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double-edged sword
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Abstract

Epithelial mesenchymal transition (EMT) is a physiological process necessary to normal embryologic development.
However in genesis of pathological situations, this transition can be perverted and signaling pathways have
different regulations from those of normal physiology. In cancer invasion, such a mechanism leads to generation of
circulating tumor cells. Epithelial cancer cells become motile mesenchymal cells able to shed from the primary
tumor and enter in the blood circulation. This is the major part of the invasive way of cancer. EMT is also implicated
in chronic diseases like fibrosis and particularly renal fibrosis. In adult organisms, healing is based on EMT which is
beneficial to repair wounds even if it can sometimes exceed its goal and elicit fibrosis. In this review, we delineate
the clinical significance of EMT in both physiological and pathological circumstances.
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Introduction

Epithelial tissues are the basis of most complex organs.
Apical-basal polarity, cell-cell junctions allow tight phys-
ical coupling and enable epithelial cells to form sheet
structures of generally crystalline order [1,2]. Epithelial
sheets can actively migrate during physiological or
pathological processes: embryogenesis, wound healing and
cancer development. Over the course of these events, indi-
vidual mesenchymal cells undergo a dispersion supported
by an epithelial mesenchymal transition (EMT). EMT
drives cells between two opposite flexible states: epithelial
or mesenchymal. Such bold phenotypes are not an abso-
lute rule. Rather than being all-or-nothing EMT is a
fine-tuned manner regulated transition for each individ-
ual cancer cells. If EMT is a pathological phenomenon
in cancer, its embryonic mirror picture will lead to or-
ganogenesis, necessary to living beings development.
Moreover EMT occurs during the wound healing
process. The latter leads when deregulated to fibrosis.
In this review we will consider EMT through embryo-
genesis, in pathological situations like wound healing,
fibrosis and finally in oncologic relapses and metastasis.
We shall underline what could be the role of EMT in
clinical applications.
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EMT appears to occur in developmental steps during
neural crest formation, gastrulation in the primitive
streak somite decondensation, cardiac valve formation
and other embryological events [3]. Common signaling
pathways lead to delamination and migration of epithe-
lial cells. EMT throughout embryogenesis highlights and
provides important clues to explain abnormal develop-
ment or loss of the differentiated state. Many signaling
proteins and transcription factors are involved in EMT.
Epithelia layered on extracellular matrix (ECM) are sepa-
rated from it by basal membrane. Their cells have an
apical-basal polarity and they are linked together by
junctions. The latter are made of specific proteins which
build adherens junctions and desmosomes. At the top
lateral zones, tight junctions provide sealed connexions.
Cells are also related one to another by gap junctions
which furthermore support metabolism exchanges [4].
E-cadherin is a typical cadherin implicated in cell adhe-
rens junctions. Cadherins are linked to the cortical actin
cytoskeleton via catenins. Desmosomes contribute to ad-
hesion. Their structure includes cadherins, desmocollins
and desmogleins which interact with cytokeratins
through plakoglobulin and plakophilins. Integrins of
hemidesmosomes account for basal adhesion [5-7]. The
EMT event is characterized by up or down regulation of
many proteins that support the epithelial architecture.
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The regulation is dependent on a web of chemical path-
ways specific to the type of EMT and tissues. EMT can
be classified according to the circumstances of its occur-
rence. In embryology the phenomenon is called Type 1
EMT [8]. In the context of cancer, EMT is subverted
and termed Type 3 EMT. Type 2 EMT leads to gener-
ation of new fibroblasts particularly in the field of renal
injury [9].

EMT and embryogenesis

EMT is a normal process necessary to development of
the body plan: histogenesis and organogenesis. It was
known from embryologists studies as soon as 1879 [10]
and its revival was highlighted by publications of
Greenburg and Hay [11,12]. Gastrulation, a reorganization
of single layed embryo into three layers formation was first
described by Trelstad et al. They described this pheno-
menon in chick embryo [13]. From these results, there
were exponential publications on this topic.

From this pioneer work many research developments
were led on role of EMT in gastrulation, heart formation
(including endothelial mesenchymal transition), neural
crest. They were realized by using different animal
models: drosophila, sea urchin, chicken and mouse
embryos. One the best embryological example of EMT
is described in mouse embryo gastrulation. The latter is
characterized by down regulation of E-cadherin. This
protein is controlled at the transcriptional level by Snaill
and at posttranscriptional level by P38 interacting pro-
tein [14-16]. Among typical events of EMT, like involu-
tion (partial EMT), ingression is a process that allows
single cells to delaminate and migrate into the sub-
epiblast territory. At the cellular level, it can be ex-
plained by a cascade of biochemical reactions. When a
cell with intact junctional complexes and epithelial po-
larity is submitted to EMT, growth factors activate mem-
brane receptors in such a manner that actin
cytoskeleton is remodeled and apical-basal polarity lost.
Then DDR1 complex is able to activate RhoE resulting
in actomyosin contractility weakness [17]. Non canonical
pathways are triggered by tight junctions TGFp recep-
tors leading to ubiquitynilation and degradation of RhoA
that destabilize cortical actin microfilaments. Then acti-
vation of Snail and Serpent, among transcriptional re-
pressors down regulates genes encoding for E-cadherin,
claudin and occludin [18-20]. In addition Srp represses
Crb apical polarity gene leading to redistribution of E-
cadherin and Snail represses Crumbs3. Zebl, Crumbs3
and Lgl2 interact. Total EMT can be executed by Snail
even through the activation of matrix metalloprotein-
ases. SNAII1 and SNAI2 are key inducers of EMT in gas-
trulating mouse [21]. Snaill is prevalent on Snail2 as
deletion of Snail2 in mice shows no EMT failure [22].
Schemes describing signaling pathways of EMT can be
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found in the major publication of Lim and Thierry [23].
EMT failure can be involved in embryological pathology.
In this way, EMT seems to be implicated in cleft palate
defect. The latter is one of the most common human
congenital anomalies affecting around one case in 500—
2500 live births. During palatal fusion, the midline epi-
thelial seam between the palatal shelves degrades to
achieve mesenchymal confluence. Fusion of the two pal-
ate shelves is a process involving cell death, adhesion
and EMT. It implies EMT as a regulator of palatal fu-
sion. The main inductor of this transition is TGF3 able
to activate key EMT transcription factors like Lefl, Twist
and Snaill. To support this hypothesis it was demon-
strated that TGFB3 null mice develop cleft palate [24].
Among other embryological pathologies issue from
EMT deregulation, congenital heart defects can be sus-
pected. Valvuloseptal endocardial cushion tissue arises
from endothelial cells through a phenomenon called
endothelial mesenchymal transition. The latter is mainly
regulated by bone morphogenetic protein (BMP), TGEP
and mesenchymal status (EMT) that are essential area of
medical research [25].

Wound healing and EMT
EMT has a major role in wound healing and can explain
some of its pathological aspects. EMT is mediated by in-
flammatory cells and fibroblasts. These cells secrete in-
flammatory molecules able to interact with proteins of
ECM like collagens, laminins, elastin, and tenacins. [26].
Tissue wound healing evolves in three phases: inflamma-
tory, proliferative and maturation phases. The aim of in-
flammation is to limit tissue damage through
phagocytosis. The second phase leads to formation of
granulation tissue, angiogenesis, deposition of new ECM
and then re-epithelialization. The key step of wound
healing is re-epithelialization. Keratinocytes become ac-
tively moving cells from the edges to the hole of the
wound. Normally the epithelial layer of keratinocytes
goes through differentiation of progenitor cells until cell
death. This process causes the formation of the epider-
mis outer layer (cytokeratin skeleton and lipids mixture).
This mechanical and hydration barrier protects the
underlying tissue. The re-epithelialization is sustained by
conversion of cells from sedentary state to the migratory
one. This is due to EMT which is essential for wound re-
pair. This modification of cellular phenotype is clearly
profitable opposite to changes that occur in a tumor.
Comparison of cancer and re-epithelialization EMT has
clinical implications. Effectively it can give rise to con-
flict between cancer therapy and wound healing [27].
TGEP is a major cytokine inducing EMT and also has
other implications in wound healing. Moreover different
growth factors can play a role in the EMT process. They
include: hepatocyte growth factor, epidermal growth
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factor, insulin-like growth factor, connective tissue
growth factor, tumor necrosis factor alpha, and fibroblast
growth factor [8]. High levels of TGFB have been de-
tected in granulation tissue from healing thermal burn
wounds and correlatively there was high expression of
TGEP receptors in fibroblasts involved in wound repair.
The up-regulation of TGFf can exceed its goal and leads
to hypertrophic scars [28].

Osteopontin (OPN), a glycoprotein also named Se-
creted Phosphoprotein 1 has been implicated in 3 types
(EMT associated with migration of cancer cells (metasta-
sis) is referred as Type III. EMT process ongoing in em-
bryogenesis is named Type I and Type II is linked to
regeneration/fibrosis). OPN is able to bind different in-
tegrin receptors and several transcription factors regu-
lated by TGEp sustain the expression of OPN. Thus,
OPN seems to play a central role in TGFB-dependent
processes and is involved in TGFP dependent EMT [29].

Fibrosis and EMT

The best fibrosis model depicted in clinical pathology is
renal interstitial fibrosis. It is a progressive and lethal
disease due to different grounds like urinary tract ob-
struction, chronic inflammation and diabetes [30]. EMT
plays a key role in the development of renal tubular fi-
brosis and synthesis of extracellular matrix. Pathways of
this pathological EMT are studied by numerous labora-
tories as new therapies could target it and be opposed to
its progression. TGFP upstream regulates many path-
ways. Among them are included Smad as well as
MAPK-PI3k signaling pathways, TGFP receptor kinase
phosphorylates Smad 2 and 3. The activated latter inter-
act with Smad4 that undergoes nucleus translocation,
thus regulating transcription TGFp target genes. TGFf/
Smad3 regulation seems to be essential in pathological
fibroses [31].

Renal tubulointerstitial fibrosis leads to end-stage renal
failure [32]. This process associates ECM deposition, in-
flammatory cells infiltration, fibroblasts accumulation
with loss of tubular epithelial cells. The pathology is sus-
tained by EMT targeting tubular cells. The latter acquire
the classical markers of this pathway. The major growth
factor driving the transformation is TGEP. The reversion
of EMT reduces fibroblasts proliferation and deposition
of ECM in the cortical interstitium. Thus, the best
choice to prevent progressive renal tubulointerstitial fi-
brosis is to regulate EMT [33]. Activation of hedgehog
signaling that induces TGEB expression has profibro-
genic effects [34]. This pathway is activated by binding
of the ligands including sonic hedgehog (Shh) to its
membrane receptor patched 1 (Ptchl). Transduction by
Smoothened (Smo), leads to translocation of the tran-
scription factor Glil to the nucleus. This activation of
hedgehog induces fibrogenesis. EMT in renal fibrosis has

Page 3 of 6

been debated [35-37]. Inoue et al. demonstrated that dis-
ease models and murine strains used in experimental con-
ditions have to be taken into account to explain reported
discrepancies [38]. Finally in a review, Galichon and Hertig
showed the role of EMT markers in the diagnosis and
prognosis of kidney failures [39]. They indicated that
among EMT markers used in immunohistochemistry, the
best could be simultaneously vimentin and B-catenin. At
the opposite they excluded the fibroblast-specific protein
(ESP1) and E-cadherin. They reported their study on renal
allograft: three months after transplantation, vimentin and
[-catenin had prognostic value and were associated with a
more rapid progression towards graft interstitial fibrosis
and decrease in renal function at twelve months. This paper
is a proof that EMT research can be translated to clinical
applications [40].

Recent publications of Leask et al. demonstrated that
TGEB is able to promote tissue repair and fibrosis
trough the noncanonical focal adhesion kinase (FAK)
pathway. FAK is implicated in myofibroblast differenti-
ation. Thus acting on FAK pathway could be a major
point to treat fibrosis disease. In a similar way excessive
scarring could benefit from the same drugs [41,42].

Cancer and EMT

The major headline of EMT in clinical application is re-
lated to cancer disease. Effectively there is a close link
between EMT, circulating tumor cells (CTC) and metas-
tasis. EMT endows tumor cells with new features,
chemo and radiotherapy resistances. Thus, EMT is a
major target to break the deleterious cycle of cancer.
From the primary tumor, some epithelial cells can lose
their cell-cell adhesion and become motile and invasive
mesenchymal cells. These cells invade the ECM and mi-
grate along a newly formed matrix of fibronectin and
type I collagen [8]. They can move as single cells or be
part of a collective migration: cell clusters. The latter
made of cells with mixed phenotype (epithelial-mesen-
chymal) can avoid anoikis and lead more easily than sin-
gle cells to metastasis [43]. Thus these results suggest
that mesenchymal cells can protect from anoikis epithe-
lial cells included in a cluster. Shed cells cross the ECM
to reach vessels (intravasation) and by extravasation they
colonize a distant organ in a specific niche. Then they
stay as dormant tumor cells, micrometastasis or grow as
a macrometastasis. The fate of such a new localization is
depending on the mesenchymal epithelial transition
(MET) which is the reverse way of EMT. We will review
the different steps of this phenomenon.

From an epithelial tumor, cancer cells can reach ves-
sels leading to CTCs. Many factors induce shedding of
cancer cells. Transcription factors acting on gene expres-
sion are able to promote loss of cell-cell adhesions. As a
result there is a shift in cytoskeletal anatomy and a
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change from epithelial morphology to the mesenchymal
one. The EMT switch is on a signaling pathway depend-
ence of TGFB, BMP, Wnt—f-catenin, Notch, Hedgehog,
and receptor tyrosine kinases. Many studies reported
the role of several micro RNAs in the regulation of EMT
and their interactions with ZEB1 and ZEB2 [44].
Izumchenko et al. demonstrated that the role of micro-
RNA network on EMT-associated kinase switch [45].
Studies on EMT and micro RNA relations are a hot field
now and would deserve a specific review. Moreover ab-
normal cancer epigenome is also implicated in control of
EMT and stemness. Epigenetic deregulation evidently has
a role in cancer that can be targeted in clinical trials [46].
The major stimulus able to activate the TGFP pathway
is hypoxia acting through HIFla. The epithelial cobble-
stone growth pattern is held together by cell adhesion
molecules (claudins and E-cadherin). The basal membrane
anchors epithelial cells, through hemidesmosomes, to the
ECM and provide their apical-basal polarity. Hallmarks of
EMT are decreased expression of E-cadherin, tight junction
proteins (ZO-1 and occludin) and cytokeratins while mes-
enchymal markers are overexpressed (vimentin, N-
cadherin). Individual motile and shape spindle cells enter
the ECM to reach vessels. This scheme is not as simple as
described. Effectively a continuum of transformation from
epithelial to mesenchymal cells has been suggested [47].
Moreover in two recent publications Jolly et al. proposed a
mathematical model related to the process evolution
[48,49]. They described the hybrid phenotype (epithelial
and simultaneously mesenchymal) that gains likelihood
stemness. This model could define the characteristics of cell
clusters which are found among CTCs. Cancer stem cells
have particular properties as they have the capacity to both
self renew and differentiate into non stem tumor cells. A
closed relation between induction of EMT and endowing of
stemness characteristic has been demonstrated [46,50,51].
These kinds of hybrid cells seem likely to support microme-
tastasis and or relapses. In a recent publication, Ilie et al.
demonstrated that cluster of hybrid cells are evidenced in
the blood of patients with obstructive bronchopathy, at
least 3 years before a primary lung tumor can be detected
[52]. Aceto et al. demonstrated that CTC clusters are 50
fold more metastatic than single CTCs [43]. All these pub-
lished results lead to the hypothesis that the major target to
avoid relapse and metastasis in cancer are the hybrid
phenotype (epithelial and mesenchymal) cells. Another
therapeutic opportunity would be to interact on the rever-
sion of EMT: MET. Effectively the major result of EMT is
extravasation of CTCs into ectopic organs. After this step,
cancer cells must survive in the adverse environment of
organ parenchyma. There are new evidences that EMT is
not irreversible and that reexpression of adhesion mole-
cules due to MET promote survival and proliferation of
cancer cells. One major factor of this reverse process seems
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to be the transcription factor MYB [53]. Moreover Ocana
et al. showed that Twist downregulation favors metastasis
formation. However silencing Twist alone is not sufficient
to induce metastasis in the presence of PRRX1. PRRX1 loss
is sufficient to reverse EMT even in the presence of other
EMT inducers such as Twistl. Thus downregulation of
PRRX1 leads to MET which goes along with acquisition of
stem cell properties and increase of intermediary cell
phenotype (epithelioid-mesenchymal) proliferation [54].
Targeting cells having EMT and cancer stem cell features
appears a difficult task as normal stem cells share many
identical characteristics. However Kreso et al. described a
new therapeutic way to downregulate the BMI1-related self
renewal without alteration of normal stem cells [55].

Many authors have compared EMT in different patho-
physiological conditions. They assess similarities and dis-
crepancies in protein expression and or signaling
pathways in cancer and wound healing [56-58]. The
CCN protein family interacts with integrins leading to
release of growth factors, cytokines and matrix metallo-
proteinases. CCN2 and CCN4 are specifically up-
regulated during wound healing while CCN3 and CCN5
are down-regulated [59-61]. The spectrum of CCN pro-
teins could be one of the discrepancies between EMT of
wound healing and cancer. Effectively, CCN1 and CCN6
have been characterized to have tumor promoting activ-
ity [62-64]. Both the Ras/ERK/MAPK pathway [65,66]
and the PI3K/Akt/mTOR axis [67,68] are used in wound
healing and cancer EMT. The discrepancy is rather
based on transcription factor activity. Thus while Slug
activity is upregulated in both wounded epithelium and
in tumor cells [69-74], Snail has not been described as a
major player during wound healing [75-80]. Moreover
Zebl, Ets-1, and FoxC2 seem to be an hallmark of can-
cer EMT. As both types of EMT share many similar sig-
naling pathways, it is difficult to develop therapies
targeting solely cancer EMT or wound healing EMT.

Conclusion

EMT is a central physiological process for homeostasis
and health of live beings. When shapely, fine tuned,
during embryo development it leads to a normal ana-
tomical body. The least failure of its regulating pathways
sustained embryological defects. In a fully developed
organism, when EMT is perverted, its activation is ac-
countable for pathological situations as demonstrated in
cancer and fibrosis diseases. EMT is still a beneficial way
when acting in repair wounds. Nevertheless if we com-
pared wound healing and cancer growth, we can con-
sider cancer growth as a wound healing process that
goes over its aim. Such opposing roles underline the dif-
ficulties to develop EMT drugs. Many therapies have
been proposed to act on the receptors and/or signaling
pathways that give rise to EMT. As mechanisms between
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cancer EMT and wound healing are shared, a conflict
can rise between therapy of cancer and promotion of
wound healing [27]. This review underlines the com-
plexity of pharmacological improvements as EMT has
conflicting aims according to its role in the targeted
pathologies: fibrosis, wound healing, cancers.
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