EV correlates with 
venous thrombosis seen in patients with cancer [7, 113–
116]. In another study epithelial cancer cells adopted 
mesenchymal features upon exposure to activated epi-
thelial growth fact receptor coupled with blockade of 
E-cadherin, leading to a surge of released EV-containing 
epidermal growth factor receptor (EGFR) and tissue fac-
tor [117]. Upon transfer of the tissue factor to cultured 
endothelial cells, they become procoagulant [11, 117]. 
Cancer cell-derived EV carrying PSGL-1 can accelerate 
thrombus formation in  vivo by aggregating platelets via 
the tissue factor-dependent pathway. Their intact par-
ent cells do not have the same capacity [113, 114]. When 
microparticles derived from tumor cell are injected into 
mice acute thrombocytopenia and signs of shock follow. 
This was prevented by prior heparinization [42]. When 
exposed to hypoxic conditions tumor cell-derived EVs 
demonstrate the potential for increasing angiogenesis 
and facilitating metastasis, leading to changes in cell–
cell and cell-extracellular matrix interaction allowing for 
increased invasiveness [118].

Further exploration of extracellular vesicle activity 
on vascular endothelium
Endothelial cells are involved with tumor growth, tumor-
induced angiogenesis and angiocrine functions for 
self-renewal and differentiation following trauma and 
thrombosis [119, 120].

As demonstrated with phage display, endothelium 
expresses different receptors depending upon their organ 
of origin and their functional status [121–125]. This phe-
nomenon has been nicknamed endothelial ZIP codes 
[126]. This may have therapeutic implications.

Endothelial dysfunction occurs with many pathological 
states, including sepsis, thrombotic thrombocytopenia 
purpura, pulmonary hypertension, sickle cell diseases, 
activation of the complement C5-9 membrane attack 
complex and exposure to cytotoxic chemotherapy among 
others [108–110]. These result in changes of phenotype 
for thrombo-resistance including decreased production 
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of thrombomodulin, tissue-derived plasminogen activa-
tor (tPA), heparan sulfate, plasminogen activator inhibi-
tor-1 (PAI-1), but also increased expression of selectins, 
including over expression of P-selectin from the Weibel–
Palade bodies thus leading increased production of pro-
coagulant activity [126]. The over expression of P-selectin 
facilitates further attachment of EV allowing for further 
expression of its tissue factor.

The family of selectins and their ligands play roles in 
the metastatic process and possibly organ selectivity 
for metastasis. P-selectin facilitates the initial attach-
ment, with subsequent other cellular adhesion molecules 
(CAMs) furthering the process, including interaction 
with platelet- and fibrinogen-causing clots with fur-
ther anchoring of circulating malignant cells [127–131]. 
Increased adhesion for monocytes and leukocytes fur-
ther accelerate the clotting process, leading to increased 
endothelial cell apoptosis and shear-induced endothelial 
cell loss causing exposure of subendothelial substances 
[132].

The angiocrinic function of endothelial cells has been 
reviewed describing its influence upon tumor growth, 
as well as organ regeneration and differentiation [121]. 
The endothelial cells preserve specific niches useful for 
selective stem cell implantation. This process is associ-
ated with inhibitory or stimulatory activities that effect 
downstream trophagens and cytokines that in turn regu-
late adoptive healing and metastatic processes [52, 54, 95, 
119, 120, 133].

Annexin I and annexin V are cell-specific receptors 
for the exposed phosphatidyl serine on the EV sur-
faces, working synergistically with its PSGL-1 ligand for 
P-selectin [24, 41, 55, 134–136].

Vascular ligand–receptor mapping
Combinatorial screenings with phage display can be used 
to identify peptides and proteins with high affinity and 
specificity for EV [137, 138]. The technique has been used 
to examine ligand–receptor interactions on the endothe-
lial cells of blood vessels allowing selection of peptides 
that bind specifically to different vascular beds [123, 138–
141]. This technique has been used for unbiased mapping 
of vascular diversity, the vascular ZIP codes [142, 143]. 
These ZIP codes are conceived to be the basis for spe-
cific ligand delivery on intravascular endothelium. Fur-
thermore, it is conceived that these ZIP codes may vary 
in certain diseases, including cancers [142, 143]. They are 
evolving into site-specific targets for drug delivery for 
prevention of metastatic cell deposits and for the treat-
ment of cancers [141, 142].

It appears possible that phosphatidyl serine receptor-
mediated actions as assayed using the ZIP code identifi-
cation may allow detection of differences in the receptor 

density based upon source of the endothelial cells and 
thus differences of EV adherence to those cells. This may 
add to our understanding of why certain veins are more 
likely to anchor circulating malignant cells and/or serve 
as a more effective platform have thrombosis.

Blocking EV function
Creating agents that specifically interfere with the activ-
ity of selectin or their ligands is a major area of pharma-
cologic study [144]. Among already available agents are 
the HMG-CoA reductase inhibitors that reduce expres-
sion of P-selectin so as to reduce anchoring of EVs to the 
venous endothelium [76–81, 145]. Therapy with statin 
agents interferes with platelet microparticle (EV) attach-
ment, seemingly causing a fall in the tissue factor expres-
sion and subsequent thrombin generation [79, 81, 145]. 
This may become a model for therapies in other diseases 
wherein EV play facilitating roles. Another example is a 
novel recombinant homodimer of annexin V, Diannexin, 
which binds to and shields phosphatidylserine thereby 
suppressing phosphatidylserine-mediated leukocyte and 
platelet attachments [146]. It has been used with success 
in animal models for preventing reperfusion injury after 
transplants of lung, muscle, kidney, liver, and islet cell 
transplants, and following myocardial infarct [147–151]. 
Quercetin-3-rutinoside blocks EV-related tissue fac-
tor activation and platelet aggregation. This latter agent 
may become a new class of anticoagulant [56, 105]. These 
same agents may reduce the potential of other EV func-
tions, thus suppressing metastatic cell anchorage and 
tumor-related angiogenesis. Agents that block Tim4 
activity, such as anti-Tim4 antibody, may have future 
roles, as may anti-P-selectin and P-selectin glycoprotein 
ligand -1 antibodies [35].

Conclusions
While some details are known about the roles of circu-
lating EV’s in the complex physiologic and pathophysi-
ologic activities of endothelium there is much yet to be 
examined. It may be instructive to determine if EV from 
different source cells adhere to different organ-sourced 
endothelial cells with different densities and with differ-
ing endothelial cell response. It is unknown whether there 
is a steady state of microparticle attachment to endothe-
lial surfaces in normal circumstances. Are there differ-
ences of any such density of adherence depending upon 
the site of origin of these veins? Is there an accelerated 
adherence of these particles in disease states that effect 
endothelial function and integrity? Is there enough of a 
difference in this density to explain difference in the rates 
of deep vein thrombosis in certain vessels and the place-
ment of malignant masses in certain vessels but not oth-
ers? Whether there are specific receptors that facilitate 
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the incorporation of the EV’s membranous and submem-
branous contents into the interior of the adherent cells is 
another area in need of further study. Can cancer-derived 
EV facilitate the initiation of tumor metastasis cascade 
more efficiently than do intact circulating tumor cells?
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