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Abstract 

Background:  Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order 
Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory 
and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeu-
tics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, 
parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out 
multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, 
organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated 
the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways.

Main body:  This review highlights the application of lipidomics (i) in the characterization of the lipidome of kine-
toplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic 
pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles 
of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the 
mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving 
is presented.

Conclusion:  Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of 
drug action and resistance, and pathogen–host interaction of trypanosomatids, which provides a solid basis for the 
development of better anti-parasitic pharmaceuticals.

Keywords:  Lipids, Mass spectrometry, Kinetoplastid parasite, Drug target, Trypanosoma brucei, Trypanosoma cruzi, 
Leishmania
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Introduction
Trypanosomatids are unicellular protozoan parasites that 
belong to the order of Kinetoplastida. They are charac-
terized by the presence of an unusually dense disc-like 
mitochondrial DNA structure, the kinetoplast, which is 
located at the basis of flagellum’s attachment the site to 
the cell body. Trypanosomatids are the ethiologic agents 
of three major human diseases, sleeping sickness, Chagas 
disease, and leishmaniasis, which are caused by Trypano-
soma brucei, Trypanosoma cruzi, and by various species 
of Leishmania, respectively. Altogether, they affect about 
37 million people every year, mainly in the tropical and 

subtropical area of the world [1]. All three trypanosoma-
tids undergo a complex life cycle alternating between an 
insect vector and a vertebrate host. T. cruzi is transmitted 
via the feces of the triatomine bug (kissing bug) where 
it exists as epimastigotes and differentiates into metacy-
clic trypomastigotes before transmission into the verte-
brate host. In the latter, T. cruzi infects various cell types 
where trypomastigotes differentiate into intracellular 
amastigotes. Similarly, Leishmania parasites develop as 
flagellated promastigotes within the digestive tract of the 
female sandfly, which bites a vertebrate host to transmit 
the parasite while taking a blood meal. Promastigotes are 
phagocytized mainly by macrophages of the vertebrate 
host, where they differentiate into non-motile amas-
tigotes. T. brucei develops mainly as procyclic forms in 
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the tsetse fly insect vector, and multiplies extracellularly 
in the bloodstream of a mammal as bloodstream forms. 
Treatment of these parasitic diseases remains poorly 
effective and is complicated by the growing appearance 
of drug resistant parasites. No effective vaccines exist yet 
against these pathogens and thus, the need to develop 
novel pharmacological agents is highly desired.

Parasites’ lipids have attracted much attention in the 
last two decades for many obvious reasons that support 
the idea that lipid metabolism can be targeted for drug 
design. Lipid production is a necessary prerequisite for 
the rapid multiplication of parasites and for the establish-
ment of infection. Further, lipids fulfill numerous essen-
tial functions in the parasite’s biology. Lipids, as part of 
biological membranes, provide a platform of interac-
tion between the parasite and the host as parasites pen-
etrate or are taken up by host cells. Parasites are typically 
unable to produce their whole assortment of lipids and 
thus, they need to scavenge host’s lipids or host’s lipid 
precursors in order to meet their cellular demand [2–4]. 
Several lipid-based macromolecules function as viru-
lence factors, such as lipophosphoglycan of Leishmania 
and glycosylphosphatidylinositol (GPI)-anchored pro-
teins, which contribute to the establishment of infection 
and modulation or evasion of the host’s immune system 
(reviewed in [5]). Lastly, lipid-based drugs have been 
tested in pre-clinical trials for the treatment of parasitic 
diseases [6].

Lipidomics is the newest “omics” sub-discipline of 
metabolomics that has come to exists since 2003 only, 
and aims to quantify and identify all lipids (lipidome) 
of a cell or of a tissue. It provides snapshots of the lipid 
composition of a cell/tissue under a specific or different 
conditions and allows profiles’ comparison. In addition, 
it enhances the knowledge of lipid function and regula-
tion at the level of individual species, and of specific mol-
ecules on lipid metabolism. Lastly, lipidomics focuses on 
elucidating novel structures of lipids. This review sum-
marizes the applications of lipidomics in the advance-
ment of understanding the biology of T. brucei, T. cruzi, 
and Leishmania parasites in terms of lipid content and 
lipid metabolic pathways. The use of lipidomics in unrav-
elling the mechanisms of action of anti-parasitic drugs 
and of drug resistance is also discussed. Lastly, an outlook 
describes future directions where this field is evolving.

Structures and functions of lipids
Lipids are essential macromolecules that are found in 
high abundance in all organisms. They were originally 
defined as hydrophobic molecules and fulfill various 
functions such as energy storage, physical barriers in 
form of biological membranes, and signaling as regula-
tory molecules. It has become increasingly evident that 

lipids, through their complexities, have arisen as vital fac-
tors controlling numerous cellular processes. Impairment 
of lipid metabolism is the cause of many human diseases 
such as insulin-resistant diabetes, cancer, Alzheimer’s 
disease, atherosclerosis, obesity, steatohepatitis, sterility, 
Barth’s syndrome, heart failure, brain function, hearing 
loss, immune deficiency, and liver disease (reviewed in 
[7–9]).

Lipids are made of a small number of building blocks, 
however, they are immensely diverse and relatively com-
plex. Their synthesis originates from the condensation 
and reduction of only two precursor molecules that 
include a ketoacyl or isoprene unit. They can be classi-
fied into six main lipid categories: glycerophospholipids 
[phosphatidylcholine (PC), phosphatidylethanolamine 
(PE), phosphatidylinositol (PI), phosphatidylserine (PS), 
phosphatidic acid (PA), cardiolipin (CL), phosphatidyl-
glycerol (PG)], glycerolipids (triacylglycerol, diacylglyc-
erol, monoacylglycerol), glycolipids, sterols, sphingolipids 
(SP), and free fatty acids (Fig.  1). Each individual lipid 
species are essential components of a living organism and 
therefore, highlighting the importance of the identifica-
tion and quantification of the lipidome of an organism is 
highly desired.

Application of mass spectrometry in lipidomics
Lipidomics rests primarily on the development of the 
mass spectrometry (MS) technology. MS is usually cou-
pled to a chromatographic method such as gas chro-
matography (GC), which is typically used to separate 
smaller lipids such as free fatty acids or sterols, or liq-
uid chromatography (LC), which is commonly applied 
to fractionate low abundance lipid species. Occasion-
ally, thin layer chromatography is carried out to separate 
different types of lipid species before MS analysis. The 
analysis of the whole lipid sample without prior chro-
matographic fractionation is referred to as shotgun lipi-
domics or direct-infusion lipidomics. The current, most 
common ionization techniques are electrospray ioniza-
tion (ESI; soft ionization), nanoESI, and MALDI-TOF 
(matrix assisted laser desorption/ionization coupled to 
time-of-flight). Further structural elucidation is rou-
tinely achieved by MS–MS, where after analyte’s colli-
sion, characteristic fragments (products ion scan) such 
as polar head groups (or their parts thereof ), fatty acids, 
long chain bases or other fragments are captured. More-
over, neutral losses can be generated. Addition of small 
cations or organic acids to the matrix allows alkaline 
adducts to be analyzed in the positive mode while supple-
mentation of small anions to the matrix permits anionic 
adducts or deprotonated lipid fragments to be examined 
in the negative mode. Typical analyzers are time of flight 
(TOF), quadrupole, the ion trap, and Fourier-transform 
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ion cyclotron resonance (FTICR-MS) analyzer. To distin-
guish isobars, high resolution MS can be achieved using 
orbitrap or Fourier transform-ion cyclotron resonance 
instruments. Lipids can be analyzed individually by the 
so called targeted lipidomics approach. In contrast, the 
untargeted or global lipidomics permits the identification 
of the whole lipidome of a cell or a tissue.

Investigating the lipidome of trypanosomatids
Lipidome of L. donovani insect and vertebrate cell stages
Leishmania donovani is responsible for the lethal, vis-
ceral form of leishmaniasis in the Old World. To gain an 
insight into cell stage-specific changes in parasite’s lipid 
metabolism, Bouazizi-Ben et al. analyzed the lipidome of 
both the promastigotes and amastigotes of L. donovani 
[10]. Free fatty acids and sterols were analyzed by GC–
MS while PL were examined by HPLC–MS. The sali-
ent differences in lipid content between both cell stages 
is the cholesterol/PL ratio, which reflects the twofold 
increase of cholesterol quantities associated with a mod-
est decrease in PL content in the vertebrate form. Nota-
bly, Leishmania does not produce cholesterol and thus, it 
exclusively scavenges it from the host (reviewed in [11]). 

Furthermore, the free fatty acid pool increased twofold in 
amastigotes likely resulting from the hydrolysis of TAG 
and PL. Major PL species in L. donovani and L. infan-
tum promastigotes are PC, PE, followed by PI and very 
low levels of PS, CL, PG, and PA. Amastigotes harbored 
elevated amounts of PS and sphingomyelin (SM) but 
lower quantities of PE and PI compared to promastig-
otes. The latter contained higher amounts of unsaturated 
fatty acids compared to saturated ones with C18 (satu-
rated or unsaturated) being the dominant fatty acid in 
PL, TAG and free fatty acids. Promastigotes synthesized 
proportionally more n-6 than n-3 polyunsaturated fatty 
acids than amastigotes. Amastigotes harbored more satu-
rated and monounsaturated fatty acids in its glycerolip-
ids but decreased amounts of n-6 unsaturated fatty acids, 
regardless of the lipid class, which is similar to the fatty 
acid content of macrophages, indicating that remodeling 
of lipid depends on the activity of fatty acids desaturases 
present in macrophages.

Sterol profiling of L. infantum procyclic (replicating; 
non virulent) and metacyclic (non-dividing; virulent) pro-
mastigotes by GC–MS revealed that it contains choles-
terol, two isomers of ergosterol, ergosta-7,22-dien-3β-ol, 
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Fig. 1  Schematic representation of the six different classes of lipids. a Glycerophospholipid. R1 represents a fatty acyl or alkyl groups. R2 and R3 
depict a fatty acyl group and a polar group, respectively. b Glycerolipid. R1 represents a fatty acid while R2 and R3 can be a fatty acid or a hydroxyl 
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and stigmasta-7,24(28)-dien-3β-ol, and the sterols 
ergostatetraenol, an additional isomer of ergosta-7,22-
dien-3β-ol, zymosterol, and lanosterol [4]. Ergoster-
ols were more abundant in multiplying promastigotes 
than in metacyclic parasites while the opposite situa-
tion applies to cholesterol, ergosta-7,22-dien—I and II 
and stigmasta-7,22-dien. The authors hypothesized that 
dynamic changes in sterol composition during parasite 
development promotes the differentiation of procyclic to 
metacyclic promastigotes (metacyclogenesis).

Identification of new lipid species in L. infantum
Leishmania infantum is responsible for visceral leish-
maniasis in the Mediterranean region. A targeted, high 
resolution lipidomics approach was applied to fully char-
acterize rare, unusual lipids species in L. infantum. This 
technology allowed the identification of the unusual 
dimethyl–PE in this strain of parasite, and the presence 
of rare cyclopropane fatty acyl (CFA) chain containing 
PE and CFA containing plasmalogen PEs [12]. CFAs are 
typically absent in mammalian cells but are widely pre-
sent in bacteria such as Escherichia coli and Mycobacte-
rium tuberculosis (reviewed in [13]). More importantly, 
CFA are only present in L. infantum, L. brasiliensis, and 
L. mexicana and thus, can be used as a diagnostic crite-
ria [14]. The function of CFA in Leishmania is however 
unclear.

Differences in T. brucei procyclic and bloodstream forms’ 
lipidomes
Although the lipid content of T. brucei was characterized 
previously [15], a global lipidomics approach involving 
the shotgun method provided a deeper and more precise 
“map” of the lipidome of both procyclic and bloodstream 
forms of the parasite [16]. The salient differences between 
the procyclic and bloodstream forms are the presence of 
inositolphosphoceramide (IPC), diacyl and ether PI spe-
cies containing shorter fatty acids in procyclic forms, 
while these lipids were absent in the bloodstream form 
[16, 17]. In contrast, SM was found in both cell stages 
but they were more abundant in bloodstream forms. 
While the levels of glycerophospholipids were not dras-
tically altered, difference in the nature of the fatty acids 
was observed; procyclic forms bear more unsaturated 
fatty acids in their PL compared to bloodstream forms. 
Diacyl–PE are enriched in bloodstream forms compared 
to procyclic trypanosomes but PG and PS levels were 
unchanged in both forms of the parasite.

The flagellar membrane of T. brucei contains low amounts 
of PC and PI
Trypanosomatids possess a single flagellum that is 
anchored to the cell body via the flagellar pocket, an 

invagination of the plasma membrane, and is con-
nected to the cell body for most of its length. Due to 
its importance in movement, parasite morphogenesis, 
and pathogenicity, the flagellar structure and composi-
tion attracted interest among parasitologists (reviewed 
in [18, 19]). The flagellar membrane is an extension of 
the flagellar pocket membrane and lays adjacent to the 
plasma membrane. Reverse phase liquid chromatogra-
phy MS–MS (RPLC–MS–MS) analysis of the lipidome 
of the flagellar membrane fraction revealed that it con-
tained higher amounts of PE, PS, ceramide, IPC, SM, 
and ether glycerolipids [20]. In contrast, the flagellar 
membrane barely contained any PC and PI compared to 
the whole cell content.

Glycosomal PC content and the role of glycosomal division 
proteins GIM5A/B in lipid metabolism
Glycosomes are evolutionary peroxisomes-related orga-
nelles [21]. They harbor among others the first seven 
glycolytic enzymes, the purine salvage pathways, and 
several ether lipid biosynthetic enzymes (reviewed in 
[22, 23]). Glycosomes are organelles unique to trypano-
somatid parasites and thus, they have become the focus 
of many investigations, including “omics” approaches. 
One puzzling topic of inquiry is how molecules are 
transported across the peroxisomal membrane. In order 
to answer this question, glycosomal PC species of highly 
purified glycosomes were analyzed by targeted lipid-
omics using the shotgun technique [24]. No major dif-
ferences were detected between the PC composition 
of glycosomes and whole cell extracts isolated from 
both procyclic and bloodstream forms of T. brucei. The 
authors concluded that the permeability of the glyco-
somal membrane is similar to that of other membranes 
of the cell, including the impermeability towards polar 
molecules.

As glycosomes harbor ether lipid biosynthetic enzymes 
(reviewed in [22, 23]), the role of glycosomal division 
proteins GIM5A and GIM5B in parasite physiology and 
lipid metabolism were investigated [25]. Deletion of the 
GIM5A gene did not affect the growth of bloodstream 
forms, but depletion of GIM5B in a Δgim5a null back-
ground was lethal. GIM5A was dispensable for procyclic 
trypanosomes survival even when GIM5B was down-
regulated. GIM5A/GIM5B depleted cells possessed fewer 
glycosomes than the wild type and were hypersensitive 
to osmotic stress. The mutant cells’ PC and PE species, 
which account for over 70% of all phospholipids found 
in T. brucei [15] were analyzed by HPLC–MS. GIM5A 
deletion alone (Δgim5a) induced 40–70% reduction 
in ether PE and ether PC contents [25]. However, the 
mechanism(s) by which GIM5A affects ether lipid bio-
synthesis is unknown.
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Structure determination and biosynthesis 
of GPI‑anchors
GPI-anchors are glycolipids that tether proteins to the 
biological membrane in eukaryotic cells. Many GPI-
anchored proteins in trypanosomatids are involved in 
virulence or host immune evasion [5]. A targeted lipi-
domics approach involving the direct infusion of the 
sample allowed the elucidation of the structure of the 
GPI-anchor in T. congolense, which causes nagana, a 
disease of cattle [26]. These studies demonstrated that 
GPI-anchors of procyclic forms are a heterogenous fam-
ily of PI species, carrying one acyl or two acyl linked to 
the glycerol moiety, or three acyl groups where two are 
attached to glycerol and the third one to inositol. Some 
of these species are myristoylated at the sn-2 position. In 
term of biosynthesis, GPI-anchored glycoconjugates ini-
tially receive tri-acylated GPI-precursors, which are sub-
sequently de-acylated either at the glycerol backbone or 
on the inositol ring. However, the GPI-anchor structure 
of T. congolense procyclic forms’ GARP (glutamic acid 
and alanine rich protein) was determined by MS and was 
found to be homogenous, consisting of an acylated ino-
sitol and a diacyl–PI, where the sn-2 position of the glyc-
erol backbone is occupied either by a myristic or oleic 
acid [27]. It seems that in this strain of Trypanosomes, 
GPI-anchor structures are proteins specific.

Targeted lipidomics using the shotgun method was 
attempted to confirm the structure of the glycoforms 
of variant surface glycoprotein (VSG), which covers the 
plasma membrane of T. brucei bloodstream trypano-
somes and is involved in host’s immune evasion [28–31]. 
However, this technique failed to provide structural 
information about the branching pattern of and types 
of covalent bonds within the various GPI glycoforms of 
VSG.

The cell surface of T. cruzi is covered with mucin-
like sialic acid acceptors that are GPI-anchored into the 
plasma membrane (reviewed in [32]). These molecules 
are essential for host cell invasion by metacyclic try-
pomastigotes [33, 34]. Targeted MS analysis of these 
mucins from non-infective epimastigotes and metacyclic 
trypomastigotes established that the lipid moiety of the 
GPI-anchor of epimastigotes consists of a 1-O-hexade-
cyl-2-O-hexadecanoyl-PI while metacyclic trypomastig-
otes harbor IPC with C24:0 and C16:0 fatty acids as lipid 
anchor instead [35]. These cell stage-dependent differ-
ences in the structure of lipid anchors may account for 
the inability of epimastigotes to infect mammalian cells.

Global lipidomics applying the shotgun procedure was 
instrumental in identifying the defect in GPI-anchor bio-
synthesis in mutant cell lines lacking the TbGPI12 gene 
in procyclic trypanosomes [17]. Such mutant strain accu-
mulated GlcNAc-PI species with C18 long fatty acids, 

demonstrating that the TbGPI12 enzyme catalyzes the 
second step in GPI-anchor biosynthesis by acting as a 
Glc-NAc-PI de-N-acetylase [17].

Variations in sphingolipid metabolism 
in trypanosomatids
Sphingolipid metabolism in Leishmania is dispensable 
for viability but is essential for ethanolamine production
Similar to yeast, Leishmania promastigotes and amastig-
otes synthesize IPC [36–40]. These sphingolipid species 
are absent in the vertebrate host and thus, the impor-
tance of these lipids in parasite’s biology attracted sig-
nificant interest. Rightfully so, IPCs were found to be 
important for vesicular trafficking, differentiation from 
avirulent to virulent promastigotes during the stationary 
phase of growth (metacyclogenesis), acidocalcisome bio-
genesis, and in in  vivo virulence [38–41]. The structure 
of Leishmania IPCs were thus extensively analyzed by 
targeted lipidomics. It was found that the predominant 
ceramide carries the 16:1 base and the lesser component 
bears the 16:0 base but both contain the N-stearoyl group 
[39, 42, 43].

Based on global MS analysis of the lipidome of the 
promastigote mutants sphingosine 1-phosphate lyase 
spl−/− and serine palmitoyltransferase spt2−/−, both 
strains produced IPC and ceramide but harbored 
decreased levels of PE and PC [38, 41]. These analyses 
also revealed that stationary parasites produced larger 
amounts of plasmalogen PE, which are likely important 
for metacyclogenesis [41]. Analysis of the lipidome of 
spt2−/− mutant amastigotes established that they still 
synthesized IPC, very likely by head group remodeling of 
complex sphingolipids [38], a mechanism that is absent 
in humans. In contrast to other eukaryotes, sphingolipids 
are dispensable to Leishmania viability but catabolism of 
SL has instead evolved to be the major route for ethanola-
mine biosynthesis, and thus, Leishmania is ethanolamine 
prototroph [41, 44]. Mutant lacking the ISCL (inositol 
phosphosphingolipid phospholipase C-Like) gene pro-
duced IPC, plasmenylethanolamine and ceramide, as per 
ESI–MS analysis of its lipidome, but failed to form lesion 
in mice, suggesting that the parasite relies on degradation 
of host SM or SL for infectivity as the parasite lacks the 
capability to produce SM [3].

Differential expression of sphingolipids in T. brucei
T. brucei synthesizes all three types of sphingolipids but in 
a cell stage dependent fashion
Trypanosoma brucei is unique among eukaryotes in 
that it synthesizes all three types of sphingolipids, IPC, 
SM, and ethanolaminephosphoceramide (EPC; [16, 45]). 
However, they are differentially expressed; procyclic 
trypanosomes contain IPC and SM, while bloodstream 
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stage parasites produce EPC in addition to SM but no 
detectable IPC [45]. Expression of TbSLS4 in Leishmania 
followed by analysis of the lipidome of the transgenic line 
by the shotgun approach resulted in production of both 
SM and EPC, demonstrating that TbSLS4 exhibits bi-
functional synthase activity. RNAi silencing of TbSLS1-
4 in bloodstream trypanosomes led to abrupt growth 
arrest followed by cell death and accumulation of cera-
mide, suggesting that this important signaling molecule 
mediated a toxic downstream effect [45].

LC–MS analysis of the products of the putative bifunc-
tional sphingolipid D4-desaturase/C4-hydroxylases of 
T. brucei, L. major, and T. cruzi demonstrated that these 
enzymes are capable of desaturation or hydroxylation of 
sphingoid bases [46]. The detection of such structures 
in whole cell extracts of T. cruzi epimastigotes, L. major 
promastigotes, and T. brucei procyclic and bloodstream 
forms are consistent with the presence of such enzymes 
in these organisms.

Delineation of glycerophospholipid biosynthetic 
pathways by lipidomics
PE is made exclusively via the de novo pathway and is 
essential for the viability of T. brucei bloodstream forms
Labeling of cells with D4-ethanolamine followed by shot-
gun lipidomics lead to the incorporation of this precur-
sor in PE species only and no labeling was found in PC, 
demonstrating the absence of cross talk between the 
PE and PC de novo pathways [16]. This situation is very 
unusual as mammalian cells and other parasites express 
PE methyltransferases that convert PE into PC while 
plants and P. falciparum possess a phosphoethanolamine 
methyltransferase [47–49]. The absence of PE and phos-
phoethanolamine methyltransferase genes in T. brucei 
genome is consistent with this biochemical result. Fur-
ther, D3-serine incorporated only in PS and not in PE, 
demonstrating that PS decarboxylation does not occur 
in T. brucei and that PE is exclusively made via the Ken-
nedy pathway [16, 50]. However, T. brucei possesses a 
PS decarboxylase, TbPSD, but its function is not in the 
decarboxylation of PS [51].

The cytosolic ethanolaminephosphate cytidylyltrans-
ferase TbECT catalyzes the formation of CDP-ethan-
olamine from ethanolaminephosphate, in a CTP and 
magnesium dependent fashion [50]. In  vivo metabolic 
labelling of TbECT depleted cells followed by analysis 
of total cellular phospholipids using the shotgun tech-
nique showed a significant decrease in PE species, which 
was compensated by increased levels of PC and PA [50, 
52–54]. These mutant cells were also defective in GPI-
anchor biosynthesis, failed to grow, were morphologi-
cally altered, and had impaired mitochondrial structure 
and function, demonstrating the importance of PE in 

parasite’s physiology [50]. Another particularity of T. 
brucei is that ether PE and diacyl–PE are produced by 
distinct enzymes, the ethanolamine-specific phospho-
transferase TbEPT and the choline/ethanolamine phos-
photransferase TbCEPT, respectively [55].

T. brucei utilizes distinct pools of inositol for PI 
and GPI‑anchor biosynthesis
PI biosynthesis in T. brucei can initiate from uptake of 
extracellular myo-inositol or from de novo produced 
inositol from glucose-6-phosphate [56, 57]. Notably, 
trypanosomes use distinct sources of myo-inositol for 
bulk PI and GPI-anchor production. Analysis of total cel-
lular lipids of Golgi myo-inositol transporter TbHMIT 
mutant using the shotgun technique showed that TbH-
MIT contributes to bulk PI production but not to GPI-
anchor biosynthesis [58]. Conversely, TbINO1, which 
converts glucose-6-phosphate into myo-inositol, pro-
vides the polar head for PI biosynthesis towards prefer-
entially GPI-anchor biosynthesis rather than for bulk PI 
[57]. Inositol is subsequently condensed to DAG to form 
PI, which occurs via the action of the PI synthase TbPIS 
localized in two organelles, the endoplasmic reticulum, 
where GPI-anchor biosynthesis occurs, and the Golgi 
apparatus, where bulk PI are produced [59]. TbPIS is an 
essential gene for bloodstream trypanosomes. In  vivo 
labelling of the TbPIS conditional knockout cells followed 
by quantitative and qualitative analysis of its whole lipi-
dome by GLC–MS showed a significant decrease (70%) 
in all species of PI and a reduction in GPI-anchor levels 
as PI serves as a precursor for GPI-anchor biosynthesis.

Defining the function of other glycerophospholipid 
metabolism enzymes by comparative lipidomics
Lipidomics was widely applied to address the role of lipid 
biosynthetic enzymes in glycerophospholipid metabo-
lism. For example, L. major alkyl dihydroxyacetonephos-
phate synthase LmADS and dihydroxyacetonephosphate 
acyltransferase LmDAT were found to be essential for the 
production of all ether glycerolipids as assessed by untar-
geted lipidomics, respectively [60, 61]. Untargeted lipid-
omics analysis using the shotgun method was employed 
to identify the substrate specificity of L. major PE meth-
yltransferases LmjPEM1 and LmjPEM2 following het-
erologous expression in yeast lacking their respective, 
endogenous enzymes [49]. These analyses established 
that LmjPEM1 added the first and second methyl group 
to PE, while LmjPEM2 catalyzed all three methylation 
steps, although the addition of the first methyl group 
occurred very inefficiently. T. brucei possesses two ini-
tial acyltransferases, the glycerol-3-phosphate acyltrans-
ferase TbGAT, which is dispensable for glycerolipid 
biosynthesis and growth of procyclic forms, and the 
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dihydroxyacetonephosphate acyltransferase TbDAT, 
which is essential for ether lipid production [62, 63]. The 
role of T. brucei TbPLA1 in PC metabolism was investi-
gated by global lipidomics investigation [64]. The TbPLA1 
null mutant was viable, and procyclic and bloodstream 
forms of the parasite were deficient in lysoPC synthesis. 
These studies established that TbPLA1 enzyme functions 
in  vivo in lysoPC production, containing mainly long-
chain, polyunsaturated fatty acids.

Mitochondrial fatty acid synthase II system is 
essential to T. brucei
Trypanosoma brucei has the ability to scavenge free fatty 
acids as well as to synthesize them using a mitochondrial 
type II fatty acid synthase for octanoate (a lipoic acid pre-
cursor) and longer fatty acids such as palmitate, and a 
microsomal elongase system (reviewed in [65]). In procy-
clic trypanosomes, RNAi depletion of the mitochondrial 
acyl carrier protein, a key component of the fatty acid 
synthesis complex, significantly reduced cytochrome-
mediated respiration by inhibiting complexes II, III and 
IV, but not complex I of the electron transport chain [66]. 
A change in mitochondrial membrane composition may 
explain the altered mitochondrial morphology and mem-
brane potential in the mutant. In fact, GC–MS analyses 
revealed a decrease in total cellular and mitochondrial PI, 
and mitochondrial PE quantities. The authors concluded 
that the mitochondrial fatty acid synthase system pro-
duces fatty acids needed for the generation of organellar 
glycerophospholipids, which are necessary for the activ-
ity of the electron transport chain and for the preserva-
tion of mitochondrial morphology and function.

Biosynthesis of TAG in T. brucei is stimulated 
by exogenous fatty acid oleate
It has been proposed that TAG is important for the 
development of procyclic trypanosomes in the tsetse fly 
[67]. Thus, targeted lipidomics analysis was carried out 
to qualitatively identify the TAG species in T. brucei and 
their regulation in the presence or absence of oleate [67]. 
Oleate was found to stimulate the biosynthesis of the 
storage lipid TAG.

T. cruzi scavenges host cholesterol and synthesizes 
cholesterol esters in reservosomes
Trypanosoma cruzi lacks the ability to synthesize cho-
lesterol but produces instead ergosterol (reviewed in 
[11]). Thus, epimastigotes usurped cholesterol from the 
host and stored large quantities in form of cholesterol 
esters in dedicated lipid inclusions called reservosomes 
as revealed by targeted lipidomics by GC–MS analysis of 
a reservosome rich fraction [2]. Cholesterol esters were 
synthesized by the parasite itself and served as energy 

source for parasite differentiation. Upon exogenous lipid 
starvation, reservosomes’ free cholesterol was consumed, 
which was compensated by a rise in ergosterol biosynthe-
sis. This study illustrates the importance of host choles-
terol in T. cruzi development.

Lipidomics and mechanism of drug action
Miltefosine affects PL biosynthesis in Leishmania
Lipidomics approaches have been instrumental in eluci-
dating the mechanism of action of anti-microbial drugs. 
Several lipid based drugs were shown to inhibit the 
growth of trypanosomatids [68]. Miltefosine, a choline 
analog, which was originally used as an anti-cancer drug, 
has recently been proven to be effective against leish-
maniasis in clinical trials (reviewed in [6]). However, its 
mechanism of action is unclear. Based on its structure, 
it is predicted to affect lipid metabolism. Global lipid-
omics using LC–MS technology helped to establish the 
lipid profiles of miltefosine treated and resistant L. dono-
vani strains. Short exposure to miltefosine lead to an 
overall induction in PL biosynthesis, particularly in PI, 
PE, and lysoPC (likely due to phospholipase A2 activa-
tion; [69–71]). However, miltefosine treatment lowered 
PC amounts [71, 72]. Surprisingly, drug resistant clones 
failed to manifest such drastic changes in PL profiles, 
demonstrating that the molecular basis of miltefosine 
resistance lays in distinct biological processes not related 
to lipid biosynthesis. Indeed, miltefosine resistant clini-
cal isolates were defective in miltefosine uptake and carry 
mutation in the LiMT gene, which encodes a putative 
plasma membrane transporter [73].

Antimony disturbs fatty acid synthesis
Pentavalent antimonials were the first line of anti-
leishmanial drugs and drug resistance is quite common 
(reviewed in [74, 75]). The consequence of antimony 
exposure of L. donovani on lipid content lead to an 
increase in very long fatty acids and ergosterol levels 
based on GC–MS evaluation [76]. Fatty acid profiles of 
antimony resistant L. chagasi and L. amazonensis isolates 
showed that monosaturated C18:1Δ9c were increased in 
sensitive isolates while fatty acid 20:4Δ5,8,11,14 showed 
the opposite trend [77]. The authors proposed that these 
two fatty acids can be used as diagnostic markers for 
antimony resistance. Based on global lipidomics using 
LC–MS, antimonial resistance was also associated with 
altered lipid metabolism, suggesting that membrane com-
position of drug resistant parasites is extensively modi-
fied [78]. While the total lipid content was unchanged 
in both drug resistant and sensitive strains, unsatu-
rated diacyl–PC and diacyl–PE levels were increased 
in drug resistant clones compared to those of sensitive 
ones, suggesting that desaturases may be induced by the 
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drug. Lastly, antimony resistant clones produced minute 
amounts of sphingolipids, indicating that sphingolipid 
biosynthesis is affected in these parasites.

OXPA blocks sphingolipid lipid biosynthesis
Global lipidomics was carried out by LC–MS to deci-
pher the mechanism of action of 3-(oxalo[4,5-b]pyridine-
2-yl)anolide (OXPA), a potent, novel anti-trypanosomal 
compound, which was optimized by structure–activity 
relationship investigation of a lead compound, previ-
ously identified from a drug library screening [79]. OXPA 
lead to the accumulation of ceramides, establishing that 
OXPA affects primarily sphingolipid metabolism [80]. 
Antibiotic myriocin, a serine palmitoyltransferase inhibi-
tor, blocked cytokinesis and significantly decreased IPC 
biosynthesis in L. brasiliensis based on global lipidomics 
analysis [81]. From these studies, it can be deduced that 
sphingolipid metabolism offers a reasonable target for 
chemotherapeutic intervention.

Sterol metabolism as target for chemotherapeutic 
compounds
Trypanosomatids are unable to synthesize cholesterol 
but instead produce ergosterol (reviewed in [11]). Imi-
pramine, a widely used anti-depressant, exhibits anti-
microbial effect against both cell stages, promastigotes 
and amastigotes, and inhibits sterol biosynthesis based 
on GC–MS analysis [82]. The effect of a natural chalcone, 
2′6′-dihydroxymethoxylated chalcone, on lipid metabo-
lism of L. amazonensis was investigated by global lipi-
domics analysis by GC–MS [83]. Exposure to this drug 
lead to accumulation of sterol precursors as well as to a 
reduction of C-14 demethylated and C-24 alkylated ster-
ols, and decreased uptake of exogenous cholesterol.

Sterol analogs are potent anti-parasitic drugs that kill T. 
brucei and T. cruzi [84–86]. The compound 26-fluorola-
nosterol (26FL) inhibited ergosterol biosynthesis by 
blocking the target enzyme sterol C24-methyltransferase 
as per GC–MS analysis of their neutral lipids’ fraction 
[84]. Ketoconazole, 20 piperidin-2-yl-5α-pregnan-3β-20-
R-diol (22,26-azasterol), and 24-(R,S),25-epiminolanos-
terol are FDA approved pharmaceuticals that are typically 
used against fungi. Ketoconazole inhibits the C24alpha 
demethylase, while 22,26-azasterol and 24-(R,S),25-epi-
minolanosterol block the δ24(25)—sterol methyl trans-
ferase of T. cruzi amastigotes. GC–MS analyses of total 
cellular lipids revealed that amastigotes contain primarily 
cholesterol (up to 80% of total cellular sterols) as well as 
24-methyl-cholesta-7-en-3β-ol (ergosta-7-3β-ol) and its 
24-ethyl analog, and smaller amounts of the precursor 
ergosta-7,24(28)dien-3β-ol [85]. Treatment of amastig-
otes with 22,26-azasterol or 24-(R,S),25-epiminolanos-
terol caused accumulation of C27 sterols. Ketoconazole 

drastically depleted the cellular content of 4-desmethyl 
sterol and concomitantly increased the 24-methyl-dihy-
drolanosterol and 24-methylen-dihydrolanosterol levels. 
Bisphosphonate risedronate (Ris), which is a drug cur-
rently used for the treatment of bone resorption disor-
der, displayed broader anti-parasitic activity [87, 88]. 
This compound specifically inhibits the farnesyl pyroph-
osphate synthase and thus, affects poly-isoprenoid 
metabolism [87]. GLC–MS analysis of T. cruzi’s lipidome 
revealed that the drug lessened endogenous sterols lev-
els [86]. In addition, Ris manifested various pleiotropic 
effects such as mitochondrium swelling, disorganization 
of reservosomes and of the kinetoplast, vacuolization of 
the cytosol, premature induction of autophagy, and pre-
vention of amastigote to trypomastigote differentiation. 
All together, these results support the idea that ergosterol 
metabolism is a suitable target for chemotherapeutic 
intervention in trypanosomatids.

Lipidomics of T. cruzi’s host interaction
More recently, increased attention has been given to the 
role of lipids in pathogen–host interaction as well as in 
modulation of the host immune response by pathogens. 
In higher eukaryotes, lipid bodies, also termed lipid drop-
lets or lipidic inclusions, are formed in response to host–
pathogen interaction during the infection process and 
are the site of arachidonic acid’s conversion into inflam-
matory eicosanoids (reviewed in [89–91]). Lipid bodies 
are bounded by a single leaflet of phospholipids and are 
assembled in T. cruzi trypomastigotes after both host 
interaction and exogenous arachidonic acid stimulation. 
Shotgun lipidomics of lipid bodies of T. cruzi trypomas-
tigotes revealed increased arachidonic acid quantities in 
these subcellular structures upon arachidonic acid stimu-
lation [92]. Arachidonic acid-stimulated trypomastigotes 
released high amounts of prostaglandin E2, which results 
from arachidonic acid breakdown and acts as a potent 
immune modulatory lipid mediator that inhibits many 
aspects of innate and adaptive immunity. These studies 
established lipid bodies as key players in pathogen sur-
vival, virulence, inflammation, and interaction with the 
host.

Thromboxane A2 is the most effective vasoconstrictor 
as well as a proinflammatory agent that induces cytokine 
production by monocytes [93]. T. cruzi‘s pathological 
symptoms of the heart and blood vessels are similar to 
those caused by thromboxane A2 thus, the role of this 
eicosanoid in parasite’s pathogenesis was investigated 
[94]. Total lipid analysis by LC–MS of epimastigotes 
and of the blood of infected mice revealed the presence 
of thromboxane A2 and B2, the latter being the hydro-
lytic product of thromboxane A2. Thromboxane A2 is the 
predominant eiconasoid produced and released by all life 
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stages of T. cruzi and accounts for up to 90% of the blood 
level in infected wild-type mice [94]. This study estab-
lished that parasite’s thromboxane A2 affects the host 
immune response and determines the disease’s outcome.

Conclusions
Lipidomics approaches have broadened our knowledge 
of the lipidome of trypanosomatids, which can be used 
as a reference for transgenic lines as well as biomarkers 
for detection of infection in diagnosis. This technique 
has enabled the identification of parasite’s specific lipid 
species and lipid biosynthetic pathways. However, the 
sensitivity of MS instrumentation can be improved to 
identify and quantify minute amounts of rare lipid spe-
cies. Additionally, structure determination of stereoi-
somers and of unknown lipids still remain a challenge. 
Researchers in the field of trypanosomatids would also 
benefit from a parasite specific lipid database, such as 
LIPID MAPS for mammalian cells, which is missing. 
While the development of lipidomics has helped to 
shed light on the mechanism of action of several anti-
parasitic drugs, the roles of parasite’s lipids in modulat-
ing the host’s immune system is still in its infancy. Only 
a few studies have be carried out with T. cruzi [92–94]; 
nothing is known about how T. brucei and Leishmania 
species influence the host’s lipidome, which can open 
some novel avenues for chemotherapeutic interven-
tions. Altogether, the current knowledge resulting from 
lipidomics’ studies have so far led to the discovery of 
several kinetoplastid’s specific essential enzymes or 
metabolic pathways which can be exploited for phar-
macological applications. The next phase consists in the 
identification or design of effective anti-microbial com-
pounds, which specifically inhibit essential, parasites 
specific enzymes without negatively interfering with 
the host’s physiology. Several drug libraries are readily 
available for screening which will allow the selection 
of lead compounds. Alternatively, the input of compu-
tational biology in predicting or modelling of essential 
enzyme’s structure can facilitate the design of phar-
macological drugs. These converging efforts will aid in 
the eradication of the debilitating diseases caused by 
trypanosomatids.
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