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Abstract 

Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell 
metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, 
which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and 
other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar 
metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells 
are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relation-
ship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, 
the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the 
key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differenti-
ation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique 
metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during anti-
gen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy.
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Cancer cell metabolism and implications on T cell 
function in the tumor microenvironment
Since the early days of cancer biology research, it was 
determined that cancer cells acquire novel metabolic 
properties [1]. In a seminal discovery in 1923, Otto 
Warburg identified that cancer cells are characterized 
by an irreversible transition of their energy-producing 
machinery from mitochondrial respiration, where oxida-
tive phosphorylation (OXPHOS) occurs, to glycolysis, a 
biochemical process that occurs in the cytoplasm with-
out oxygen requirement, which can occur under aerobic 
and hypoxic conditions. Glycolysis results in the produc-
tion of ATP and lactate and is the preferred metabolic 
program of cancer cells even in presence of sufficient 
amounts of oxygen that could support OXPHOS. How-
ever, it was later appreciated that tumor cells also utilize 

OXPHOS [2–5] and that depletion of mitochondrial 
function mainly compromises the stemness features of 
cancer [6]. The very small percentage of this OXPHOS-
dependent fraction of cancer cells within the predomi-
nantly glycolytic cell population in tumors was the reason 
for which the role of OXPHOS in cancer remained unno-
ticed and neglected.

In addition to being the predominant metabolic pro-
gram of growing cancer cells, aerobic glycolysis is also 
operative during physiological states in the life of T cells. 
Naïve T cells utilize OXPHOS for energy generation, but 
upon activation via the T cell receptor (TCR), switch 
their metabolic program to glycolysis. Although energeti-
cally less efficient due to the production of lower number 
of ATP molecules per molecule of glucose compared to 
OXPHOS, glycolysis is required to support T cell effec-
tor differentiation and function [7, 8]. Various experi-
mental findings support the hypothesis that glycolysis 
has a selective advantage over oxidative phosphorylation 
during T cell activation. Glycolysis has higher ATP gen-
eration rate, can function under hypoxic and/or acidic 
conditions, and provides higher biosynthetic benefit and 
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better maintenance of redox balance than OXPHOS [9]. 
These properties of glycolysis are also beneficial for can-
cer cells [10]. However, an important difference between 
glycolysis in activated T cells and cancer cells is that, in 
cancer cells, this metabolic program is a consequence of 
cellular dysregulation due to oncogenic mutations, while 
in T cells glycolysis represents a physiologically regu-
lated metabolic adaptation [9, 11]. During exposure to 
activating external queues such as antigen, costimulatory 
signals, and cytokines, T cells also upregulate inhibitory 
receptors, which oppose the effects of activation signals 
and provide regulation of immune homeostasis and pre-
vention of autoimmunity. Importantly, tumors evade the 
immune system by expressing specific ligands for these 
inhibitory receptors, prototyped by PD-1, thus causing 
and maintaining T cell immunosuppression [12, 13]. Via 
T cell intrinsic mechanisms, these inhibitory receptors 
directly oppose the physiologic metabolic reprogram-
ming that occurs during T cell activation [14, 15].

A key mechanism by which cancer alters the functional 
fate of T cells is related to altered nutrient availability and 
metabolic state in the tumor microenvironment. Specifi-
cally, cancer cells develop glucose addiction and depend 
on glycolysis as their main metabolic program and thus 
acquire a high rate of glucose intake. As a consequence, 
T cells in the tumor microenrvironment undergo glucose 
deprivation due to high competition for glucose intake by 
cancer and activated T cells [16, 17]. In T lymphocytes, 
glucose uptake and catabolism is not simply a metabolic 
process for nutrient utilization and energy generation. 
Glycolysis has a key role on the T cell fate upon antigen-
encounter and is mandatory for the differentiation of the 
naïve T cells into antigen-specific T effectors (TEFF) [7, 
18, 19]. Thus, by creating a microenvironmental condi-
tion of glucose starvation for T cells, cancer inhibits the 
differentiation and expansion of tumor-specific T cells 
exposed to tumor associated antigens (TAA) that ren-
ders them unable to develop into tumor-specific TEFF 
cells [17]. Instead, these metabolic conditions, promote 
differentiation of T cells into Treg [18]. In addition to 
glucose, an equally important metabolite required for T 
cell differentiation and function is glutamine. Sufficient 
supply of glutamine and its utilization by T cells has an 
indispensable role for the development of TEFF cell fitness 
[20, 21]. Several cancers develop enhanced glutamine 
metabolism as a consequence of cell intrinsic carcino-
genic events including mutations and altered signaling 
pathways thereby becoming glutamine addicted [22]. As 
a consequence tumor-specific T cells residing in the can-
cer microenvironment are subjected to glutamine depri-
vation in addition to glucose competition.

Cancer cells not only compete for availability of 
key nutrients required for T cell activation, TEFF 

differentiation and adaptation of anti-tumor fitness, but 
also produce metabolic products, which are harmful for 
T cells [23]. To this end, it is important to understand the 
unique metabolic features of cancer and their implica-
tions in the tumor microenvironment and subsequently 
to resident T cells. Mechanistic understanding of these 
metabolic balances will provide the means to develop 
novel strategies for therapeutic targeting in order to har-
ness the maximum anti-tumor potential of the adaptive 
immune system. A stepwise description of these cancer-
specific metabolic modulations is outlined in the follow-
ing sections.

Metabolic features of cancer cells: glycolysis 
and Warburg effect, metabolic flexibility, metabolic 
flux
Adaptation to glycolysis and the Warburg effect
During oncogenesis, cancer cells acquire several features, 
which discriminate them from their nonmalignant coun-
terparts. One of these features is a change in the cellular 
metabolic program [10]. Cancer cells undergo metabolic 
adaptation and thereby gain selective survival and growth 
advantage (Fig.  1). Under physiological conditions most 
nonmalignant cells rely on OXPHOS as a primary meta-
bolic pathway to generate energy in the form of adeno-
sine triphosphate (ATP). Cancer cells, however, switch to 
glycolysis as primary energy source even in the presence 
of sufficient amounts of oxygen to support OXPHOS, a 
phenomenon known as the “Warburg effect” [24]. Nev-
ertheless, it should be pointed out that cancer cells have a 
significant degree of metabolic flexibility and rely on fatty 
acid β-oxidation (FAO) and OXPHOS for their needs, 
but these metabolic pathways are not primary sources 
of ATP. OXPHOS utilizes glucose-derived pyruvate pro-
duced through glycolysis, and oxygen in the mitochon-
dria to generate ATP, CO2, and H2O. Aerobic glycolysis, 
in contrast, generates ATP and lactate in the cytosol from 
glucose-derived pyruvate. Although aerobic glycolysis 
per se is less efficient in terms of ATP generation (glyco-
lysis produces 2 mol of ATP per mole of glucose, whereas 
mitochondrial respiration generates 36  mol of ATP per 
mole of glucose [25]), cancer cells circumvent this draw-
back by increasing the rate of glycolysis. Moreover, they 
benefit from other aspects of metabolism induced by 
aerobic glycolysis, such as elevated amounts of biosyn-
thetic precursors and increased reducing potential, in 
the form of NADH that is generated from the glycolytic 
pathway and in the form of NADPH that is generated 
from the pentose phosphate pathway (PPP), to which gly-
colytic mediators are shunted. Thus, the Warburg effect 
influences not only anabolic pathways leading to selec-
tive growth advantage of cancer cells but also supports 
redox balance and generation of biosynthetic precursors. 
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Because glycolysis can operate either in the presence 
or in the absence of oxygen, adaptation of the Warburg 
effect ensures that cancer cells can use the same meta-
bolic program, i.e. glycolytic, under aerobic as well as 
anaerobic/hypoxic conditions, which confers metabolic 
stability of cancer cells.

The molecular drivers causing the switch of cancer 
cell metabolism to aerobic glycolysis are diverse and are 
likely to act synergistically. Extensive studies have pro-
vided evidence that a series of sequential and independ-
ent mutations are required to develop the full potential 
of the Warburg effect [10, 24, 26]. Certain signaling path-
ways involved by such mutations or gene amplifications, 

outlined below, have key roles in regulating mechanisms 
that lead to the adaptation of the Warburg effect as the 
metabolic hallmark of cancer cells.

PI3K‑Akt‑mTOR‑FOXO
The phosphoinositide 3-kinase (PI3K) pathway is one of 
the most frequently altered signaling pathways in human 
cancers. Under physiological conditions the PI3Ks are a 
family of proteins involved in the regulation of cell sur-
vival, growth, metabolism, and glucose homeostasis [27]. 
This pathway is activated by mutations in tumor sup-
pressor genes, such as phosphatase and tensin homolog 
(PTEN), mutations in the components of the PI3K 

Fig. 1  Molecular alterations cause metabolic switching in cancer cells and severe metabolic changes in the tumor microenvironment. a Non malig-
nant (quiescent) cells rely on OXPHOS as primary ATP source under normoxic conditions. FAO also contributes to the cellular ATP pool. Without 
extrinsic stimuli the PI3K-Akt1 pathway is inactive. Downstream targets are also blocked, e.g. HK, PFK2, FOXO, HIF1α, mTOR, and NRF2. In addition, 
AMPK keeps HIF1α and mTOR in check. p53 participates in the repression of glycolysis by expression of TIGAR, PTEN, and SCO2. Myc as well as 
PGC1α are not active in quiescent cells and do not contribute to glycolysis. In order to sustain cellular homeostasis cells have a low energy demand 
and low biosynthetic activity. b Cancer cells acquire a series of mutations that foster glycolysis in several ways. Oncogenic PI3K-Akt1 signaling and 
inhibited AMPK signaling promote activation of pro-glycolytic events. These include activation of glycolytic enzymes namely HK and PFK2 and 
activation of transcription factors such as FOXO and in combination with hypoxia- HIF1α, which in turn induce the expression of glucose trans-
porters glut1 and glut4 and other glycolytic enzymes. Moreover, mTOR signaling is elevated which causes an increase in biosynthetic precursors. 
PI3K-Akt1-activated NRF2 induces expression of glycolytic genes as well as NADPH and anti-oxidants. PGC1α can also contribute to the cellular anti-
oxidant pool. Mutation or deletion of p53 causes loss of glycolytic inhibitors like TIGAR, PTEN, and SCO2. Oncogenic Myc induces the expression of 
glycolytic genes, glucose and glutamine transporters. Additionally, Myc enhances the amount of biosynthetic precursors by expression of GLS and 
the amount of cellular NAPDH and anti-oxidants via PKM2. Expression of IDO mediates the degradation of tryptophan to N-formylkynurenin, the 
first step of tryptophan catabolism in the kynurenin pathway. These mutations elevate nucleotide, amino acid, and lipid biosynthesis paired with 
enhanced catabolic pathways to enable cancer cells to proliferate rapidly
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complex, or by elevated signaling from receptor tyros-
ine kinases [28]. Upon activation, the PI3K pathway 
not only provides strong growth and survival signals to 
tumor cells but also has strong effects on their metabo-
lism. The best-studied effector downstream of PI3K is 
the RAC-alpha serine/threonine-protein kinase (AKT1). 
AKT1 is a critical driver of the tumor glycolytic pheno-
type and stimulates ATP generation through multiple 
mechanisms, ensuring that cells have the bioenergetic 
capacity required to respond to growth signals [29, 30]. 
AKT1 stimulates the expression of glucose transporters, 
phosphorylates key glycolytic enzymes, and alters their 
catalytic activity, e.g. hexokinase (HK) and phosphof-
ructokinase 2 [29, 31]. In addition, the activation and 
the prolonged signaling via AKT1 inhibits forkhead box 
subfamily O (FOXO) transcription factors by mediat-
ing their phosphorylation and sequestration in the cyto-
plasm, resulting in transcriptional changes that increase 
glycolytic capacity [32]. AKT1 also directly influences the 
mammalian target of rapamycin (mTOR) signaling path-
way. mTOR functions as a key metabolic hub, coupling 
growth signals to nutrient availability. Under physiologi-
cal stimulation triggered by amino acids, growth factors, 
stress, energy, as well as oxygen, mTOR stimulates pro-
tein and lipid biosynthesis and cell growth when suffi-
cient nutrient and energy are available [33–35]. mTOR is 
often constitutively activated during tumorigenesis [36]. 
AKT1 strongly activates mTOR-signaling pathway by 
inducing an inhibitory phosphorylation of tuberous scle-
rosis 2 (TSC2), a negative regulator of mTOR [27, 31].

AMPK‑mTOR
AMP-activated protein kinase (AMPK) is a crucial sen-
sor of energy status and has an important role in cellular 
responses to metabolic stress. Like the mTOR pathway, 
the AMPK pathway couples energy status to growth sig-
nals. However, AMPK opposes the effects of AKT1 and 
functions as an inhibitor of mTOR. AMPK is activated 
by an increased AMP/ATP ratio and is responsible for 
shifting cells to OXPHOS and inhibiting cell proliferation 
[37]. AMPK inhibits the activation of mTOR complex 
indirectly by mediating phosphorylation of the mTOR 
upstream regulator TSC2 to keep it suppressed [38] or 
directly via phosphorylation of the mTOR regulatory 
component, Raptor, to trigger its sequestration by 14-3-3 
and subsequent dissociation from mTOR [39]. In many 
types of cancer the liver kinase B1 (LKB1), the upstream 
activator for AMPK, is inactivated. This results in dimin-
ished AMPK signaling and loss of mTOR inhibition [37] 
and might support the shift of cancer cell metabolism 
towards glycolysis. Furthermore, loss of AMPK signaling 
mediates increased expression of hypoxia induced factor 
1α (HIF1α) [40].

Deregulation of the mTOR pathway is often observed 
in human cancers, which is consistent with its critical 
role in regulating cell growth and metabolism [36, 41]. 
The most prominent function of mTOR is to control pro-
tein synthesis through directly phosphorylating transla-
tional regulators such as eukaryotic translation initiation 
factor 4E binding protein 1 (4E-BP1) and S6 kinase 1 
(S6K1) [42]. By this mechanism, oncogenic mTOR trig-
gers protein synthesis and enhances cell growth and pro-
liferation. Consistently, mutations or loss-of-function of 
upstream regulatory genes, such as tuberous sclerosis 
complex 1/2 (TSC1/2), have been linked to cancer initia-
tion and development [43].

p53‑Myc
Although the transcription factor and tumor suppressor 
p53 is best known for its functions in the DNA damage 
response and apoptosis [44], it has become evident that 
p53 is also an important regulator of metabolism [45]. 
p53 inhibits the glycolytic pathway by upregulating the 
expression of TP53-induced glycolysis and apoptosis 
regulator (TIGAR), an enzyme that decreases the lev-
els of the glycolytic activator fructose-2,6-bisphosphate 
[46]. Moreover, p53 supports the expression of PTEN, 
which inhibits the PI3K pathway, and thus suppresses 
glycolysis [47]. In addition, p53 promotes OXPHOS by 
fostering expression of cytochrome C oxidase assembly 
protein (SCO2), which is required for the assembly of 
the cytochrome C oxidase complex of the electron trans-
port chain [48]. Consequently, besides its anti-apoptotic 
effect, the loss of p53 can be a major force behind the 
acquisition of the glycolytic phenotype of cancer cells 
[49, 50].

The transcription factor c-Myc has important meta-
bolic roles in enhancing glycolysis, mitochondrial gene 
expression, and mitochondrial biogenesis [51]. Tumors 
overexpressing Myc also have increased metabolic 
flux [52]. Myc enhances transcription of genes encod-
ing glucose transporters to increase glucose import and 
glycolytic genes including HK, phosphoglucose isomer-
ase, phosphofructokinase, glyceraldehyde-3-phosphate 
dehydrogenase, phosphoglycerate kinase, and enolase 
[53]. Myc also promotes nucleotide and amino acid syn-
thesis, both through direct transcriptional regulation 
and through increasing the synthesis of mitochondrial 
metabolite precursors [54]. The effects of Myc or onco-
genic PI3K signaling can be further pronounced by the 
simultaneous action of the two pathways [55]. Since Myc 
and mTOR are master regulators of protein synthesis, 
one could anticipate that Myc coordinates with mTOR. 
Indeed, Myc inhibits the mTOR repressor TSC2, thereby 
increasing mTOR activity to facilitate translation through 
S6K and 4E-BP phosphorylation [56]. mTOR can also 
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increase glutamine flux through S6K1-dependent c-Myc 
upregulation, which in turn increases glutaminase (GLS) 
activity [57].

Metabolic flux
The basic caveat of low efficiency-ATP-production 
through glycolysis is compensated by increase in meta-
bolic flux. The uptake of glucose in cancer cells is ele-
vated by increased expression of glucose transporters, 
e.g. Glut1 [58] and Glut4 [59]. Furthermore, glycolytic 
genes are up-regulated (e.g. HK) [53], amplified (e.g. 
HK2) [60], or alternatively spliced (e.g. PKM2) [61]. The 
latter two alterations preferentially impact the enzymatic 
activity of key enzymes. Thereby, cancer cells accelerate 
the glycolytic flux and compensate for the reduced effi-
cacy of aerobic glycolysis. Consequently, the net amount 
of ATP generated by aerobic glycolysis is even higher 
compared to OXPHOS.

Additionally, cancer cells benefit from aerobic gly-
colysis and altered glycolytic-enzymatic activities by an 
increased production of biosynthetic precursors. After 
the first reaction of glycolysis by HK2, glucose is phos-
phorylated to glucose-6-phosphate (G6P). A proportion 
of G6P can be redirected into the pentosphosphate path-
way (PPP) to generate NADPH and ribose 5-phosphate 
(R5P) [54]. NADPH itself is utilized for macromolecu-
lar biosynthesis and redox regulation [62]. R5P is also 
needed for nucleotide synthesis [62]. G6P may also be 
used in the hexosamine pathway, which provides the cell 
with Uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc), a co-substrate for protein glycosylation [63]. 
Another glycolysis product, 3-phosphoglycerate, feeds 
into the serine/glycine synthesis pathway fostering nucle-
otide and protein biosynthesis [64, 65].

Beyond Warburg
Metabolic adaptation of cancer cells extends beyond ATP 
production. Energy production is only one part of the 
growth equation. In parallel to energy generation, cancer 
cells require biosynthetic precursors in order to support 
their growth. Furthermore, because cancer cells gener-
ate reactive oxygen species (ROS) as a consequence of 
rapid proliferation, activation of mechanisms to sustain 
the balance of the intracellular redox level is a key com-
ponent of metabolic adaptation. To meet their demands 
for biosynthetic precursors and to minimize metabolic 
damage, cancer cells have acquired unique biochemi-
cal properties. These alterations support survival and 
growth programs, adaptation to various microenviron-
mental conditions with minimum damage, and survival 
under stress and limited nutrient availability. To achieve 
these properties, cancer cells adopt molecular and bio-
chemical programs, which facilitate nutrient utilization 

in a manner distinct from their normal counterparts. 
Such changes have major impact not only on cancer cells 
themselves by supporting their growth, but also generate 
metabolic products which alter the microenvironment 
and affect the fate and function of immune cells residing 
in the microenvironment of cancer.

Tryptophan
Tryptophan is an essential amino acid and has a key 
role in cell survival. The enzymes that initiate the first 
and rate-limiting step of tryptophan degradation to 
N-formylkynurenine during tryptophan catabolism in 
the kynurenine pathway are tryptophan 2,3-dioxygenase 
(TDO), indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and 
IDO2, respectively) [66]. Although these enzymes cata-
lyze the same biochemical reaction, they share limited 
structural similarity [67]. It is noteworthy that tumor 
cells do not upregulate expression of TDO but specifi-
cally overexpress IDO, which recognizes a broader range 
of substrates, including l- or d-tryptophan, serotonin, 
and tryptamine [68]. This allows cancer cells to utilize 
a wider range of amino acids by altering the expression 
of a single gene. At the end of the kynurenine pathway 
quinolinic acid is generated [69]. In a subsequent step, 
NAD+, an essential cofactor for cellular homeostasis, 
can be produced from quinolinic acid [70–73]. Thus, 
IDO overexpression in tumor cells promotes de novo 
NAD+ synthesis. The underlying mechanism and sig-
nals causing IDO overexpression in cancer cells are cur-
rently under intense investigation. Although the precise 
mechanism(s) remain uncertain, there is preliminary evi-
dence that IFN-γ might be contributing to IDO expres-
sion in tumors [74].

Glutamine
Elevated glutamine consumption is another metabolic 
change characteristic of rapidly proliferating cells [75]. 
Interestingly, the increase glutamine demand of prolif-
erating cancer cells does not reflect an increase of the 
amino acid pool for protein synthesis [76]. Instead, rap-
idly proliferating cancer cells use glutamine for other 
important tasks, e.g. to synthesize anti-oxidative glu-
tathione, maintain cellular pools of NADPH, and fuel 
anaplerotic reactions to replenish tricarboxylic acid 
(TCA) cycle intermediates [76, 77]. Glutaminolysis is 
the process of glutamine conversion to glutamate by 
glutaminase (GLS) and, subsequently, to a-ketoglutar-
ate (a-KG), which enters the TCA cycle to contribute to 
amino acid, nucleotide, and fatty-acid biosynthesis. Glu-
taminolysis is elevated in cancer cells. In order to meet 
their increase needs for glutamine, cancer cells upregu-
late the glutamine transporter Solute Carrier Family 1 
member 5 (SLC1A5) in a Myc-dependent manner [78, 
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79]. In addition, oncogenic Myc increases glutamine 
uptake and the conversion of glutamine into a mitochon-
drial carbon source by promoting the expression of GLS 
[54]. Myc also promotes glutamine import by inducing 
the glutamine transporter ASCT2 [78]. The reliance on 
glutamine metabolism appears especially critical under 
metabolic stress conditions, particularly under glucose 
and oxygen deprivation. Interestingly, Myc overexpres-
sion has been shown to be sufficient to induce glutamine 
“addiction,” i.e. cancer cells dependence on glutamine 
metabolism for survival [80].

Besides the contribution to amino acid biosynthesis 
as basic building block for protein synthesis, glutamine 
has another role in the cancer cell, which involves pro-
tein translation. Abundant glutamine levels modulate 
mTORC1, a key regulator of protein translation [81]. In 
the presence of sufficient amounts of amino acids [Glu-
tamine and essential amino acids (EAA)], growth factor 
signaling through PI3K-Akt or the extracellular signal-
regulated kinase (ERK)-ribosomal protein S6 kinase 
(RSK) pathways activate mTORC1 [82]. A portion of the 
imported glutamine into cells is not utilized for anabolic 
metabolism but rather shuttled out of the cell in exchange 
for EAAs that can be used for protein synthesis. There-
fore, glutamine serves as precursor for protein synthesis, 
as an inducer of mTORC1 signaling, and as a source of 
EAAs to promote protein translation [82].

Redox status (ROS/NADPH/GSH/TRX)
The high metabolic activity of cancer cells results in ele-
vated ROS levels. Cancer cells develop several protec-
tive mechanisms to counteract the toxic effects of high 
ROS by increasing the production of metabolites that 
have reductive power. Amino acids can fuel macromol-
ecule production, but at the same time particular amino 
acids, i.e. glutamine, are utilized for the generation of 
NADPH. The cellular NADPH pool is also sustained by 
PPP, through IDH1/2-mediated conversion of isocitrate 
to αKG, and by ME1-mediated conversion of malate to 
pyruvate [10]. NADPH is either used as a cofactor or as a 
reducing agent. The latter function is of particular impor-
tance since rapidly proliferating cells produce ROS as 
byproduct in many anabolic processes. As a crucial anti-
oxidant, NADPH provides the reducing power for both 
the glutathione (GSH) and thioredoxin (TRX) systems 
that scavenge ROS and repair ROS-induced damage [83]. 
Glutamine through aKG serves the de novo production 
of GSH [84]. GSH reduces ROS by serving as an elec-
tron donor via its thiol group. During this process two 
molecules of glutathione are converted to the oxidized 
form, glutathione disulfide (GSSG). Once oxidized, GSSG 
can be reduced by glutathione reductase in a NADPH-
dependent manner [84]. Similar to GSH, thioredoxins 

act as antioxidants by mediating cysteine thiol-disulfide 
exchange. Oxidized thioredoxins are converted back to 
the reduced state by the NADPH-dependent flavoen-
zyme thioredoxin reductase [85]. Another mechanism 
by which cancer cells counteract elevated ROS levels is 
based on the transcription factor nuclear factor eryth-
roid 2-related factor 2 (NRF2) [86]. NRF2 is the master 
regulator of intracellular antioxidant responses. Hyperac-
tive PI3K signaling [87] as well as mutations in the NRF2 
gene [88] lead to the constitutive stabilization of NRF2 
causing expression of anti-oxidant genes like glutathione 
reductase [89, 90], thioredoxin [91], thioredoxin reduc-
tase 1 [89, 90], and others [86]. It is also noteworthy that 
in tumor cells NRF2 can enhance expression of genes 
involved in PPP such as glucose-6-phosphate dehydro-
genase, phosphogluconate dehydrogenase, transketolase, 
and transaldolase 1, which contribute to NADPH regen-
eration [92].

Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α) is a transcriptional coacti-
vator known as a key regulator of mitochondrial biogene-
sis and function [93]. Nevertheless, it was recently shown 
that PGC-1α is upregulated in melanoma and protects 
cancer cells from ROS by enhancing the expression of 
ROS detoxifying genes [94]. The guardian of the genome, 
p53, also contributes to the cellular ROS balancing [95]. 
However, the function of p53 in the generation and 
detoxification of ROS is complex and can have oppos-
ing effects. p53 may cause the generation of ROS by the 
induction of a gene cluster named PIG1–13 (p53-induc-
ible genes 1–13), which has strong pro-oxidant proper-
ties [96]. It is likely that this feature of p53 is related to 
its pro-apoptotic function. However, ROS are particularly 
potent in promoting DNA damage and p53-dependent 
ROS detoxification is part of the cellular DNA damage 
response. Upon ROS-mediated damage p53 enhances the 
transcription of several antioxidant genes [97], including 
Sestrins [98], glutathione peroxidase 1 (GPx1) [99], and 
TIGAR [46]. Therefore, the effect of p53 on balancing 
cellular ROS in cancer cells probably depends not only on 
the presence or absence of p53 but also on the particular 
mutation of p53, which might alter the preference of p53 
for the regulation of distinct target genes [100].

An additional mechanism for NADPH generation 
depends on pyruvate kinase (PK). PK catalyzes the rate-
limiting, ATP-generating step of glycolysis in which 
phosphoenolpyruvate is converted to pyruvate [101]. In 
cancer cells the M2 isoform (PKM2) is specifically upreg-
ulated. However, PKM2 is typically found in an inactive 
state and is less efficient in promoting glycolysis [102–
104]. Despite slowing glycolysis, PKM2 provides a growth 
advantage to cancer cells. PKM2 allows carbohydrate 
metabolites to enter other pathways, which generate 



Page 7 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

macromolecule precursors required for cell growth and 
reducing equivalents such as NADPH, which maintain 
redox balance [10]. At the molecular level, PKM2 can be 
regulated by oncogenes. Specifically, the oncogene c-Myc 
promotes PKM2 over PKM1 by modulating exon splic-
ing [105]. Additionally, PI3K and mTOR signaling can 
increase PKM2 expression through HIF1α-regulated 
transcription [106, 107]. In addition to glylcolysis, PKM2 
is also involved in regulating gene expression and cell 
cycle progression. Nuclear PKM2 can interact with 
β-catenin to enhance its activity, implicating PKM2 as a 
transcriptional co‐activator [108]. Furthermore, PKM2‐
dependent histone H3 phosphorylation can induce gene 
expression, cell proliferation and tumorigenesis [109, 
110].

Epigenetics
Epigenetic alterations are well-known causes for the 
onset of cancer. These include global genomic DNA 
hypomethylation, site-specific CpG island changes, as 
well as altered histone modifications and non-coding 
RNAs. Most of these changes can be caused by mutations 
in the enzymes involved in these processes. Nevertheless, 
epigenetic modifiers rely on cofactors to generate epige-
netic marks. These cofactors are generated via different 
cellular metabolic pathways. Therefore, one can imag-
ine that global deregulation of cellular metabolism can 
influence epigenetic enzymes by the amount of cofac-
tors present in a cell. Also, accumulation of inhibitory or 
activating molecules can change the enzymatic activity of 
epigenetic modifiers and consequently the cellular epig-
enome. For example, succinate, fumarate, and 2-hydrox-
yglutarate can inhibit the activity of histone and DNA 
demethylases (HDMs and DDMs) at high concentrations 
and can act as oncometabolites, i.e. metabolites that can 
promote tumorigenesis by altering the epigenome [111]. 
2-Hydroxyglutarate (2HG) is generated by mutated IDH 
and is commonly found in gliomas and acute myeloid 
leukaemia but not in the normal counterparts of these 
cancer cells [112]. These oncometabolites are structurally 
similar to their precursor metabolite, α-ketoglutarate. 
As a consequence, they act as competitive inhibitors for 
a superfamily of enzymes called the α-ketoglutarate-
dependent dioxygenases. These enzymes function in fatty 
acid metabolism, oxygen sensing, collagen biosynthesis, 
and modulation of the epigenome [113]. Several tumor 
types with succinate dehydrogenase (SDH) mutations 
have elevated levels of succinate and fumarate and have 
been identified to carry characteristic DNA hypermethyl-
ation patterns, which are due to reduced DDMs activity. 
Particularly, the DDM 10-11-translocation methylcyto-
sine dioxygenase (TET), which removes methyl groups in 
an αKG-dependent manner, is inhibited. Such alterations 

have been shown to be sufficient to drive oncogenesis 
[114, 115]. The jumunji-C HDMs are a major class of 
α-KG-dependent dioxygenases [116]. They initiate the 
removal of methyl groups from histones by hydroxylation 
and thus alter gene transcription. In tumors with IDH1/2 
mutations, high levels of fumarate, succinate, and 2HG 
have been reported, and these increases correlate with 
elevated histone methylation for H3K9 and H3K27, 
which are gene repressive marks [117].

Recent studies have shown that metabolic flux through 
the TCA cycle can affect gene transcription and/or epige-
netic programs. For example, TCA intermediates such as 
α-KG, succinate, and fumarate can directly or indirectly 
affect the activities of metabolic enzymes, transcription 
factors such as HIF1α, and epigenetic regulators such as 
histone demethylases [109, 118–120]. Interestingly, α-KG 
has also been involved in the maintenance of pluripo-
tency of embryonic stem (ES) cells by epigenetic mech-
anisms [121]. Moreover, in ES cells glucose availability 
and acetyl-CoA production can also influence epigenet-
ics by regulating the cytosolic acetyl-CoA pool available 
for histone acetylation reactions [122, 123], raising the 
possibility that such mechanisms might be operable in 
cancer and particularly in cancer initiating cells, which 
have stem cell-like properties. Epigenetic regulation of 
gene expression and function via altering histone/DNA 
methylation and acetylation levels and their therapeutic 
targeting is currently a rapidly developing field and will 
likely provide new opportunities to target the conse-
quences of metabolic reprograming in tumors and poten-
tially immune cells.

Changes in the microenvironment
All the above-mentioned intracellular metabolic pro-
cesses, which are altered in cancer cells, affect the tumor 
microenvironment by several means. The consequences 
of such changes have significant impact on cancer cells 
as well as non-cancerous cells present in the tumor 
microenvironment.

Hypoxia
Hypoxia arises in tumors through the uncontrolled pro-
liferation of cancer cells. Due to the rapid proliferation 
and lack of sufficient vascularization, cancer cells quickly 
exhaust the oxygen (and nutrient) supply from the nor-
mal vasculature and create a hypoxic microenvironment 
[124]. Under these conditions the adaptation to glyco-
lysis described above provides a strong selective growth 
advantage of tumor cells over non-tumor cells. Under 
hypoxic conditions the transcription factor HIF1α is sta-
bilized [125]. Moreover, the oncogene-activated PI3K 
pathway can also stabilize HIF1α, even under normoxic 
conditions [126, 127]. Upon activation, HIF1α triggers 
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transcription of glucose transporters and glycolytic genes 
[128]. HIF1α can also decrease the rate of OXPHOS by 
reducing the flux of pyruvate into the TCA cycle through 
fostering transcription of pyruvate dehydrogenase 
kinases [129, 130]. It is of note that under physiological 
conditions HIF1 can inhibit the activity of Myc. Never-
theless, oncogenic Myc collaborates with HIF to augment 
aerobic glycolysis [131]. It has been found that high levels 
of Myc bind to a new set of target genes, suggesting that 
the behavior of Myc depends on its level [132, 133].

Nutrient deprivation
In addition to the deprivation of oxygen, the fast growing 
cancer cells also consume most nutrients from the sur-
rounding. High demand for energy and anabolic metab-
olism, increased import, and fast metabolic flux cause 
nutrient deprivation to other cells residing in the same 
niche. Besides its direct effect on metabolism, nutrient 
deprivation causes endoplasmic reticulum (ER) stress 
in the microenvironment. In order to counteract the ER 
stress-associated damages, several cellular processes, 
collectively named “unfolded protein response” (UPR), 
are activated. The UPR has a dual function: it attenuates 
ER-associated damage, and if this is not feasible, it acti-
vates apoptosis [134]. Additionally, nutrient deprivation 
can cause autophagy, which is a highly regulated process 
involving lysosomal degradation of intracellular compo-
nents, damaged organelles, misfolded proteins, and toxic 
aggregates. Autophagy can be induced in response to 
various conditions, including nutrient deprivation, meta-
bolic stress, and hypoxia to adapt cellular conditions for 
survival. However, extensive autophagy-based degrada-
tion pathways may cause autophagy-associated cell death 
[135]. Thus, cells in the microenvironment are challenged 
by the cell-death-inducing effects of nutrient deprivation.

Metabolic waste
As a consequence of their high metabolic rate, tumor 
cells generate high amounts of metabolic “waste,” which 
is transported out of the cell. Accumulation of these 
products creates a harsh and potentially metabolically 
toxic environment. For example, increasing amounts 
of lactate acidify the microenvironment. Interestingly, 
cancer cells can consume lactate as a metabolic fuel and 
utilize it through conversion back to pyruvate and sub-
sequent oxidation to provide a fuel in times of nutrient 
depletion [136]. Various downstream metabolites gener-
ated following tryptophan breakdown are also released 
by cancer cells into the microenvironment. Cells in the 
tumor microenvironment take up kynurenine (Kyn) via 
the amino acid transporter LAT1. Subsequently, Kyn 
binds to the aryl hydrocarbon receptor (AhR), which 
translocates from the cytoplasm to the nucleus, where 

it can drive expression of various genes [73]. Kynurenic 
acid can enter cells via the human organic anion trans-
porters hOAT1 and hOAT3 [137–139]. Quinolinic acid 
is an N-methyl-d-aspartate receptor agonist, whereas 
kynurenic acid is an antagonist of this receptor [140]. 
These findings suggest that tryptophan-derived metab-
olites can affect functionality of cells in the tumor 
microenvironment. The hypoxic, acidified, and nutrient-
deprived environment causes metabolic stress to neigh-
boring non-malignant cells and acts as a barrier shielding 
the tumor from any impact mediated by tumor-specific T 
effector cells residing or recruited in the tumor microen-
vironment (Fig. 2).

Basic metabolic features of T cells
Naïve T cells have low metabolic requirements and 
depend predominantly on the utilization of low amounts 
of various nutrients including glucose, fatty acids, and 
amino acids, as well as on pyruvate and glutamine oxida-
tion via the TCA cycle (Fig. 3). In order to maintain this 
basal energy-generating metabolism to support their con-
tinuous migration through secondary lymphoid tissues 
and immune surveillance, naïve T cells require cell extrin-
sic signals such as IL-7 [9, 141]. Upon antigen encounter 
there is a dynamic change on T cell metabolism charac-
terized by extensive proliferation and differentiation into 
effector T cells (TEFF). TCR-mediated signaling promotes 
the upregulation of glucose and amino acid transporters 
at the T cell surface and directs the metabolic reprogram-
ming of naïve T cells from OXPHOS to glycolysis, which 
is mandatory for the acquisition of T cell effector differ-
entiation and function [9, 142]. During the subsequent 
stages of T cell response, when the pathogen is cleared, 
most Teff cells undergo cell death resulting in a dramatic 
reduction of antigen-specific Teff -a process known as 
contraction phase- leaving behind a small population of 
antigen-specific T cells, which survive this demise and 
become T memory cells (Tm). Tm cells display a charac-
teristic increase in mitochondrial mass and thus a greater 
mitochondrial spare respiratory capacity (SRC) [9, 143, 
144], which is the maximal mitochondrial respiratory 
capacity available to a cell to produce energy under con-
ditions of increased work or stress.

For energy generation, Tm cells rely on β-oxidation 
of de novo generated fatty acids that have been synthe-
sized from glucose during the effector phase by fatty acid 
synthesis and have been stored intracellularly, instead of 
uptaking and using extracellular lipids [145]. Interest-
ingly, for membrane biosynthesis, lymphocytes also rely 
on de novo generated free fatty acids from glucose and 
glutamine, despite the availability of extracellular lipids 
[145–147]. In contrast to the dominant role of fatty acid 
oxidation (FAO) in memory cells for energy generation, 
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FAO and other ATP-generating catabolic pathways 
are actively suppressed in Teff cells. A key mechanism 
responsible for this outcome is mediated by the transcrip-
tion factor Myc, which is induced during T cell activation 
and has a dominant role in driving metabolic repro-
gramming by promoting glycolysis and glutaminolysis 

and suppressing FAO and other ATP-generating cata-
bolic pathway [148]. Importantly, Myc also has a role in 
the fate of T cells after division, which is induced during 
encounter of T cell with APC [149]. Specifically, upon 
activation by antigen-presenting cells (APCs), T cells can 
undergo asymmetric cell division, wherein the daughter 

Fig. 2  Cancer cells induce several metabolic changes in the microenvironment. The increased uptake of nutrients such as glucose and amino 
acids depletes these resources for non-tumor cells. This can inhibit the growth and function of non-tumor cells in the microenvironment due to 
the lack of resources for cellular metabolism. Moreover, nutrient depletion can lead to autophagy, ER-stress, and, finally, to cell death. Cancer cells 
also generate a hypoxic microenvironment. The prolonged lack of oxygen inhibits regular cell function in non-tumor cells, whereas in cancer cells 
hypoxia (in combination with oncogenic PI3K signaling) stabilizes HIF1α and promotes the glycolytic phenotype. Additionally, HIF1α enhances 
expression of PDL-1, which can engage with PD-1 on other cancer cells in the microenvironment. This activates mTOR signaling and supports tumor 
growth, whereas engagement of PD-1 in T cells inhibits T cell activation and growth. Thereby, cancer cells can spread an inter-cancer-cell growth 
signal, while suppressing responses of tumor-infiltrating T cells. The increased metabolic activity of cancer cells produces waste byproducts, like 
lactate and tryptophan metabolites, which are secreted to the microenvironment and act inhibitory on non-tumor cells. Lactate not only acidifies 
the microenvironment resulting in inhibition of the surrounding non-tumor cells, but can also be re-imported into cancer cells and can be used to 
feed into glycolysis
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cell proximal to the APC is more likely to differentiate 
into an effector-like T cell and the distal daughter is more 
likely to differentiate into a memory-like T cell [150]. 
Myc has an active role in regulating the asymmetric dis-
tribution of amino acid transporters, amino acid content 
and mTORC1, which also correlated with an asymmetric 
glycolytic metabolic phenotype between the two daugh-
ter cells. Thus, Myc regulates metabolic programs not 
only at the early stages of T cell activation but also after 
daughter cell division.

Under sufficient energy conditions, intermediate 
metabolites of glycolysis can be used in the PPP to sup-
port nucleotide biosynthesis and NADPH production 
important for anabolic pathways and redox control. 
Moreover, glycolytic enzymes have been linked directly 
to the regulation of T cell function. For example, when 
not engaged in glycolysis, the glycolytic enzyme glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) binds 
to AU-rich elements within the 3′ UTR of IFN-γ mRNA 
and prevents translation of IFN-γ mRNA, thereby 

Fig. 3  T cell differentiation is accompanied by metabolic changes, which can be affected by the tumor microenvironment altering their fate and 
function. a Naïve T cells function in antigenic surveillance and do not proliferate. This requires minimal energetic and biosynthetic activity which is 
represented by a metabolically quiescent state which is accompanied by minimal nutrient uptake. The only energy-demanding processes are ion 
homeostasis, membrane integrity, and movement. The primary ATP sources are OXPHOS and FAO to fuel the low energy demand. IL-7 signaling 
and activation of PI3K-Akt1-mTOR is required for survival and basal, low level Glut1 expression. (Furthermore, naïve T cells express low levels of both 
isoforms of PKM1 and PKM2 keeping PKM2 oncogenic function in check. Low quantities of pyruvate and glutamine are utilized in the TCA cycle. 
b Upon antigen encounter T cells differentiate into effector cells. This process is accompanied by metabolic changes which are required to fulfill 
the new effector functions and rapid proliferation. Antigen binding to the TCR and co-activation by CD28 inhibits FAO and activates PI3K-Akt1. 
This activation triggers glycolytic enzymes HK and PFK2. Additionally, mTOR signaling is turned on which enhances expression of glycolytic genes, 
glucose, and amino acid transporters via activation of transcription factors HIF1α and Myc. Effector T cells also switch from balanced PKM1 and 
PKM2 expression to increased and predominant expression of PKM2, which promotes generation of biosynthetic precursors. Additionally, the SRC 
is decreased and the uptake of nutrients is enhanced. These events promote the establishment of a glycolytic phenotype with increased glutami-
nolysis combined with a high degree of protein, lipid, and nucleic acid synthesis to support cell growth and proliferation. c After antigen challenge 
most effector T cells undergo apoptosis during the contraction phase. A small proportion differentiates into memory T cells with prolonged survival 
capacity to provide long-term antigenic memory. Memory T cells do not proliferate and thus have minimal biosynthesis and nutrient uptake. How-
ever, they show increased SRC, which supports their ability to rapidly proliferate upon re-encounter of antigen. This cellular fate includes another 
metabolic adaption. In particular, metabolic switch to FAO via increased CPT1 expression and elevated AMPK activity, which represses HIF1α, mTOR, 
and Myc. Thereby, AMPK inhibits glycolysis, which was the primary ATP source during the effector phase. Extracellular queues that support memory 
cell formation -such as IL-15- promote these metabolic changes. Naïve T cells can differentiate into different subsets of specialized T cells mainly 
depending on extracellular stimuli and factors. The tumor microenvironment influences these cell fate decisions in a metabolic manner. The lack 
of glucose, amino acids, and oxygen as well as the accumulation of metabolic byproducts secreted to the microenvironment generate a milieu 
that suppresses glycolysis-dependent T cell fates like CD8+ T effector cells and CD4+ Th1/2/17. In contrast, FAO-related cell fates such as CD8+ T 
cell memory and CD4+ T regulatory cells are promoted. Especially, amino acid depletion supports formation of immunosuppressive macrophages. 
Taken together, the tumor microenvironment generates an immunosuppressive milieu that fosters immune evasion
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suppressing IFN-γ production [19]. Another example 
involves the glycolytic enzyme pyruvate kinase (PK), 
which catalyzes the conversion of phosphoenolpyruvate 
(PEP) to pyruvate during glycolysis. Differential splicing 
generates two isoforms, M1 or M2. With the PKM2 splice 
variant being expressed in embryonic tissues, proliferat-
ing cells, and tumor cells PKM2 coordinates glycolytic 
flux and cell proliferation [61, 104]. Because the M2 iso-
form is less efficient in converting PEP to pyruvate than 
the M1 isoform, it has been suggested that this property 
slows down glycolysis towards lactate but skews glyco-
lysis towards biosynthetic pathways, thus giving cells a 
growth advantage [151]. Resting naïve T cells express 
both M1 and M2 isoforms, while mitogen activation pro-
motes the rapid accumulation of the M2 isoform, which 
becomes the dominant isoform expressed in Teff cells 
[152, 153]. In addition, despite its relatively low affinity 
for PEP, dimeric PKM2 is able to use PEP as a phosphate 
donor and catalyzes the in vitro phosphorylation of some 
protein targets, including the transcription factor STAT3.

Role of metabolism in T cell differentiation
Many recent studies have shown that distinct T cell fates 
can be imprinted in divergent metabolic programs. For 
example, the metabolism-cell fate connection has been 
shown with the switch to glycolysis that accompanies 
Teff differentiation and the switch to FAO that accom-
panies the conversion of Teff to Tm [154]. Also, enforc-
ing FAO by elevating AMPK activity or by inhibiting 
mTOR results in increased numbers of Tm cells [154, 
155], which are capable of regenerating the specific T cell 
clone upon encounter with the same antigen. This ability 
of memory T cells for clone regeneration is reminiscent 
of the properties of the very small fraction of OXPHOS-
dependent cancer cells with stemness features, which 
resides within the tumors, as mentioned above. In addi-
tion, conversion toward a T regulatory (Treg) phenotype 
is also favored in conditions of increased OXPHOS and 
decreased glycolysis. Although pronounced differences 
have been established between the metabolic programs 
of Teff and Treg cells, distinct metabolic differences 
within the various Teff subsets have not yet been discov-
ered. At the metabolic level, Teff cells Th1, Th2, and Th17 
cells and Treg are the best-defined CD4+ T cell subsets. 
It is well known that a variety of cytokines can determine 
the differentiation fate of T cell subsets [156–160], and 
it is becoming increasingly clear that metabolism plays 
a significant role in driving these distinct differentiation 
programs. For example, there is a strong bias toward gly-
colysis over mitochondrial metabolism by proinflamma-
tory CD4+ Th1, Th2, and Th17 lineages whereas induced 
CD4+ Treg lineage cells display a mixed metabolism 
involving glycolysis, lipid oxidation, and OXPHOS [18]. It 

is noteworthy that blockade of glycolysis during in vitro 
Th17 differentiation favors Treg formation rather than 
Th17 cells [161]. Addition of exogenous fatty acids (FAs) 
in the culture of T cells activated under skewing condi-
tions strongly inhibits the production of Th1, Th2, and 
Th17 cytokines, but not the Treg suppressive function. 
Importantly, inhibition of Teff function in the presence of 
FAs cannot be rescued by re-addition of Th1-, Th2-, and 
Th17-promoting cytokines [18].

Effects of the tumor microenvironment on T cell 
fitness
Exhaustion
T cell “metabolic fitness” is central to effective antitumor 
immunity but is compromised by unique conditions of 
limited nutrient availability in the tumor nutrient micro-
environment and the effects of immune checkpoints 
[162]. Within the immune suppressive tumor microen-
vironment, T cells acquire an “exhausted” phenotype, 
which is characterized by progressive loss of effector 
functions, changes in expression and function of key 
transcription factors, and metabolic alterations. In addi-
tion “exhausted” T cells are characterized by a sustained 
upregulation and co-expression of multiple inhibitory 
receptors [163, 164]. The multiple metabolic constraints 
imposed by the cancer cell metabolism in the tumor 
microenvironment minimize the potential of T cells to 
mediate effector function. It is likely that nutrient avail-
ability, effects of inhibitory receptors and metabolic 
changes of the microenvironment drive T cell differen-
tiation to the state of exhaustion. T cells receiving signals 
through the key inhibitory receptor PD-1 are switched 
to low glycolytic and low OXPHOS state with limited 
biosynthetic activity and low antioxidant reserves [15]. 
It is likely that such changes in metabolic reprogram-
ming drive T cell differentiation to the state of exhaus-
tion. T cell exhaustion is an active process and can lead to 
measurable consequences on T cell function. For exam-
ple, distinct subsets of exhausted T cells exist with dif-
ferent potentials for recovering function after blockade 
of the PD-1 pathway. Exhausted T cells with intermedi-
ate expression of PD-1 (PD-1int) can be reinvigorated by 
blockade of the PD-1 pathway, whereas those with high 
expression of PD-1 (PD-1high cells) cannot [163, 164]. 
These distinct subsets of exhausted T cells may also have 
different bioenergetic properties and differential capacity 
for mitochondrial biogenesis. It is tempting to speculate 
that the degree of exhaustion and the ability to reinvig-
orate exhausted T cells might depend on the reserve of 
lipids, which appear to be the only source of energy gen-
eration by FAO in T cells receiving PD-1 signals [15]. It 
is also possible that blockade of the PD-1: PD-L1 path-
way may lead to transient regeneration of Teff cells if the 
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metabolic defects of exhausted tumor-specific T cells are 
not fully recovered. Thus, identification of the distinct 
bioenergetic profiles in exhausted T cell subsets might 
provide new tools to determine the level of T cell exhaus-
tion and also identify novel targets to reverse exhaustion 
in addition to PD-1 blockade.

Nutrients
The main nutrients that support survival and growth of 
T lymphocytes are glucose, amino acids, and lipids, and 
their deprivation results in impaired T cell function. 
Depending on the type of nutrients present, T cells can 
acquire distinct differentiation program and functional 
fate [21, 165, 166]. In the tumor microenvironment can-
cer and T cells develop metabolic competition for the 
utilization of available nutrients among which glucose 
has a central role. Cancer cells are addicted to a steady 
state glycolysis, whereas T cells depend on glucose dur-
ing the process of antigen-mediated activation that leads 
to expansion and development of effector functions. 
Limiting glucose in the culture decreases the activation 
of naïve T cells and the production of effector cytokines 
although a significant degree of proliferation might be 
preserved through OXPHOS [19, 148, 167–172]. Mecha-
nistically, glycolysis might promote IFN-γ production by 
inducing GAPDH activation and releasing GAPDH from 
binding at the 3′UTR of the IFN-γ promoter, thereby 
inducing IFN-γ production via post- transciptional 
mechanisms [19]. In addition, the glycolytic metabolite 
phosphoenolpyruvate (PEP) promotes T cell activation 
by sustaining T cell receptor-mediated Ca2+-NFAT sign-
aling and effector functions due to repressing sarco/ER 
Ca2+-ATPase (SERCA) activity [17]. Because glycolysis is 
intimately linked with T effector differentiation, glucose 
deprivation due to high glucose flux in the cancer cells 
results in limited glucose availability for utilization by 
T cells. As a consequence, T cells not only are unable to 
develop tumoricidal effector functions but also alter their 
differentiation program resulting in the generation of cell 
types that develop during limited glucose supplies, such 
as Treg and T exhausted T cells [15, 18].

T cells also activate glutamine transport and catabo-
lism mechanisms during their stimulation [167–169]. 
Glutamine has an essential role to support the TCA 
cycle through anaplerosis after prior conversion to glu-
tamate and aKG and is also critical for ATP production 
via OXPHOS even in presence of glucose [20]. Gluta-
mate also serves as a key component for glutathione 
(GSH) synthesis and antioxidant defense [173]. Similarly 
to glucose, cancer cells use glutamine for their metabolic 
needs [174] indicating that competition for glutamine 
utilization by cancer and T cells also occurs in the tumor 
microenvironment. Therapeutic targeting of glutamine 

metabolism by glutaminase inhibitors in cancer cells is 
currently under investigation in clinical trials for hema-
tologic malignancies and solid tumors (https://www.
clinicaltrials.gov/). It remains to be determined how such 
therapeutic approaches will affect T cell differentiation 
and function.

Decreased levels of the essential amino acid, l-trypto-
phan, can be caused by overexpression of IDO on tumor 
cells [175, 176]. It is well documented from studies in 
mouse models and patients that IDO expressed in can-
cer cells or DC in the cancer microenvironment medi-
ates immunosuppressive effects and tolerance to tumor 
via mechanisms independent from l-tryptophan dep-
rivation [177, 178]. Detailed recent studies designed to 
delineate the mechanisms of tumor cell IDO-induced 
immunosuppression showed that the effect of IDO 
in the tumor microenvironment is mediated through 
increased differentiation of Treg cells at the tumor site, 
systemic expansion of myeloid cells and marked recruit-
ment of myeloid-derived suppressor cells (MDSCs) into 
the tumor microenvironment [179]. Such correlation 
between IDO expression and MDSC infiltration has 
been identified not only in experimental animal models 
but also in samples from human patients with melanoma 
[179]. Metabolic competition and nutrient deprivation, 
accumulation of metabolic byproducts, effects of IDO act 
in concert with microenvironmental changes induced by 
hypoxia and tumor aerobic glycolysis to form a barrier to 
antitumor T cell immunity.

Lactate
Lactic acid is largely produced by highly glycolytic can-
cer cells and can suppress the proliferation and cytokine 
production of human cytotoxic T lymphocytes (CTLs) 
and reduce cytotoxic activity [180, 181]. Activated T 
cells also secrete lactate but, due to their higher meta-
bolic rate, cancer cells are most likely the key source of 
lactate in the tumor microenvironment. Moreover, since 
PD-1 ligation results in suppression of glycolysis and 
diminished lactate production [15], engagement of PD-1 
in T cells, in the context of cancer, will mitigate glycoly-
sis and production of lactate. Thus, the main source of 
lactate is the tumor, and eliminating lactate production 
by tumor cells would be anticipated to improve T cell 
mediated antitumor immunity. A major consequence 
of lactate secretion is microenvironmental acidifica-
tion. Studies that have addressed the role of acidic pH 
on immune function in the context of tumor have mostly 
focused on the impact of lactate-mediated acidification 
on macrophage polarization to the M2 suppressive phe-
notype [182]. However, lactate-mediated acidification 
can also induce Arginase 1, which promotes the deple-
tion of extracellular arginine levels, resulting in inhibition 

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
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of efficient T cell proliferation and activation [182, 183]. 
Moreover, manipulation of the pH of the tumor micro-
environment by the use of proton pump inhibitors results 
in less dysfunctional tumor infiltrating lymphocytes and 
increased therapeutic efficacy of both active and adop-
tive immunotherapy [184]. Despite its negative impacts 
on the immune cells, certain cancer cell types can utilize 
lactate itself as a metabolic fuel through reverse conver-
sion to pyruvate that is subsequently oxidized to provide 
a fuel in times of nutrient depletion [136]. The extent to 
which T cells can oxidize lactate is unknown. It is also 
unknown whether such biochemical pathway might 
impact selectively on Teff, Tm, or Treg differentiation 
and/or function.

Hypoxia
Hypoxia occurs physiologically in the microenviron-
ment of primary lymphoid organs, bone marrow, and 
thymus [185, 186] and plays a critical role in immune 
cell function and development [187, 188]. However, most 
prevalently, hypoxia is the hallmark of tissue microenvi-
ronments under pathological conditions as in the cases 
of cancer, inflammation, infection, necrosis, and auto-
immunity. Under the survival- and growth-unfavorable 
conditions of the hypoxic microenvironment, all cells, 
including T lymphocytes, need to adapt metabolic pro-
grams that support their survival [148, 189, 190]. Hypoxia 
inducible factors (HIFs) are the main transcription fac-
tors that sense and respond to hypoxia with HIF-1α and 
HIF-2α being the most widely studied members [191]. 
The activity of HIFs is regulated by post-transcriptional 
modifications, which involve the hydroxylation of their 
proline and asparagine residues prolyl hydroxylases [192]. 
The von Hippel–Lindau tumor suppressor (VHL) protein 
binds to hydroxylated HIF1α targeting it for ubiquitina-
tion and degradation by the proteasome. In normoxic 
conditions, hydroxylation and proteasomal degradation 
of HIF1α subunits take place, whereas under hypoxic 
conditions the hydroxylases are no longer active, allowing 
HIF1α to translocate to the nucleus and bind to HIF1β in 
order to regulate the transcription [193].

The hypoxia response, which is based on the function 
of the HIF1α and HIF2α transcription factors, upregu-
lates glucose transporters and multiple enzymes of the 
glycolytic pathway [128, 194]. In contrast, HIFs nega-
tively regulate TCA and OXPHOS regulatory genes. 
In renal carcinoma cells lacking VHL protein, the main 
negative regulator of HIFs, HIF1 negatively regulates 
mitochondrial biogenesis and oxygen consumption by 
inhibiting the activity of c-Myc [195]. Similarly to its 
effect in tumor cells, HIF1α mediates the metabolic 
switch from OXPHOS to aerobic glycolysis in lympho-
cytes [161] and directly regulates the Th17/Treg balance 

in favor of Th17 cells [196]. HIF1-deficient T cells display 
a marked reduction in the expression of IL-17 and Th17-
signature genes. Moreover, mice with HIF1α-deficient 
T cells are resistant to induction of Th17-dependent 
experimental autoimmune encephalitis, and this out-
come is associated with diminished Th17 and increased 
Treg differentiation [196]. HIF1α activates Th17 devel-
opment through RORγt and p300, and also attenuates 
Treg development by targeting Foxp3 for proteasomal 
degradation [161]. As a consequence, blocking glyco-
lysis during Th17 cell differentiation reduces the devel-
opment of Th17 cells and favors Treg formation [161], 
suggesting a direct link between metabolism and T cell 
fate determination. Conversely, deletion of VHL, which 
leads to elevated levels of HIFs, results in differentiation 
of cytotoxic CD8+ lymphocytes (CTLs) with a high gly-
colytic and low OXPHOS activity and, thus, favors the 
differentiation of effector CD8+ T cells [197]. It is a sub-
ject of active investigation how HIF1α affects memory 
formation and anti-tumor immunity. Importantly, loss 
of HIF1β alters expression of chemokines and receptors 
involved in migration and extravasation. Loss of HIF1β 
results in sustained CD62L expression and increased of 
T cell homing to secondary lymphoid organs. In addition, 
loss of HIF1β results in upregulation of CXCR3, CCR5, 
and CCR7 in CD8+ T cells [198]. Moreover, hypoxia may 
protect tumor cells from antitumor immunity and can 
promote HIF1α-dependent transcriptional upregulation 
of PD-L1 on cancer cells and myeloid-derived suppressor 
cells (MDSCs) that may inhibit PD-1-expressing T cells 
[199, 200]. Indeed, tumor cells have greater resistance to 
T cell-mediated killing under hypoxic conditions [200]. 
Thus, hypoxia affects both tumor and T cells and shapes 
the expression of critical transcription factors, effector 
molecules, chemokines, chemokine receptors, costimula-
tory receptors, and activation-induced inhibitory recep-
tors in a HIF-dependent manner. Therapeutic strategies 
targeting HIFs in the immune system might be beneficial 
for anti-tumor immunity.

Reactive oxygen species
Besides being considered as harmful by-products of 
metabolism or weapons of phagocytes against pathogens, 
ROS can also serve as signaling messengers in a multitude 
of pathways. It has also become evident that the source, 
kinetics and localization of ROS production all influ-
ence cell responses [201–204]. Tumors are influenced by 
changes in ROS production, and previous reports actu-
ally indicate that cancer cells exhibit more oxidative stress 
than their healthy counterparts [205]. In particular, mito-
chondria-derived ROS are essential for Kras-mediated 
cancer cell growth [5]. In contrast, other studies showed 
that inhibition or abrogation of LDH-A causes a shift to 
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higher OCR and ROS production from the mitochondria 
that render the tumor cells more susceptible to apopto-
sis [206, 207]. Moreover, it has been shown that increase 
in intracellular concentrations of ROS causes inhibition 
of the glycolytic enzyme PKM2 leading to glucose diver-
sion into the PPP, thereby generating sufficient reducing 
power for detoxification of ROS [208]. In a recent article 
by James Watson, co-discoverer of the double helix struc-
ture of DNA, it was pointed out that causing oxidative 
stress by targeting highly expressed antioxidant enzymes, 
which are not present in non-malignant cells, holds great 
promise as a strategy for finding novel anti-tumor drugs. 
In contrast, antioxidants seem to promote tumor survival 
and growth [209]. Interestingly, cultured colorectal cancer 
cells (CRC) harboring KRAS or BRAF mutations, which 
upregulate the glucose transporter Glut1, are selectively 
killed when exposed to high levels of vitamin C, but this is 
not due to the antioxidant function of vitamin C. Instead, 
this effect is mediated by the increased uptake of the oxi-
dized form of vitamin C, dehydroascorbate (DHA) via the 
Glut1 glucose transporter, which is subsequently reduced 
to vitamin C, thereby depleting glutathione and causing 
oxidative stress. Thus, in cancer cells ROS accumulates 
and inactivates GAPDH leading to an energetic crisis and 
cell death not seen in CRC cells not harboring KRAS and 
BRAF mutations [210].

In T cells, ROS can be derived from the catalytic 
activity of NADPH oxidase 2 (NOX-2), which is a cata-
lytic subunit of phagocyte oxidase (PHOX) expressed in 
the plasma membrane of T cells, or from dual oxidase 
I (DUOX-1), which is a cytoplasmic non-phagocytic 
isoform of NADPH oxidase [204, 211]. ROS can be 
generated from the electron transport chain of mito-
chondria [212, 213] as well as by lipoxygenases [214]. 
T cell activation is paralleled by transient generation of 
low, physiologically relevant levels of ROS, which facili-
tates activation of ROS-dependent transcription fac-
tors, NF-kB and AP-1 [215, 216]. This oxidative signal 
is indispensable for T cell activation. Together with a 
Ca2+ influx, it constitutes the minimal requirement for 
activation-induced gene expression (e.g., interleukin 2 
[IL-2], IL-4, CD95 ligand) [203]. In contrast to the indis-
pensable role of low ROS levels in T cell activation, pro-
longed exposure to high ROS concentrations can inhibit 
T cell proliferation and lead to apoptosis [217]. In addi-
tion, incubation of T cells with reactive nitrogen spe-
cies (RNS) such as peroxynitrite can inhibit proliferation 
[218]. Oxidative stress-induced modification to selective 
molecules involved in T cell receptor (TCR) signaling can 
render T cells hyporesponsive to activating stimuli [219]. 
The redox environment also affects T cell differentiation. 
Peripheral blood mononuclear cells (PBMC), stimulated 
with a ROS generator promoted Th2 and inhibited Th1 

differentiation [220]. Moreover, products of lipid peroxi-
dation, such as 4-hydroxy-2-nonenal (4HNE) and malo-
nyldialdehyde (MDA), promote differentiation towards 
a Th2 phenotype [221]. Interestingly, NOX-2 deficiency 
leads to differentiation towards the Th17 lineage [222]. 
Since ROS can affect critical metabolism-related T cell 
signaling pathways such as the MAPKs and Akt pathways 
[204], it is not unexpected that ROS would directly affect 
T cell differentiation and function. A study of the novel 
mechanism of Treg-mediated suppression by extracellu-
lar redox remodeling showed that murine Tregs suppress 
GSH synthesis and cysteine release by DCs in a CTLA-
4-dependent manner, leading to the oxidation of surface 
thiols, decrease in the major cellular antioxidant GSH, 
and reduced proliferation of conventional T cells [223, 
224]. Vitamin C, a naturally occurring antioxidant, can 
facilitate demethylation of Foxp3 enhancer and thus pro-
mote Treg generation [225].

In a recent work from our group, metabolite analysis of 
T cells in the presence of the checkpoint inhibitor PD-1 
showed that PD-1 ligation resulted in significantly more 
pronounced decrease in the levels of reduced GSH. How-
ever, T cells receiving PD-1 signals displayed higher levels 
of cysteine-GSH disulfide and ophthtalmate, a GSH-like 
product synthesized by the same enzymes. These changes 
indicate a higher attempt to increase GSH synthesis, 
which, together with the more pronounced decrease in 
the levels of reduced GSH, are suggestive of a more oxi-
dative environment in T cells receiving PD-1 signals [15]. 
Consistent with a role of PD-1 in generating a more oxi-
dative environment, another study showed that, follow-
ing allogeneic bone marrow transplantation, alloreactive 
T cells simultaneously upregulated PD-1 expression and 
ROS production derived by FAO, resulting in higher sus-
ceptibility to metabolic inhibition by F1F0-ATP synthase 
complex inhibitors, and this event could be reversed by 
antioxidants. In that context, PD-1-blockade decreased 
mitochondrial H2O2 and total cellular ROS levels as well 
as the efficacy of ROS-dependent inhibitory modulation 
of F1F0-ATP synthase complex [226]. Although high ROS 
is toxic for T cells as it induces oxidative metabolic dam-
age to various biochemical substrates, it should be noted 
that moderate levels of ROS have an indispensable role 
on T cell activation. The important involvement of ROS 
to T cell metabolic fate and function was highlighted by 
the recent identification of lymphocyte expansion mole-
cule (LEM). LEM has no effects on glycolysis but controls 
the levels of OXPHOS complexes and respiration, result-
ing in the production of pro-proliferative mitochondrial 
ROS, which is critical for promoting antigen-dependent 
CD8+ T cell proliferation, effector function, and long-
term protective memory cells in response to infection 
with lymphocytic choriomeningitis virus [227].
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Based on the above, it is not evident whether the use of 
antioxidants or oxidants would be a beneficial therapeu-
tic approach in the context of cancer. Caution should be 
exercised since such interventions will, most likely, also 
modulate T cell responses in addition to targeting cancer 
cells. One potential approach would be to target antioxi-
dant genes in cancer in order to suppress the antioxidant 
defense mechanisms and make them susceptible to ROS-
mediated apoptosis. Considering the fact that ROS are 
beneficial for T cell activation, a fine balance should be 
achieved in order to maximize anti-tumor effects without 
compromising T cell function.

Checkpoint inhibitors
During the past 5 years, cancer immunotherapy based on 
therapeutic targeting of checkpoint pathways has become 
a field of broad interest. This approach is based on the 
properties of T cells, which require at least two signals 
for activation. The first signal is mediated through TCR 
by recognition of specific antigen presented by the major 
histocompatibility complex (MHC) on antigen presenting 
cells (APCs). The second signal is mediated through liga-
tion of co-stimulatory and co-inhibitory receptors, which 
are engaged by specific ligands expressed on APCs. The 
key co-stimulatory and co-inhibitory receptor-ligand 
pairs belong to the B7 and tumor necrosis factor (TNF) 
families [228, 229] although accessory molecules belong-
ing to different families might also be important. The dis-
covery that cytotoxic T-lymphocyte-associated protein 
4 (CTLA4)- and programmed cell death protein 1 (PD-
1)-dependent mechanisms provide the basis for the phys-
iologic peripheral immunological tolerance supported 
the rationale that blocking the inhibitory signals medi-
ated by CTLA-4 or PD-1 would promote activation of T 
cells that can recognize tumor antigens and induce anti-
tumor responses. Importantly, the ligands of CTLA-4 
B7-1 (CD80) and B7-2 (CD86) are expressed on antigen 
presenting cells (APC) but not on cancer cells, whereas 
the ligands of PD-1, PD-L1 and PD-L2, are expressed on 
APC and on cancer cells [12, 13]. The properties of these 
inhibitory immune checkpoint pathways leading to can-
cer immune evasion fostered the establishment of novel 
cancer immunotherapies.

Currently, there is only limited knowledge regarding 
the metabolic consequences induced in T cells and/or 
tumor cells by targeting these immune checkpoint path-
ways. Laboratory studies provide evidence that inhibitory 
checkpoint pathways can alter metabolic reprogram-
ming of T cells [15, 230]. T cells receiving PD-1 signals 
are unable to engage in glycolysis, glutaminolysis, or 
amino acid metabolism but display an increased rate 
of FAO [15]. This effect of PD-1 is due to inhibition of 
glucose and glutamine transport as well as inhibition of 

HK2, which catalyzes the first step of glycolysis. These 
studies also determined that PD-1 promotes FAO of 
endogenous lipids by inhibiting the lipid oxidation PI3K 
pathway, resulting in increased expression of the rate-
limiting enzyme of mitochondrial FAO carnitine palmi-
toyltransferase 1A (CPT1A), which plays an important 
role in the utilization of fatty acids as an energy source 
[231]. In addition, PD-1 induces lipolysis, as determined 
by the increase of the major triacylglycerol hydrolase des-
nutrin/adiposite triglyceride lipase (ATGL) and release of 
fatty acids and glycerol. Concomitantly, PD-1 decreases 
lipid biosynthesis, which normally occurs during T cell 
activation, by abrogating the induction of fatty acid syn-
thase (FASN). Consistent with the increased rate of FAO, 
PD-1 induces a significant elevation of the ketone body 
3-hydroxybutyrate, which is produced during FAO. Com-
pared to T cells activated without PD-1 ligation, activated 
T cells receiving PD-1 signals have lower extracellu-
lar acidification rate (ECAR), an indicator of glycolysis, 
and lower oxygen consumption rate (OCR), an indica-
tor of oxidative phosphorylation, but have higher OCR/
ECAR ratio [15]. These findings indicate that in contrast 
to proliferating T cells, which preferentially use glycoly-
sis for energy production, T cells receiving PD-1 signals 
are rather metabolically quiescence and preferentially use 
oxidative phosphorylation over glycolysis as indicated by 
the higher OCR/ECAR ratio. The enhancement of FAO 
also points to a mechanistic explanation for the lon-
gevity of T cells receiving PD-1 signals in patients with 
chronic infections and cancer and for their capacity to 
be reinvigorated by PD-1 blockade. Thus, PD-1 ligation 
alters the metabolic reprogramming induced upon T cell 
activation by inhibiting glycolysis and promoting FAO. 
In contrast, although CTLA-4 inhibits expression of the 
glutamine and glucose transporters, it inhibits glycolysis 
without augmenting CPT1A and FAO, suggesting that 
CTLA-4 maintains immune quiescence by preserving 
the metabolic profile of non-stimulated cells. The role of 
PD-1 signaling in restraining T cell glucose metabolism 
in vivo is also supported by another study in which allo-
geneic PD-L1−/− bone marrow transplant recipients had 
elevated levels of Glut1 and lactate production [232].

In addition to its effects on metabolic reprogramming 
of T cells, the PD-1: PD-L1 pathway may also have impli-
cations on the metabolism of cancer cells. It has been 
observed that subpopulations of established human and 
murine melanoma cell lines as well as subpopulations 
of malignant cells in melanomas from patients’ biopsies 
express PD-1 [233, 234]. Unlike T cells in which PD-1 
ligation causes inhibition of PI3K/Akt and MAPK path-
ways, PD-1 ligation in melanoma cells was found to acti-
vate these pathways and to induce mTOR signaling. In 
this context, ligation of PD-1 with PDL-1 in melanoma 
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cells augments the mTOR-signaling pathway and pro-
motes the expression of glycolytic enzymes, which cor-
relate with tumor growth. Thus, tumor cells may use this 
pathway not only to escape immune response by sup-
pressing activation and expansion of tumor-infiltrating T 
cells but, potentially, to actively support their growth by 
triggering mTOR signaling in trans in neighboring tumor 
cells thereby creating an intra-tumoral growth signal. It 
has also been reported that PD-L1 expressed on tumor 
cells can activate glycolysis and cancer cell growth [16]. 
Although it is unclear how PD-L1, which has a short 
cytoplasmic chain without an evident signaling motif, 
would be ligated under physiologic conditions to trig-
ger tumor-specific activation of glycolytic metabolism, 
together these findings [16, 234] suggest that the PD-1: 
PD-L1 pathway may have significant implications not 
only on T cell anabolic metabolism but also on cancer 
cell metabolism and growth.

Harnessing metabolism therapeutically 
against cancer
So far there has been an extensive characterization of 
the metabolic features and aberrations in cancer. Cancer 
cell growth and survival relies on altered metabolic path-
ways such as aerobic glycolysis, fatty acid synthesis, and 
glutamine metabolism. In addition, emerging evidence 
points to a link between resistance in cancer treatment 
and deregulated cancer metabolism. Targeting cancer 
metabolism has therefore emerged as a promising new 
strategy for the development of anticancer agents either 
used alone or in combination therapies. Such drugs target 
signaling mediators including enzymes and transcription 
factors linked to pathways involved in cancer metabolism 
[235]. To date, only few of these drugs are FDA approved 
due to unwanted side effects, whereas many are in clinical 
testing or at pre-clinical stage of development [236, 237]. 
Examples of such drugs targeting the glycolytic pathway 
include inhibitors of GLUTs, HK, PKM2 or LDHA [235, 
236, 238]. Other drugs target the PPP through inhibition 
of G6P with the goal to inhibit generation of nucleotide 
precursors. A G6P inhibitor, 6-aminonictinamide (6-AN), 
has efficacy against cancer cells in vitro [239, 240]. Other 
inhibitors of the PPP pathway such as resveratrol and 
dehydroepiandrosterone (DHEA) have also shown prom-
ising in vitro anti-cancer effects [235, 241]. Compounds 
targeting lipid metabolism have also been tested as anti-
cancer drugs with the goal to decrease energy generation 
through FAO or to limit precursors for synthesis of fatty 
acid, which are necessary for cancer cell proliferation. For 
example, metformin, the FDA-approved and widely used 
anti-diabetic drug inhibits acetyl-CoA carboxylase (ACC) 
through increased AMPK activation, and there are pre-
clinical and clinical data suggesting its anticancer effects 

[236, 242–244]. In addition, inhibitors of FASN such as 
the FDA-approved drug orlistat are under preclinical 
evaluation for cancer treatment [235, 242]. Furthermore, 
inhibitors of FAO, such as the CPT1 inhibitor ranola-
zine, an FDA-approved compound for the treatment of 
angina, have shown promising anti-cancer effects [235, 
242, 245, 246]. Despite the beneficial effects on anti-
tumor treatment of such metabolism-targeting drugs, 
potential effects on the immune system have not yet been 
examined. However, it should be noted that when used 
in vivo, such metabolism-targeting drugs might mediate 
unwanted side effects on healthy tissues and organs that 
depend on the metabolic pathways targeted. For example, 
preclinical studies with 6-AN showed severe cytotoxicity 
on neuronal and hematopoietic cells [239, 240].

After the clinical success of antibodies against check-
point inhibitors in multiple types of cancer, the role 
of the adaptive immune system in fighting cancer has 
become unequivocal. As a consequence, every effort to 
develop anti-tumor drugs is now accompanied by tests of 
such drugs on immune cells with the goal to confirm that 
no unwanted immunosuppressive function that would 
compromise anti-tumor immunity will be induced. Ide-
ally, anti-tumor drugs or combination therapies should 
prevent tumor growth but simultaneously favor pro-
longed anti-tumor T cell function so that functional 
anti-tumor T cells can develop and possibly synergize 
with the tumor-specific cytotoxic functions of the thera-
peutic compound. A major goal of novel immunomodu-
latory approaches is the generation of tumor-specific 
Tm in parallel to the generation of Teff cells. This will 
allow for sustained immune-mediated anti-tumor func-
tion instead of a transient anti-tumor effect. For exam-
ple, metformin, an anti-diabetic drug that, as mentioned 
above, has also shown direct clinical efficacy in cancer 
[243, 244], is an AMPK activator. As a consequence, 
metformin inhibits mTOR and glycolysis, thereby inhib-
iting tumor growth. Importantly, metformin also inhib-
its glycolysis by mediating direct inhibitory effects on 
key components of the glycolytic pathway including the 
rate-limiting enzyme of glycolysis HK2 [247, 248]. How-
ever, via these mechanisms metformin also promotes 
development of Treg [18] and long-lived Tm cells [154]. 
In addition, mTOR inhibiting compounds such as rapa-
mycin can also have metabolism-targeting effects on T 
cells, and although rapamycin is traditionally being used 
as immunosuppressant, it can promote memory CD8+ 
T cell formation when administered after an acute viral 
or bacterial infection [81, 154, 155]. Thus the use of 
metabolism-targeting drugs together with checkpoint 
inhibitors might alter the activation and differentiation 
program of tumor-specific T cells and prevent the gen-
eration of exhausted T cells.
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Conclusions and future directions
T cells and cancer cells inexorably share metabolic pro-
grams and preferences, and thus there is high competi-
tion for nutrients between cancer and T cells within 
the tumor microenvironment. Nutrient deprivation, 
increased metabolic waste, and the ability of tumors to 
express inhibitory ligands impair the metabolic fitness 
and capacity of T cells to uptake and utilize nutrients. 
Additionally, metabolism determinants of the tumor 
microenvironment drive T cells to exhaustion and Treg 
differentiation programs rather than Teff and Tm phe-
notypes leading to impaired antitumor responses. The 
changes and adaptations in the tumor microenviron-
ment most likely are not limited to solid tumors because 
leukemia and lymphoma cells have similar metabolic 
characteristics with solid tumors and often express 
immunomodulatory ligands [249–252]. In addition, 
lymphomas may also contain infiltrating T cells with an 
exhausted phenotype similar to that identified in chronic 
viral infections or solid tumors [249]. Thus, drugs that 
directly target key metabolic enzymes or their upstream 
regulators will likely interfere with metabolism of both 
cancer and T cells in which core cell signaling and meta-
bolic pathways converge. Understanding the similarities 
and differences of metabolic vulnerabilities of T cells and 
cancer may lead to the development of single-target or 
combination-based therapies to modify metabolism of 
the tumor niche thereby targeting both cancer cells and 
immune cells. Identification of such specific changes in 
oncometabolites and immunometabolites may define 
not only novel therapeutic targets but also biomark-
ers for assessment of therapeutic responses to tumor-
immunotherapy combined with metabolism-targeting 
drugs. The ultimate goal is to design metabolism-based 
treatment strategies to attack and eradicate cancer while 
promoting effective and sustainable anti-tumor T cell 
responses.

Abbreviations
AMPK: AMP-activated protein kinase; Akt1: RAC-alpha serine/threonine-
protein kinase; ATP: adenosine triphosphate; FAO: fatty acid oxidation; CD28: 
cluster of differentiation 28; CPTI: carnitine palmitoyltransferase 1; ER: endo-
plasmatic reticulum; FoxP3: forkhead box P3; FOXO: forkhead box subfamily 
O; GLS: glutaminase; HIF1α: hypoxia-inducible factor 1 α; HK: hexokinase; IDO: 
indoleamine-pyrrole 2,3-dioxygenase; IL-7: interleukin 7; IL-15: interleukin 15; 
IL-7R: interleukin 7 receptor; IL-15R: interleukin 15 receptor; mTOR: mammalian 
target of rapamycin; NADPH: nicotinamide adenine dinucleotide phosphate; 
NRF2: nuclear factor erythroid 2-related factor 2; OXPHOS: oxidative phos-
phorylation; PD-1: programmed cell death protein 1; PDL-1/2: PD-1 ligand 
½; PFK2: phosphofructokinase 2; PGC1a: peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha; PI3K: phosphoinositide 3-kinase; PKM2: 
pyruvate kinase M2; PTEN: phosphatase and tensin homolog; SCO2: synthesis 
of cytochrome c oxidase 2; SLC1A5: solute carrier family 1 (neutral amino acid 
transporter), member 5; SRC: spare respiratory capacity; TCA: tricarboxylic 
acid cycle; TCR: T cell receptor; TIGAR: TP53-induced glycolysis and apoptosis 
regulator.

Authors’ contributions
CH made substantial contributions to the conception and design of the 
manuscript, review of the literature, and drafting of the manuscript and fig-
ures. NP made equally substantial contributions to the conception and design 
of the manuscript, review of the literature, and drafting of the manuscript and 
figures. KB made significant contributions to the collection of citations related 
to tumor metabolism and participated in drafting relevant sections of the 
manuscript. PS provided in depth input on the acquisition and interpretation 
of the literature on cancer cell metabolism and participated in the prepara-
tion of the manuscript. JDW made substantial contributions to the collection 
of citations related to T cell metabolism and in drafting the relevant sections 
of the manuscript. VAB supervised every step in the design, structure and 
preparation of the manuscript and gave the final approval of the version to be 
published. All authors read and approved the final manuscript.

Author details
1 Division of Hematology‑Oncology, Department of Medicine, Beth Israel 
Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. 
2 Beth Israel Deaconess Cancer Center, Harvard Medical School, 330 Brookline 
Avenue, Dana 513, Boston, MA 02215, USA. 3 Division of Interdisciplinary Medi-
cine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, USA. 

Acknowledgements
This work was supported by NIH Grants CA183605, CA183605S1 and 
AI098129-01 (to VAB) and by the DoD Grant PC140571 (to PS and VAB).

Competing interests
The authors declare that they have no competing interests.

Received: 12 April 2016   Accepted: 15 July 2016

References
	 1.	 Warburg O (1956) On the origin of cancer cells. Science 123:309–314
	 2.	 Weinhouse S (1976) The Warburg hypothesis fifty years later. Z Krebs-

forsch Klin Onkol Cancer Res Clin Oncol 87:115–126
	 3.	 Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood 

C, Clements MO et al (2007) Transformation of human mesenchymal 
stem cells increases their dependency on oxidative phosphorylation for 
energy production. Proc Natl Acad Sci USA 104:6223–6228

	 4.	 Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, Ruoslahti 
E (2010) Mitochondrial p32 protein is a critical regulator of tumor 
metabolism via maintenance of oxidative phosphorylation. Mol Cell 
Biol 30:1303–1318

	 5.	 Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez 
M, Kalyanaraman B et al (2010) Mitochondrial metabolism and ROS 
generation are essential for Kras-mediated tumorigenicity. Proc Natl 
Acad Sci USA 107:8788–8793

	 6.	 Viale A, Corti D, Draetta GF (2015) Tumors and mitochondrial respira-
tion: a neglected connection. Cancer Res 75:3685–3686

	 7.	 Frauwirth KA, Thompson CB (2004) Regulation of T lymphocyte 
metabolism. J. Immunol. 172:4661–4665

	 8.	 Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson 
CB (2000) In the absence of extrinsic signals, nutrient utilization by 
lymphocytes is insufficient to maintain either cell size or viability. Mol 
Cell 6:683–692

	 9.	 MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T 
lymphocytes. Annu Rev Immunol 31:259–283

	 10.	 Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabo-
lism. Nat Rev Cancer 11:85–95

	 11.	 Pearce EL, Poffenberger MC, Chang CH, Jones RG (2013) Fueling 
immunity: insights into metabolism and lymphocyte function. Science 
342:1242454

	 12.	 Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche 
PC et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a 
potential mechanism of immune evasion. Nat Med 8:793–800



Page 18 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	 13.	 Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, 
Iwai Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell 
activation. Nat Immunol 2:261–268

	 14.	 Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, 
Kobayashi SV, Linsley PS et al (2005) CTLA-4 and PD-1 receptors inhibit 
T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

	 15.	 Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED et al 
(2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycoly-
sis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

	 16.	 Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q 
et al (2015) Metabolic competition in the tumor microenvironment is a 
driver of cancer progression. Cell 162:1229–1241

	 17.	 Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC 
et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-
tumor T cell responses. Cell 162:1217–1228

	 18.	 Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maciver NJ, Mason 
EF, Sullivan SA et al (2011) Cutting edge: distinct glycolytic and lipid 
oxidative metabolic programs are essential for effector and regulatory 
CD4+ T cell subsets. J. Immunol 186:3299–3303

	 19.	 Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, 
Huang SC et al (2013) Posttranscriptional control of T cell effector func-
tion by aerobic glycolysis. Cell 153:1239–1251

	 20.	 Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurch-
enko E, Raissi TC et al (2015) The energy sensor AMPK regulates T 
cell metabolic adaptation and effector responses in vivo. Immunity 
42:41–54

	 21.	 Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M et al 
(2014) Inflammatory T cell responses rely on amino acid transporter 
ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. 
Immunity 40:692–705

	 22.	 Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: 
cell biology, physiology, and clinical opportunities. J Clin Invest 
123:3678–3684

	 23.	 Biswas SK (2015) Metabolic reprogramming of immune cells in cancer 
progression. Immunity 43:435–449

	 24.	 Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer 
metabolism. Cell Metab 23:27–47

	 25.	 Vazquez A, Liu J, Zhou Y, Oltvai ZN (2010) Catabolic efficiency of aerobic 
glycolysis: the Warburg effect revisited. BMC Syst Biol 4:58

	 26.	 DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The 
biology of cancer: metabolic reprogramming fuels cell growth and 
proliferation. Cell Metab 7:11–20

	 27.	 Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylin-
ositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 
7:606–619

	 28.	 Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling 
pathway in cancer. Curr Opin Genet Dev 20:87–90

	 29.	 Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, 
Zhuang H et al (2004) Akt stimulates aerobic glycolysis in cancer cells. 
Cancer Res 64:3892–3899

	 30.	 Fan Y, Dickman KG, Zong WX (2010) Akt and c-Myc differentially activate 
cellular metabolic programs and prime cells to bioenergetic inhibition. 
J Biol Chem 285:7324–7333

	 31.	 Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy 
metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

	 32.	 Khatri S, Yepiskoposyan H, Gallo CA, Tandon P, Plas DR (2010) FOXO3a 
regulates glycolysis via transcriptional control of tumor suppressor 
TSC1. J Biol Chem 285:15960–15965

	 33.	 Kennedy BK, Lamming DW (2016) The mechanistic target of rapa-
mycin: the grand conduc TOR of metabolism and aging. Cell Metab 
23:990–1003

	 34.	 Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafel-
low E et al (2010) Activation of a metabolic gene regulatory network 
downstream of mTOR complex 1. Mol Cell 39:171–183

	 35.	 Guertin DA, Guntur KV, Bell GW, Thoreen CC, Sabatini DM (2006) Func-
tional genomics identifies TOR-regulated genes that control growth 
and division. Curr Biol 16:958–970

	 36.	 Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. 
Cancer Cell 12:9–22

	 37.	 Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism 
and growth control in tumour suppression. Nat Rev Cancer 9:563–575

	 38.	 Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response 
to control cell growth and survival. Cell 115:577–590

	 39.	 Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez 
DS, Turk BE et al (2008) AMPK phosphorylation of raptor mediates a 
metabolic checkpoint. Mol Cell 30:214–226

	 40.	 Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F et al 
(2013) AMPK is a negative regulator of the Warburg effect and sup-
presses tumor growth in vivo. Cell Metab 17:113–124

	 41.	 Xu K, Liu P, Wei W (2014) mTOR signaling in tumorigenesis. Biochim 
Biophys Acta 1846:638–654

	 42.	 Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated 
translational control. Nat Rev Mol Cell Biol 10:307–318

	 43.	 Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis com-
plex. N Engl J Med 355:1345–1356

	 44.	 Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA 
repair and recombination. Nat Rev Mol Cell Biol 6:44–55

	 45.	 Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 
9:691–700

	 46.	 Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb 
E et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apopto-
sis. Cell 126:107–120

	 47.	 Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S 
et al (2001) Regulation of PTEN transcription by p53. Mol Cell 8:317–325

	 48.	 Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, 
Hurley PJ et al (2006) p53 regulates mitochondrial respiration. Science 
312:1650–1653

	 49.	 Muller PA, Vousden KH (2014) Mutant p53 in cancer: new functions and 
therapeutic opportunities. Cancer Cell 25:304–317

	 50.	 Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis 
A et al (2011) Gain of function of mutant p53 by coaggregation with 
multiple tumor suppressors. Nat Chem Biol 7:285–295

	 51.	 Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, Kim JW et al 
(2005) Myc stimulates nuclearly encoded mitochondrial genes and 
mitochondrial biogenesis. Mol Cell Biol 25:6225–6234

	 52.	 Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T et al 
(2012) Glucose-independent glutamine metabolism via TCA cycling for 
proliferation and survival in B cells. Cell Metab 15:110–121

	 53.	 Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y et al (2000) 
Deregulation of glucose transporter 1 and glycolytic gene expression 
by c-Myc. J Biol Chem 275:21797–21800

	 54.	 Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer 
hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

	 55.	 Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV (2015) MYC and 
metabolism on the path to cancer. Semin Cell Dev Biol 43:11–21

	 56.	 Ravitz MJ, Chen L, Lynch M, Schmidt EV (2007) c-myc Repression of 
TSC2 contributes to control of translation initiation and Myc-induced 
transformation. Cancer Res 67:11209–11217

	 57.	 Csibi A, Lee G, Yoon SO, Tong H, Ilter D, Elia I, Fendt SM et al (2014) 
The mTORC1/S6K1 pathway regulates glutamine metabolism 
through the eIF4B-dependent control of c-Myc translation. Curr Biol 
24:2274–2280

	 58.	 Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, 
Ilkun O et al (2011) Modulation of glucose transporter 1 (GLUT1) 
expression levels alters mouse mammary tumor cell growth in vitro 
and in vivo. PLoS One 6:e23205

	 59.	 Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 
5:237–252

	 60.	 Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL (1996) 
Glucose catabolism in cancer cells: amplification of the gene encoding 
type II hexokinase. Cancer Res 56:2468–2471

	 61.	 Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the meta-
bolic budget system in tumor cells. Int J Biochem Cell Biol 43:969–980

	 62.	 Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding 
the Warburg effect: the metabolic requirements of cell proliferation. Sci-
ence 324:1029–1033

	 63.	 Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, Wang X (2010) The 
ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg 
effect, and proliferation in the PTEN pathway. Cell 143:711–724

	 64.	 Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, 
Heffron G et al (2011) Phosphoglycerate dehydrogenase diverts glyco-
lytic flux and contributes to oncogenesis. Nat Genet 43:869–874



Page 19 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	 65.	 Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethu-
madhavan S et al (2011) Functional genomics reveal that the serine 
synthesis pathway is essential in breast cancer. Nature 476:346–350

	 66.	 Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 
2,3-dioxygenase and tryptophan metabolism along the kynurenine 
pathway. Redox Rep 4:199–220

	 67.	 Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 
2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J 
Biochem Cell Biol 41:467–471

	 68.	 Forouhar F, Anderson JL, Mowat CG, Vorobiev SM, Hussain A, Abashidze 
M, Bruckmann C et al (2007) Molecular insights into substrate recogni-
tion and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci 
USA 104:473–478

	 69.	 Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) 
Human microglia convert l-tryptophan into the neurotoxin quinolinic 
acid. Biochem J 320(Pt 2):595–597

	 70.	 Bellac CL, Coimbra RS, Christen S, Leib SL (2010) Inhibition of the 
kynurenine-NAD+ pathway leads to energy failure and exacerbates 
apoptosis in pneumococcal meningitis. J Neuropathol Exp Neurol 
69:1096–1104

	 71.	 Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway 
inhibition on NAD metabolism and cell viability in human primary 
astrocytes and neurons. Int J Tryptophan Res 4:29–37

	 72.	 Khan JA, Forouhar F, Tao X, Tong L (2007) Nicotinamide adenine dinu-
cleotide metabolism as an attractive target for drug discovery. Expert 
Opin Ther Targets 11:695–705

	 73.	 Yeung AW, Terentis AC, King NJ, Thomas SR (2015) Role of indoleamine 
2,3-dioxygenase in health and disease. Clin Sci (Lond) 129:601–672

	 74.	 Grant RS, Naif H, Espinosa M, Kapoor V (2000) IDO induction in IFN-
gamma activated astroglia: a role in improving cell viability during 
oxidative stress. Redox Rep 5:101–104

	 75.	 Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. 
Science 122:501–514

	 76.	 DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, 
Thompson CB (2007) Beyond aerobic glycolysis: transformed cells 
can engage in glutamine metabolism that exceeds the require-
ment for protein and nucleotide synthesis. Proc Natl Acad Sci USA 
104:19345–19350

	 77.	 DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions 
of glutamine in metabolism, cell biology and cancer. Oncogene 
29:313–324

	 78.	 Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, 
Nissim I et al (2008) Myc regulates a transcriptional program that stimu-
lates mitochondrial glutaminolysis and leads to glutamine addiction. 
Proc Natl Acad Sci USA 105:18782–18787

	 79.	 Bhutia YD, Ganapathy V (2015) Glutamine transporters in mammalian 
cells and their functions in physiology and cancer. Biochim Biophys 
Acta. doi:10.1016/j.bbamcr.2015.12.017 (Epub ahead of print)

	 80.	 Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) 
Deficiency in glutamine but not glucose induces MYC-dependent 
apoptosis in human cells. J Cell Biol 178:93–105

	 81.	 Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and 
metabolism. Cell 124:471–484

	 82.	 Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic 
target in cancer. Trends Biochem Sci 35:427–433

	 83.	 Nathan C, Ding A (2010) SnapShot: reactive Oxygen Intermediates 
(ROI). Cell 140(951–951):e952

	 84.	 Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione 
metabolism and its implications for health. J Nutr 134:489–492

	 85.	 Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 
1):1–8

	 86.	 Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, 
Pronzato MA et al (2016) The Nrf2/HO-1 axis in cancer cell growth and 
chemoresistance. Oxid Med Cell Longev 2016:1958174

	 87.	 Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an 
anticancer strategy. Nat Rev Drug Discov 12:931–947

	 88.	 Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS et al (2010) 
Oncogenic NRF2 mutations in squamous cell carcinomas of oesopha-
gus and skin. J Pathol 220:446–451

	 89.	 MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igar-
ashi K, Hayes JD (2009) Characterization of the cancer chemopreventive 

NRF2-dependent gene battery in human keratinocytes: demonstration 
that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, 
controls cytoprotection against electrophiles as well as redox-cycling 
compounds. Carcinogenesis 30:1571–1580

	 90.	 Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey 
A, Kensler TW (2012) Transcriptomic and proteomic profiling of KEAP1 
disrupted and sulforaphane-treated human breast epithelial cells reveals 
common expression profiles. Breast Cancer Res Treat 132:175–187

	 91.	 Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, 
Happel C, Shyr C et al (2010) Global mapping of binding sites for Nrf2 
identifies novel targets in cell survival response through ChIP-Seq 
profiling and network analysis. Nucleic Acids Res 38:5718–5734

	 92.	 Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 
signaling pathway in cancer. Genes Dev 27:2179–2191

	 93.	 Puigserver P (2005) Tissue-specific regulation of metabolic pathways 
through the transcriptional coactivator PGC1-alpha. Int J Obes (Lond) 
29(Suppl 1):S5–9

	 94.	 Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, Clish CB et al 
(2013) PGC1alpha expression defines a subset of human melanoma 
tumors with increased mitochondrial capacity and resistance to oxida-
tive stress. Cancer Cell 23:287–301

	 95.	 Budanov AV (2014) The role of tumor suppressor p53 in the antioxidant 
defense and metabolism. Subcell Biochem 85:337–358

	 96.	 Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for 
p53-induced apoptosis. Nature 389:300–305

	 97.	 Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, 
Chumakov PM (2005) The antioxidant function of the p53 tumor sup-
pressor. Nat Med 11:1306–1313

	 98.	 Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) 
Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of 
bacterial AhpD. Science 304:596–600

	 99.	 Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y (1999) Transcrip-
tional activation of the human glutathione peroxidase promoter by 
p53. J Biol Chem 274:12061–12066

	100.	 Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. 
Genes Dev 26:1268–1286

	101.	 Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase 
type M2 and its role in tumor growth and spreading. Semin Cancer Biol 
15:300–308

	102.	 Mazurek S, Zwerschke W, Jansen-Durr P, Eigenbrodt E (2001) Effects of 
the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and 
glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-
enzyme complex. Biochem J 356:247–256

	103.	 Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-
Durr P (1999) Modulation of type M2 pyruvate kinase activity by the 
human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA 
96:1291–1296

	104.	 Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten 
RE, Wei R, Fleming MD et al (2008) The M2 splice isoform of pyruvate 
kinase is important for cancer metabolism and tumour growth. Nature 
452:230–233

	105.	 David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP pro-
teins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in 
cancer. Nature 463:364–368

	106.	 Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, 
Manvati S et al (2013) Insulin enhances metabolic capacities of cancer 
cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol 
Cancer 12:72

	107.	 Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y et al (2011) Mam-
malian target of rapamycin up-regulation of pyruvate kinase isoenzyme 
type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl 
Acad Sci USA 108:4129–4134

	108.	 Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X et al (2011) Nuclear 
PKM2 regulates beta-catenin transactivation upon EGFR activation. 
Nature 480:118–122

	109.	 Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards 
CR et al (2012) IDH mutation impairs histone demethylation and results 
in a block to cell differentiation. Nature 483:474–478

	110.	 Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K et al (2012) PKM2 
phosphorylates histone H3 and promotes gene transcription and 
tumorigenesis. Cell 150:685–696

http://dx.doi.org/10.1016/j.bbamcr.2015.12.017


Page 20 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	111.	 King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and 
fumarate hydratase: linking mitochondrial dysfunction and cancer. 
Oncogene 25:4675–4682

	112.	 Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, 
Fantin VR et al (2009) Cancer-associated IDH1 mutations produce 
2-hydroxyglutarate. Nature 462:739–744

	113.	 Nowicki S, Gottlieb E (2015) Oncometabolites: tailoring our genes. FEBS 
J 282:2796–2805

	114.	 Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, Quezado 
M et al (2013) Succinate dehydrogenase mutation underlies global epi-
genomic divergence in gastrointestinal stromal tumor. Cancer Discov 
3:648–657

	115.	 Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, 
Janin M et al (2013) SDH mutations establish a hypermethylator pheno-
type in paraganglioma. Cancer Cell 23:739–752

	116.	 Loenarz C, Schofield CJ (2008) Expanding chemical biology of 2-oxog-
lutarate oxygenases. Nat Chem Biol 4:152–156

	117.	 Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, 
Leung IK et al (2011) The oncometabolite 2-hydroxyglutarate inhibits 
histone lysine demethylases. EMBO Rep 12:463–469

	118.	 Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y et al 
(2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation 
phenotype, disrupt TET2 function, and impair hematopoietic differen-
tiation. Cancer Cell 18:553–567

	119.	 Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S et al (2011) Oncome-
tabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglut-
arate-dependent dioxygenases. Cancer Cell 19:17–30

	120.	 Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross 
JR et al (2010) The common feature of leukemia-associated IDH1 and 
IDH2 mutations is a neomorphic enzyme activity converting alpha-
ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

	121.	 Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular 
alpha-ketoglutarate maintains the pluripotency of embryonic stem 
cells. Nature 518:413–416

	122.	 Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson 
CB (2009) ATP-citrate lyase links cellular metabolism to histone acetyla-
tion. Science 324:1076–1080

	123.	 Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, 
Nemirovski A et al (2015) Glycolysis-mediated changes in acetyl-CoA 
and histone acetylation control the early differentiation of embryonic 
stem cells. Cell Metab 21:392–402

	124.	 Eales KL, Hollinshead KE, Tennant DA (2016) Hypoxia and metabolic 
adaptation of cancer cells. Oncogenesis 5:e190

	125.	 Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on 
human cancer. Nat Rev Cancer 8:967–975

	126.	 Plas DR, Thompson CB (2005) Akt-dependent transformation: there is 
more to growth than just surviving. Oncogene 24:7435–7442

	127.	 Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR 
pathway in human disease. Nat Genet 37:19–24

	128.	 Semenza GL (2010) HIF-1: upstream and downstream of cancer 
metabolism. Curr Opin Genet Dev 20:51–56

	129.	 Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 
mediates adaptation to hypoxia by actively downregulating mitochon-
drial oxygen consumption. Cell Metab 3:187–197

	130.	 Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated 
expression of pyruvate dehydrogenase kinase: a metabolic switch 
required for cellular adaptation to hypoxia. Cell Metab 3:177–185

	131.	 Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling 
rivals for control of cancer cell metabolism and proliferation. Cancer 
Cell 12:108–113

	132.	 Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A 
et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 
17:1115–1129

	133.	 Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC 
and HIF in cancer. Nat Rev Cancer 8:51–56

	134.	 Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E 
(2015) Cancer microenvironment and endoplasmic reticulum stress 
response. Mediators Inflamm 2015:417281

	135.	 Ozpolat B, Benbrook DM (2015) Targeting autophagy in cancer man-
agement—strategies and developments. Cancer Manag Res 7:291–299

	136.	 Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, 
Sonveaux P, Landon CD et al (2013) Catabolism of exogenous lactate 
reveals it as a legitimate metabolic substrate in breast cancer. PLoS One 
8:e75154

	137.	 Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB 
(2007) Nanosensor detection of an immunoregulatory tryptophan 
influx/kynurenine efflux cycle. PLoS Biol 5:e257

	138.	 Uwai Y, Honjo H, Iwamoto K (2012) Interaction and transport of 
kynurenic acid via human organic anion transporters hOAT1 and 
hOAT3. Pharmacol Res 65:254–260

	139.	 DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana 
EM, Omiecinski CJ et al (2010) Kynurenic acid is a potent endogenous 
aryl hydrocarbon receptor ligand that synergistically induces interleu-
kin-6 in the presence of inflammatory signaling. Toxicol Sci 115:89–97

	140.	 Kaszaki J, Erces D, Varga G, Szabo A, Vecsei L, Boros M (2012) Kynure-
nines and intestinal neurotransmission: the role of N-methyl-d-aspar-
tate receptors. J Neural Transm (Vienna) 119:211–223

	141.	 Rathmell JC, Farkash EA, Gao W, Thompson CB (2001) IL-7 enhances 
the survival and maintains the size of naive T cells. J Immunol 
167:6869–6876

	142.	 Buck MD, O’Sullivan D, Pearce EL (2015) T cell metabolism drives immu-
nity. J Exp Med 212:1345–1360

	143.	 van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, 
Pearce EJ et al (2012) Mitochondrial respiratory capacity is a critical 
regulator of CD8+ T cell memory development. Immunity 36:68–78

	144.	 Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, 
Durovic B et al (2013) Rapid effector function of memory CD8(+) 
T cells requires an immediate-early glycolytic switch. Nat Immunol 
14:1064–1072

	145.	 O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck 
MD, Qiu J et al (2014) Memory CD8(+) T cells use cell-intrinsic lipolysis 
to support the metabolic programming necessary for development. 
Immunity 41:75–88

	146.	 Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, 
Sandouk A et al (2014) De novo fatty acid synthesis controls the fate 
between regulatory T and T helper 17 cells. Nat Med 20:1327–1333

	147.	 O’Sullivan D, Pearce EL (2014) Fatty acid synthesis tips the TH17-Treg 
cell balance. Nat Med 20:1235–1236

	148.	 Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick 
LL et al (2011) The transcription factor Myc controls metabolic repro-
gramming upon T lymphocyte activation. Immunity 35:871–882

	149.	 Verbist KC, Guy CS, Milasta S, Liedmann S, Kaminski MM, Wang R, Green 
DR (2016) Metabolic maintenance of cell asymmetry following division 
in activated T lymphocytes. Nature 532:389–393

	150.	 Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee 
A, Longworth SA et al (2007) Asymmetric T lymphocyte division in the 
initiation of adaptive immune responses. Science 315:1687–1691

	151.	 Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W 
et al (2012) Pyruvate kinase M2 activators promote tetramer formation 
and suppress tumorigenesis. Nat Chem Biol 8:839–847

	152.	 Marjanovic S, Eriksson I, Nelson BD (1990) Expression of a new set 
of glycolytic isozymes in activated human peripheral lymphocytes. 
Biochim Biophys Acta 1087:1–6

	153.	 Cao Y, Rathmell JC, Macintyre AN (2014) Metabolic reprogramming 
towards aerobic glycolysis correlates with greater proliferative ability 
and resistance to metabolic inhibition in CD8 versus CD4 T cells. PLoS 
One 9:e104104

	154.	 Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG 
et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid 
metabolism. Nature 460:103–107

	155.	 Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, 
Larsen CP et al (2009) mTOR regulates memory CD8 T-cell differentia-
tion. Nature 460:108–112

	156.	 Barnes MJ, Powrie F (2009) Regulatory T cells reinforce intestinal 
homeostasis. Immunity 31:401–411

	157.	 Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells 
and immune tolerance. Cell 133:775–787

	158.	 Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G 
et al (2003) Conversion of peripheral CD4+CD25- naive T cells to 
CD4+CD25+ regulatory T cells by TGF-beta induction of transcription 
factor Foxp3. J Exp Med 198:1875–1886



Page 21 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	159.	 Davidson TS, DiPaolo RJ, Andersson J, Shevach EM (2007) Cutting Edge: 
IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regula-
tory cells. J Immunol 178:4022–4026

	160.	 Rajewsky K, von Boehmer H (2008) Lymphocyte development: over-
view. Curr Opin Immunol 20:127–130

	161.	 Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) 
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic 
checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 
208:1367–1376

	162.	 Siska PJ, Rathmell JC (2015) T cell metabolic fitness in antitumor immu-
nity. Trends Immunol 36:257–264

	163.	 Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell 
exhaustion. Nat Rev Immunol 15:486–499

	164.	 Blackburn SD, Shin H, Freeman GJ, Wherry EJ (2008) Selective expansion 
of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl 
Acad Sci USA 105:15016–15021

	165.	 Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, 
Deoliveira D, Anderson SM et al (2014) The glucose transporter Glut1 is 
selectively essential for CD4 T cell activation and effector function. Cell 
Metab 20:61–72

	166.	 Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA (2013) Control 
of amino-acid transport by antigen receptors coordinates the meta-
bolic reprogramming essential for T cell differentiation. Nat Immunol 
14:500–508

	167.	 Ardawi MS, Newsholme EA (1983) Glutamine metabolism in lympho-
cytes of the rat. Biochem J 212:835–842

	168.	 Brand K (1985) Glutamine and glucose metabolism during thymocyte 
proliferation. Pathways of glutamine and glutamate metabolism. 
Biochem J 228:353–361

	169.	 Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay 
AM et al (2010) Glutamine uptake and metabolism are coordinately 
regulated by ERK/MAPK during T lymphocyte activation. J Immunol 
185:1037–1044

	170.	 Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen 
JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and 
requires CD28-mediated Akt-dependent and independent pathways. J 
Immunol 180:4476–4486

	171.	 Cham CM, Driessens G, O’Keefe JP, Gajewski TF (2008) Glucose depriva-
tion inhibits multiple key gene expression events and effector func-
tions in CD8+ T cells. Eur J Immunol 38:2438–2450

	172.	 Cham CM, Gajewski TF (2005) Glucose availability regulates IFN-gamma 
production and p70S6 kinase activation in CD8+ effector T cells. J 
Immunol 174:4670–4677

	173.	 Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 
1830:3143–3153

	174.	 Lien EC, Lyssiotis CA, Juvekar A, Hu H, Asara JM, Cantley LC, Toker A 
(2016) Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/
Akt-driven breast cancer. Nat Cell Biol 18:572–578

	175.	 Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, 
Boon T et al (2003) Evidence for a tumoral immune resistance mecha-
nism based on tryptophan degradation by indoleamine 2,3-dioxyge-
nase. Nat Med 9:1269–1274

	176.	 Jiang T, Sun Y, Yin Z, Feng S, Sun L, Li Z (2015) Research progress of 
indoleamine 2,3-dioxygenase inhibitors. Future Med Chem 7:185–201

	177.	 Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL 
et al (2004) Expression of indoleamine 2,3-dioxygenase by plasma-
cytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 
114:280–290

	178.	 Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-
induced tolerance. J Clin Invest 117:1147–1154

	179.	 Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub 
T et al (2015) Tumor-expressed IDO recruits and activates MDSCs in a 
Treg-dependent manner. Cell Rep 13:412–424

	180.	 Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, 
Gottfried E et al (2007) Inhibitory effect of tumor cell-derived lactic acid 
on human T cells. Blood 109:3812–3819

	181.	 Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E (2012) 
Tumor lactic acidosis suppresses CTL function by inhibition of p38 and 
JNK/c-Jun activation. Int J Cancer 131:633–640

	182.	 Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N 
et al (2014) Functional polarization of tumour-associated macrophages 
by tumour-derived lactic acid. Nature 513:559–563

	183.	 Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, Inoue N (2013) 
Dichloroacetate improves immune dysfunction caused by tumor-
secreted lactic acid and increases antitumor immunoreactivity. Int J 
Cancer 133:1107–1118

	184.	 Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova 
A et al (2012) Modulation of microenvironment acidity reverses anergy 
in human and murine tumor-infiltrating T lymphocytes. Cancer Res 
72:2746–2756

	185.	 Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov 
SG, Sitkovsky MV (2001) Differential effects of physiologically relevant 
hypoxic conditions on T lymphocyte development and effector func-
tions. J Immunol 167:6140–6149

	186.	 Hale LP, Braun RD, Gwinn WM, Greer PK, Dewhirst MW (2002) Hypoxia in 
the thymus: role of oxygen tension in thymocyte survival. Am J Physiol 
Heart Circ Physiol 282:H1467–1477

	187.	 Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH 
(2004) Vhlh gene deletion induces Hif-1-mediated cell death in thymo-
cytes. Mol Cell Biol 24:9038–9047

	188.	 Kumar V, Gabrilovich DI (2014) Hypoxia-inducible factors in regulation 
of immune responses in tumour microenvironment. Immunology 
143:512–519

	189.	 Kandalaft LE, Motz GT, Busch J, Coukos G (2011) Angiogenesis and 
the tumor vasculature as antitumor immune modulators: the role of 
vascular endothelial growth factor and endothelin. Curr Top Microbiol 
Immunol 344:129–148

	190.	 Berraondo P, Umansky V, Melero I (2012) Changing the tumor 
microenvironment: new strategies for immunotherapy. Cancer Res 
72:5159–5164

	191.	 Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and 
disease pathophysiology. Annu Rev Pathol 9:47–71

	192.	 Scholz CC, Taylor CT (2013) Targeting the HIF pathway in inflammation 
and immunity. Curr Opin Pharmacol 13:646–653

	193.	 Labiano S, Palazon A, Melero I (2015) Immune response regulation in 
the tumor microenvironment by hypoxia. Semin Oncol 42:378–386

	194.	 Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in 
cancer biology and therapeutics. Oncogene 29:625–634

	195.	 Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang 
CV et al (2007) HIF-1 inhibits mitochondrial biogenesis and cellular 
respiration in VHL-deficient renal cell carcinoma by repression of C-MYC 
activity. Cancer Cell 11:407–420

	196.	 Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z et al 
(2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. 
Cell 146:772–784

	197.	 Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, 
Johnson RS et al (2013) Hypoxia-inducible factors enhance the effec-
tor responses of CD8(+) T cells to persistent antigen. Nat Immunol 
14:1173–1182

	198.	 Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, 
Rolf J, Panteleyev AA et al (2012) PDK1 regulation of mTOR and hypoxia-
inducible factor 1 integrate metabolism and migration of CD8+ T cells. 
J Exp Med 209:2441–2453

	199.	 Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V 
et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade 
under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 
211:781–790

	200.	 Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mecha-
nism of hypoxia-mediated escape from adaptive immunity in cancer 
cells. Cancer Res 74:665–674

	201.	 Belikov AV, Schraven B, Simeoni L (2015) T cells and reactive oxygen 
species. J Biomed Sci 22:85

	202.	 Chaudhri G, Clark IA, Hunt NH, Cowden WB, Ceredig R (1986) Effect of 
antioxidants on primary alloantigen-induced T cell activation and prolif-
eration. J Immunol 137:2646–2652

	203.	 Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS (2002) Discrete 
generation of superoxide and hydrogen peroxide by T cell receptor 
stimulation: selective regulation of mitogen-activated protein kinase 
activation and fas ligand expression. J Exp Med 195:59–70



Page 22 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	204.	 Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells 
express a phagocyte-type NADPH oxidase that is activated after T cell 
receptor stimulation. Nat Immunol 5:818–827

	205.	 Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao 
PJ et al (2006) Selective killing of oncogenically transformed cells 
through a ROS-mediated mechanism by beta-phenylethyl isothiocy-
anate. Cancer Cell 10:241–252

	206.	 Xie H, Valera VA, Merino MJ, Amato AM, Signoretti S, Linehan WM, 
Sukhatme VP et al (2009) LDH-A inhibition, a therapeutic strategy for 
treatment of hereditary leiomyomatosis and renal cell cancer. Mol 
Cancer Ther 8:626–635

	207.	 Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P, Signoretti S et al 
(2014) Targeting lactate dehydrogenase—a inhibits tumorigenesis 
and tumor progression in mouse models of lung cancer and impacts 
tumor-initiating cells. Cell Metab 19:795–809

	208.	 Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, 
Bellinger G et al (2011) Inhibition of pyruvate kinase M2 by reactive 
oxygen species contributes to cellular antioxidant responses. Science 
334:1278–1283

	209.	 Watson J (2013) Oxidants, antioxidants and the current incurability of 
metastatic cancers. Open Biol 3:120144

	210.	 Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J et al 
(2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal 
cancer cells by targeting GAPDH. Science 350:1391–1396

	211.	 Kwon J, Shatynski KE, Chen H, Morand S, de Deken X, Miot F, Leto TL 
et al (2010) The nonphagocytic NADPH oxidase Duox1 mediates a posi-
tive feedback loop during T cell receptor signaling. Sci Signal 3:ra59

	212.	 Yi JS, Holbrook BC, Michalek RD, Laniewski NG, Grayson JM (2006) 
Electron transport complex I is required for CD8+ T cell function. J 
Immunol 177:852–862

	213.	 Kaminski MM, Roth D, Sass S, Sauer SW, Krammer PH, Gulow K (2012) 
Manganese superoxide dismutase: a regulator of T cell activation-
induced oxidative signaling and cell death. Biochim Biophys Acta 
1823:1041–1052

	214.	 Los M, Schenk H, Hexel K, Baeuerle PA, Droge W, Schulze-Osthoff K 
(1995) IL-2 gene expression and NF-kappa B activation through CD28 
requires reactive oxygen production by 5-lipoxygenase. EMBO J 
14:3731–3740

	215.	 Droge W (2002) Free radicals in the physiological control of cell func-
tion. Physiol Rev 82:47–95

	216.	 Kaminski M, Kiessling M, Suss D, Krammer PH, Gulow K (2007) Novel 
role for mitochondria: protein kinase Ctheta-dependent oxidative 
signaling organelles in activation-induced T-cell death. Mol Cell Biol 
27:3625–3639

	217.	 Thoren FB, Betten A, Romero AI, Hellstrand K (2007) Cutting edge: 
antioxidative properties of myeloid dendritic cells: protection of T cells 
and NK cells from oxygen radical-induced inactivation and apoptosis. J 
Immunol 179:21–25

	218.	 Kasic T, Colombo P, Soldani C, Wang CM, Miranda E, Roncalli M, Bronte V 
et al (2011) Modulation of human T-cell functions by reactive nitrogen 
species. Eur J Immunol 41:1843–1849

	219.	 Cemerski S, van Meerwijk JP, Romagnoli P (2003) Oxidative-stress-
induced T lymphocyte hyporesponsiveness is caused by structural 
modification rather than proteasomal degradation of crucial TCR signal-
ing molecules. Eur J Immunol 33:2178–2185

	220.	 King MR, Ismail AS, Davis LS, Karp DR (2006) Oxidative stress promotes 
polarization of human T cell differentiation toward a T helper 2 pheno-
type. J Immunol 176:2765–2772

	221.	 Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ (2011) Reactive car-
bonyls are a major Th2-inducing damage-associated molecular pattern 
generated by oxidative stress. J Immunol 187:1626–1633

	222.	 Shatynski KE, Chen H, Kwon J, Williams MS (2012) Decreased STAT5 
phosphorylation and GATA-3 expression in NOX2-deficient T cells: role 
in T helper development. Eur J Immunol 42:3202–3211

	223.	 Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modula-
tion by regulatory T cells. Nat Chem Biol 5:721–723

	224.	 Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with 
glutathione metabolism in dendritic cells and T cells. J Biol Chem 
285:41525–41532

	225.	 Sasidharan Nair V, Song MH, Oh KI (2016) Vitamin C facilitates demeth-
ylation of the Foxp3 enhancer in a Tet-dependent manner. J Immunol 
96:2119–21131

	226.	 Tkachev V, Goodell S, Opipari AW, Hao LY, Franchi L, Glick GD, Ferrara JL 
et al (2015) Programmed death-1 controls T cell survival by regulating 
oxidative metabolism. J Immunol 194:5789–5800

	227.	 Okoye I, Wang L, Pallmer K, Richter K, Ichimura T, Haas R, Crouse J 
et al (2015) T cell metabolism. The protein LEM promotes CD8(+) T 
cell immunity through effects on mitochondrial respiration. Science 
348:995–1001

	228.	 Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in 
immune regulation and disease. Trends Immunol 34:556–563

	229.	 Croft M (2009) The role of TNF superfamily members in T-cell function 
and diseases. Nat Rev Immunol 9:271–285

	230.	 Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 
229:114–125

	231.	 Deberardinis RJ, Lum JJ, Thompson CB (2006) Phosphatidylinositol 
3-kinase-dependent modulation of carnitine palmitoyltransferase 
1A expression regulates lipid metabolism during hematopoietic cell 
growth. J Biol Chem 281:37372–37380

	232.	 Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-
Mortari A, Munn DH et al (2013) Host programmed death ligand 1 is 
dominant over programmed death ligand 2 expression in regulating 
graft-versus-host disease lethality. Blood 122:3062–3073

	233.	 Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser 
M, Zhan Q et al (2008) Identification of cells initiating human melano-
mas. Nature 451:345–349

	234.	 Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, 
Elco CP et al (2015) Melanoma cell-intrinsic PD-1 receptor functions 
promote tumor growth. Cell 162:1242–1256

	235.	 Rahman M, Hasan MR (2015) Cancer metabolism and drug resistance. 
metabolites 5:571–600

	236.	 Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic 
targets for cancer therapy. Nat Rev Drug Discov 12:829–846

	237.	 Bensaad K, Harris AL (2013) Cancer metabolism as a therapeutic target: 
metabolic synthetic lethality. Oncology (Williston Park) 27(467):473

	238.	 Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to 
improve cancer therapeutics. Cell Death Dis 4:e532

	239.	 Perlia CP, Kofman S, Sky-Peck H, Taylor SG 3rd (1961) Clinical use of 
6-aminonicotinamide in patients with disseminated neoplastic disease. 
Cancer 14:644–648

	240.	 Varshney R, Dwarakanath B, Jain V (2005) Radiosensitization by 6-ami-
nonicotinamide and 2-deoxy-d-glucose in human cancer cells. Int J 
Radiat Biol 81:397–408

	241.	 Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus 
on in vivo evidence. Endocr Relat Cancer 21:R209–225

	242.	 Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular 
fatty acid metabolism and cancer. Cell Metab 18:153–161

	243.	 Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer preven-
tion and therapy. Ann Transl Med 2:57

	244.	 Morales DR, Morris AD (2015) Metformin in cancer treatment and 
prevention. Annu Rev Med 66:17–29

	245.	 Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty 
acid oxidation in the limelight. Nat Rev Cancer 13:227–232

	246.	 Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin 
B, Kaluarachchi K et al (2010) Pharmacologic inhibition of fatty acid 
oxidation sensitizes human leukemia cells to apoptosis induction. J Clin 
Invest 120:142–156

	247.	 Salani B, Marini C, Rio AD, Ravera S, Massollo M, Orengo AM, Amaro A 
et al (2013) Metformin impairs glucose consumption and survival in 
Calu-1 cells by direct inhibition of hexokinase-II. Sci Rep 3:2070

	248.	 Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, 
Petretto A et al (2016) Divergent targets of glycolysis and oxidative 
phosphorylation result in additive effects of metformin and starvation 
in colon and breast cancer. Sci Rep 6:19569

	249.	 Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, Sugita Y 
et al (2015) Expression of programmed cell death ligand 1 is associ-
ated with poor overall survival in patients with diffuse large B-cell 
lymphoma. Blood 126:2193–2201



Page 23 of 23Herbel et al. Clin Trans Med  (2016) 5:29 

	250.	 Boussiotis VA (2015) Cell-specific PD-L1 expression in DLBCL. Blood 
126:2171–2172

	251.	 Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman 
JM (2011) Programmed death ligand 1 is expressed by non-hodgkin 
lymphomas and inhibits the activity of tumor-associated T cells. Clin 
Cancer Res 17:4232–4244

	252.	 Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H et al 
(2013) PD-L1 expression is characteristic of a subset of aggressive 
B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 
19:3462–3473


	Clinical significance of T cell metabolic reprogramming in cancer
	Abstract 
	Cancer cell metabolism and implications on T cell function in the tumor microenvironment
	Metabolic features of cancer cells: glycolysis and Warburg effect, metabolic flexibility, metabolic flux
	Adaptation to glycolysis and the Warburg effect
	PI3K-Akt-mTOR-FOXO
	AMPK-mTOR
	p53-Myc
	Metabolic flux
	Beyond Warburg
	Tryptophan
	Glutamine
	Redox status (ROSNADPHGSHTRX)
	Epigenetics
	Changes in the microenvironment
	Hypoxia
	Nutrient deprivation
	Metabolic waste
	Basic metabolic features of T cells


	Role of metabolism in T cell differentiation
	Effects of the tumor microenvironment on T cell fitness
	Exhaustion
	Nutrients
	Lactate
	Hypoxia
	Reactive oxygen species
	Checkpoint inhibitors


	Harnessing metabolism therapeutically against cancer
	Conclusions and future directions
	Authors’ contributions
	References




