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The significance of macrophage polarization
subtypes for animal models of tissue fibrosis
and human fibrotic diseases
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Abstract

The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health
problems world-wide causing a large proportion of the total world population mortality. The molecular pathways
involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated.
Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes
and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the
precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or
progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations
have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects.
Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of
monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target
specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an
overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal
models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will
discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the
phenotypic differences identified between the various monocyte and macrophage subpopulations.
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Introduction
Monocytes/macrophages are a heterogeneous cell popu-
lation that plays a crucial role in various fundamental
innate immunity processes displaying remarkable flexi-
bility for adaptation to specific external and internal
stimuli [1,2]. The monocyte/macrophage system consists
of: 1) bone marrow-derived circulating monocytes re-
cruited to sites of tissue injury; 2) infiltrating macro-
phages arising from in situ differentiation of recruited
monocytes; 3) resident tissue macrophages derived from
embryonic yolk-sac precursors such as hepatic Kupffer
cells, pulmonary alveolar and interstitial macrophages,
renal intraglomerular mesangial cells, and dermal Lang-
erhans cells, and 4) monocyte-derived dendritic cells
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that present antigen in the context of MHC molecules,
representing an important bridge between the innate
and adaptive immune systems. Monocytes/macrophages
play important roles in wound healing and in the re-
sponse to tissue injury. Properly orchestrated wound re-
pair accomplishes the elimination of injurious initiating
factors and the restoration of the damaged tissue archi-
tecture and integrity. However, dysregulation of this
process can result in pathologic fibrosis. Further, there is
abundant experimental evidence that monocytes/macro-
phages and the molecular pathways activated during
wound healing also play a role in the pathogenesis of
systemic fibroproliferative diseases such as Systemic
Sclerosis (SSc), and Nephrogenic Systemic Fibrosis
(NSF), as well as organ-specific fibrotic disorders includ-
ing Idiopathic Pulmonary Fibrosis (IPF) and liver, kidney,
and cardiac fibrosis.
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Origin and diversity of monocytic phagocytes
Bone marrow-derived monocytes are recruited into tis-
sues from the peripheral blood, differentiating in situ
and joining the pool of resident tissue macrophages to
mount a defense against pathogens and assist in wound
healing. Monocyte/macrophage differentiation is regu-
lated by a complex interplay of factors influenced by the
local tissue environment and by features of the specific
injury initiator as illustrated in Figure 1 [3-6]. Mirroring
the Th1/Th2 T-helper cell nomenclature, monocytes and
macrophages have traditionally been divided into two
major subpopulations based on their origin, location and
their in vitro response to cytokines or microbial prod-
ucts as summarized in Table 1. In this scheme, mono-
cytes/macrophages that mediate inflammation have been
classified as M1 whereas monocytes/macrophages with
tissue remodeling/profibrotic activity have been classi-
fied as M2. Although this classification scheme is now
generally considered to be a gross oversimplification of
Figure 1 The monocyte/phagocyte system. Two populations of bone-m
circulation. Ly6Clo monocytes are primarily responsible for patrolling the va
homeostasis. Ly6hi monocytes enter the tissues as part of their intrinsic fun
of injury by resident tissue macrophages. Upon entering the tissue, these m
inflammatory and immune stimuli specific to the tissue microenvironment.
broadly classified as classically activated inflammatory (M1) or alternatively
Resident tissue macrophages that originated from embryonic yolk sac and
by proliferation of the resident population or by infiltrating differentiated m
Solid arrows indicate major differentiation/activation pathways. Dotted arro
chemokine ligand 1; CCR1, C-C chemokine receptor 1; CCR2, C-C chemoki
chemokine ligand 1; CX3CR1, C-X3-C chemokine receptor 1; GC glucocortic
Interleukin-13; TGF-β, Transforming Growth Factor β.
the true spectrum of in vivo monocyte/macrophage phe-
notypes, numerous studies still attribute an M1-like or
M2-like phenotype to specific subpopulations of mouse
or human monocytes/macrophages. For the purpose of
this review, we will refer to these populations as either
inflammatory or tissue remodeling/profibrotic, respect-
ively, however, we will indicate whether the authors used
the M1 or M2 classification in parentheses.
Functional monocyte/macrophage classification based

on in vitro modes of activation is widely employed, how-
ever, currently there is no universally accepted no-
menclature. Recently, two proposals have been made to
revise the monocyte/macrophage system nomenclature
to more accurately represent the expanded phenotype
diversity within this system and to incorporate the rap-
idly expanding database of surface marker expression
and transcriptomic analyses delineating steady-state
monocyte/macrophage populations in humans and mice.
One such proposal is based on macrophage origin,
arrow derived monocytes, Ly6Chi and Ly6Clo monocytes enter the
sculature, regulating neovascularization and monitoring endothelial cell
ction or in response to pro-inflammatory chemokines released at sites
onocytes can differentiate into macrophages in response to various
The phenotype of the differentiated infiltrating macrophages can be
activated tissue remodeling/profibrotic (M2) macrophage populations.
migrated to organs during development can be replenished either
acrophages that have survived following inflammation resolution.
ws indicate secondary or minor differentiation pathways. CCL1, C-C
ne receptor 2; CCR5, C-C chemokine receptor 5; CX3CL1, C-X3-C
oid; IFN-γ, Interferon-γ; IL-4, Interleukin-4; IL-10, Interleukin-10; IL-13,



Table 1 Main monocyte and macrophage polarization population subsets

Circulating monocytes Differentiated macrophages

Phenotype Inflammatory Anti-inflammatory Inflammatory Tissue remodeling/profibrotic

Classical
nomenclature

Ly6Chi (mouse) Ly6Clow (mouse) M1 M2a M2b M2c

CD14++CD16- (human) CD14dimCD16++ (human)

Differentiating agent IFNγ IL-4 ICs IL-10

TNF-α IL-13 LPS TGF-β

LPS IL-4 + LPS LTR + IL-1R GC

IFN-β

HDL

Markers CCR1hi CCR2low CD86 CD163 CD86 CD163

CCR2hi CCR5hi CD80 MHCII MHCII TLR1

CX3CR1
low CX3CR1

hi MHCIIhi SR TLR8

CD11b+ CD11b+ IL-1R CD206

CD115+ CD115+ TLR2 TGM2

CD62L+ CD62L- TLR4 DecoyR

CD11c- CD11c+ INOS

Cytokines produced TNF-α IL-10 TNF-α IL-10 IL-4 IL-10

IL-1β TGF-β IL-1β TGF-β IL-6 TGF-β

IL-6 IL-1ra IL-10

IL-12 TNF-α

IL-23

Chemokines produced CCL2 CCL8-11 CCL17 CCL1 CCR2

CCL2-5 CCL22

CCL24

Classification scheme for human and murine monocyte and macrophage population subsets displaying their response to differentiating agents, expression of cell
surface markers and the production of major cytokines and chemokines.
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differentiation activators, and macrophage activation
marker expression [7]; and the other is based on their
cellular ontogeny [8].

Circulating monocytes
Murine circulating monocytes have been classified into
two populations based on the relative expression of the
Ly6C surface molecule, Ly6Chi and Ly6Clow, whereas in
humans three monocyte populations have been identi-
fied based on the relative expression of CD14 and CD16.
These subpopulations are identified as CD14++CD16-,
CD14++CD16+, and CD14+CD16++ [9-11]. Murine clas-
sical (Ly6Chi) or “inflammatory monocytes” [11-13]
respond to inflammatory signals, such as IFN-γ, TNF-α,
or lipopolysaccharide (LPS) and leave the circulation by
extravasation, whereas non-classical (Ly6Clow) “anti-
inflammatory” or “wound healing” monocytes influence
neovascularization and monitor endothelial cell homeo-
stasis by patrolling the luminal side of the vasculature
[14,15]. Recently, Ly6Chi monocytes that constitutively
traffic into skin, lungs, and lymph nodes during homeo-
stasis but do not differentiate into macrophages or
dendritic cells in the tissues have been identified. The
transcriptome of these cells is similar to that of circulat-
ing monocytes except for a limited number of genes in-
cluding MHCII and Cox-2. Although these cells can
bind and shuttle antigen to the lymph nodes, they
are incapable of blood recirculation [16]. In the corre-
sponding human subpopulations, the “classical” pro-
inflammatory CD14++CD16- subset expresses CCR2,
CD62L (L-Selectin) and FcγRI (CD64) whereas “non-
classical” anti-inflammatory CD14dimCD16++ monocytes
lack CCR2 and display higher levels of FCγRII (CD32)
and MHCII [11,13,15].
An area of debate concerns whether the Ly6Chi and

Ly6Clow represent separate cell populations or whether
Ly6Clow monocytes arise only after differentiation from
Ly6Chi monocytes followed by return to the bone mar-
row from the circulation. Several recent studies indicate
that only Ly6Chi monocytes leave the circulation by ex-
travasation in response to inflammatory signals, whereas
Ly6Clow monocytes reside within the vasculature [14,15].
In most injured tissues, the first infiltrating cells are
Ly6Chi monocytes followed by a decline in their
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numbers with a concomitant increase of Ly6Clow mono-
cytes [17-24]. In mouse myocardium [17], kidney [18],
muscle [21], and lung [23,24], the Ly6Clow population
arises from in situ differentiation of the recruited Ly6Chi

population whereas, in wounded mouse skin, a sequen-
tial invasion of Ly6Chi monocytes followed by Ly6Clow

monocytes is observed [20,22].

Infiltrating macrophages
Macrophage populations are generally classified based
on the differential expression of cell surface markers,
phenotypic differences in their response to stimuli, or
their origin and location [7,8,25-34]. The complex
process of monocyte recruitment and their subsequent
differentiation into various macrophage subpopulations
is depicted in Figure 1. Exposure of peripheral Ly6Chi

monocytes to GM-CSF polarizes them to differentiate
into macrophages with inflammatory properties whereas
CSF-1 exposure of peripheral Ly6Chi monocytes induces
Ly6C downregulation followed by polarization to tissue
remodeling/profibrotic (M2) macrophages [9-11,25]. M1
or “classically activated” macrophages are induced fol-
lowing recruitment by either IFN-γ alone or in conjunc-
tion with the microbial product LPS, or by cytokines
such as TNF-α or GM-CSF. Classically activated inflam-
matory macrophages present antigen, express CD80,
CD86, IL-1R, TLR2, TLR4 and iNOS, and possess a pro-
inflammatory phenotype characterized by the production
of the cytokines TNF-α, IL-1β, IL-6, IL-12, IL-23 and of
the chemokines CCL2-CCL5, CCL8-CCL11. Alterna-
tively activated tissue remodeling/profibrotic macro-
phages were initially defined as being activated by
exposure to IL-4 or IL-13, however, other stimuli can in-
duce polarization to alternatively activated macrophages,
resulting in subdivision of tissue remodeling/profibrotic
macrophages into three subtypes. One subtype is acti-
vated by exposure to IL-4 or IL-13; the second subtype
is induced by IL-10, TGF-β, glucocorticoids or IFN-β;
and the third subtype is induced by exposure to immune
complexes. Caution must be used, however, in translat-
ing phenotypes of monocytes/macrophages differenti-
ated in vitro to in vivo models since factors such as cell
maturation, variations in extracellular matrix (ECM)
composition within a specific tissue, and chemoattrac-
tants not precisely replicated in the in vitro differenti-
ation protocols can produce alterations in the functional
properties of these cells not observed in vitro. The recent
characterization of mouse and human monocyte/macro-
phage subpopulation transcriptomes and gene networks
should allow a more accurate translation of in vitro and
in vivo animal model data to human diseases [35-41].
Recent studies have shown that besides changes in

transcriptome expression modifications in non-coding
RNA species and changes in epigenetic events may also
be involved. Indeed, a recent examination demonstrated
a role of miRNA on the differentiation of recruited
monocytes into macrophages by measuring the response
of human peripheral blood mononuclear cells (PBMC) to
various differentiation stimuli ex vivo [42]. It was found
that the monocyte miRNA profile varied in a stimulus
and time-dependent manner. Exposure of PBMC to LPS,
an inducer of inflammatory monocyte/macrophage (M1)
differentiation caused increased miR-193b and miR222
and decreased miR27a, whereas exposure to IFN-γ, also
considered an inflammatory monocyte/macrophage (M1)
inducer, caused decreased miR-222, miR-125a-5p and
miR-27a. IL-4, an inducer of tissue remodeling/profibrotic
monocyte/macrophage (M2) differentiation increased
miR-193b and miR-222 but decreased miR125-5p. The
kinetics of the changes in the individual miRNA levels also
varied. Of particular interest was that co-culture of PBMC
with CD14- non-monocytic cells from the same donor
induced accumulation of miR-155 and miR193b and
increased expression of NF-κB, STAT1 and of the
interferon-responsive genes ITGB7 and ISG20. The NF-
κB repressor IκBα decreased in co-cultured monocytes,
providing the mechanistic basis for NF-κB activation.
These results collectively indicate that microenvironmen-
tal factors can uniquely modify the phenotype of differen-
tiated recruited monocytes inducing marked changes in
mRNA levels and also in miRNA expression and kinetics
that may modulate the remarkable flexibility of monocyte
responses to specific environmental cues.

Resident tissue macrophages
Resident tissue macrophages arising from embryonic
yolk-sac precursors display tissue-specific phenotypes
determined by microenvironmental factors and often
cannot be classified into the inflammatory (M1) or tissue
remodeling/profibrotic (M2) categories [43-47]. Although
it is generally accepted that resident tissue macrophages
have limited self-renewal capacity and are replenished
from the pool of circulating monocytes, recent studies
demonstrate that resident macrophages in certain tissues
are replenished primarily through their own proliferation
[47-49], although circulating blood monocytes can re-
populate cardiac resident macrophages [50].
Since a specific macrophage phenotype is not irreversibly

encoded in their DNA, monocytes and macrophages main-
tain the flexibility necessary to adapt to tissue changing
conditions and this flexibility is an important component
of their first-response role in tissue injury. Furthermore,
the in vivo monocyte/macrophage phenotype differenti-
ation process most likely represents a fluctuating spectrum
of polarization states that is constantly and reversibly
modified in response to changing microenvironmental
conditions [51,52], and that the previously characterized
monocyte/macrophage subsets do not describe fixed
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subpopulations. More extensive analyses of monocyte/
macrophage transcriptomes, aimed at the identifica-
tion of common and unique activation pathways, will
likely reveal the relevance of these transcriptional
changes to important physiological processes and to
the pathogenesis of diseases in which monocytes/mac-
rophages play a role.

Dendritic cells
Dendritic cells (DCs) are motile cells with stellate
morphology originated from bone marrow derived circu-
lating monocyte precursors. Dendritic cells express high
levels of MHC class II and the integrin CD11c, migrate
from tissues to secondary lymphoid tissues, and can cap-
ture, process and present antigen [53,54]. Immature DCs
possess high phagocytic activity that triggers a complex
maturation process characterized by upregulation of
various surface molecules including class II MHC,
CD80, CD83, CD86 and CD40 that enable antigen pres-
entation and interaction with T cells. Two major sub-
populations of DCs have been described: plasmacytoid
DCs (pDCs) and classical or myeloid DCs (cDCs) [55].
pDCs are a long-lived population present in the bone
marrow and all peripheral organs characterized by
massive production of type I interferons in response to
viral infections, enabled by constitutive expression of
IFN regulatory factor 7 (IRF7). pDC also have the ability
to act as antigen-presenting cells capable of initiation
and regulation of T cell responses [56]. Human pDCs
display a CD4+ CD303+ CD68+ phenotype whereas mur-
ine pDCs express CD11clow B200+ Ly6C+ CD45RA+

phenotype as well as CD217 (BST-2) and SiglecH
[57,58]. pDCs express only TLR7 and TLR9, allowing
viral single-stranded RNA and unmethylated DNA to ac-
tivate TLR pathway proinflammatory signaling [59].
cDCs refer to all DCs other than pDCs and comprise

short-lived highly migratory cells that populate most
lymphoid and nonlymphoid tissues that migrate to the
secondary lymphoid organs by afferent lymphatics fol-
lowing phagocytosis and regulate T cell activity by medi-
ating the adaptive immune response to foreign antigen
and by maintaining tolerance to endogenous antigen in
both the steady state tissue and during infection [60,61].
The major cDC population displays a CD11c+ phenotype
in humans whereas in mice the major cDC population
expresses a CD11c+ CD11b- CD45RA-. Both cDC subpop-
ulations express TLR4 and TLR9 [60]. In both mice and
humans, a minor cDC population displays a CD141+

CLEC9A+ phenotype and is a major producer of IFN-β.
These cells are capable of presenting antigen to C8+ cyto-
toxic T cells [62,63]. TLR signaling in either pDCs or
cDCs results in production and secretion of IL-12, IL-6,
TNF-α, and the chemokines CCL3, CCL4, CCL5, CXCL9
and CXCL10 besides type I IFNs [64].
Role of Monocytes/macrophages in wound repair
The wound healing process is mediated by various intra-
cellular, autocrine, and paracrine pathways initiated fol-
lowing pathogen infection or exposure to chemical
toxins or other stimuli that induce tissue damage
[65-74]. This process requires a coordinated response
from various cell types, including endothelial cells, kera-
tinocytes, fibroblasts and various immune cells. The mo-
lecular pathways triggered in these cells induce marked
changes in gene expression causing modulation of their
cellular phenotypes resulting in proliferation, differenti-
ation or migration. The wound healing process restores
tissue integrity and repairs the damage induced by the
initial injury and by the associated inflammatory re-
sponse. As illustrated in Figure 2, this process consists
of three major overlapping stages: 1) an inflammatory
stage in which immune cell recruitment to the injury
site induces production of proinflammatory cytokines,
chemokines and reactive oxygen species (ROS) eliminat-
ing invading pathogens and removing necrotic tissue
and cellular debris; 2) a proliferative stage in which pro-
liferation and activation of fibroblasts, keratinocytes and
endothelial cells mediates the production of a provisional
ECM, re-epithelialization, and neoangiogenesis to restore
normal blood supply to the injured area; and 3) a reso-
lution stage characterized by suppression of inflammation
and apoptosis of recruited cells followed by wound re-
modeling and provisional matrix replacement with a more
durable ECM capable of providing tensile strength to the
newly formed tissue.

The inflammatory stage
The inflammatory stage is triggered by an initiating patho-
gen or toxin that results in the release of pathogen- or
damage-associated molecular patterns (PAMPs or DAMPs,
respectively) that ligate and activate pattern recognition
receptors such as toll-like receptors (TLRs), NOD-like re-
ceptors (NLRs), C-type lectin receptors (CLRs) or other re-
ceptors on resident cells, including endothelial cells, mast
cells, tissue macrophages and interstitial fibroblasts [75,76].
Receptor activation triggers the production and secretion
of cytokines, chemokines and growth factors that induce
inflammation and the recruitment of inflammatory cells,
primarily neutrophils and monocytes [77]. The recruited
monocytes are proinflammatory and will subsequently dif-
ferentiate into inflammatory (M1) macrophages. The acti-
vated resident cells and the recruited inflammatory (M1)
macrophages release toxic ROS that destroy invading path-
ogens [78,79] and induce the expression of genes encoding
various cytokines, inflammatory molecules and multiple
proteases including MMPs, serine and cysteine proteases,
and elastases.
Removal of damaged cells and degradation of the

ECM releases matrix-bound growth factors such as



Figure 2 Role of monocytes/macrophages in wound healing. Injury to epithelial and/or endothelial cells caused by various exogenous or
endogenous factors resulting in tissue damage triggers complex interconnected wound-healing programs to restore tissue homeostasis. Release
of DAMPs and PAMPS by the damaged tissue triggers an inflammatory response that activates resident tissue macrophages, stimulating their
proliferation and initiating the recruitment of inflammatory Ly6Chi monocytes and neutrophils to the wound. Cytokines and chemokines produced
and secreted by local epithelial, endothelial and innate immune cells subsequently influence the differentiation and polarization of the recruited
monocytes into inflammatory classically activated M1 macrophages. The M1 macrophages also stimulate the transdifferentiation of resident quiescent
fibroblasts into activated myofibroblasts that synthesize a provisional matrix as well as stimulate endothelial cell and fibroblast proliferation
and orchestrate angiogenesis. Recruited monocytes respond to the different cytokine profiles, differentiating into M2 macrophages and initiating tissue
repair with upregulated MMP secretion followed by suppression of any remaining inflammation and synthesis of a permanent extracellular matrix by
activated myofibroblasts. DAMPs, Damage associated molecular patterns; EC, Endothelial cell; ECM, Extracellular matrix; IFN, Interferon; iNOS, Inducible
nitric oxide synthase; IL, Interleukin;MMP, Matrix metalloproteinase; PAMPs, Pathogen associated molecular patterns; TGF-β, Transforming growth
factor, beta.
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TGF-β and cytokines that stimulate endothelial cell and
fibroblast proliferation, preparing the tissue for neo-
vascularization and tissue repair [80,81]. ROS production,
however, also damages endogenous cells and one of the
most important functions of the recruited monocytes be-
sides removal of pathogens is the removal of necrotic resi-
dent cell debris. Macrophages also induce neutrophil
apoptosis and phagocytose the remains [82-84]. This
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represents an important trigger for inflammation reso-
lution and the initiation of tissue repair [85-91]. Several
mechanisms are involved in these effects including al-
terations of the balance between proinflammatory and
anti-inflammatory cytokine secretion [87-91], downreg-
ulation of proinflammatory transcription factors im-
portant for neutrophil survival such as NF-κB and IRF1
[92,93], and concomitant upregulation of the anti-
inflammatory transcription factor IRF-4 [94,95]. These
effects collectively promote inflammatory (M1) to
wound healing/profibrotic (M2) macrophage phenotype
transition and initiate the resolution of inflammation
[86-91].

Tissue repair/wound healing phase
The transition from an inflammatory phenotype (M1) to
a wound healing/profibrotic (M2) phenotype induces the
progression from the inflammation phase to the tissue
repair phase (Figure 2). Monocytes/macrophages at the
transition between the inflammatory and tissue repair/
wound healing stages produce copious amounts of cyto-
kines and growth factors that promote the proliferation
of multiple cell types involved in damaged tissue repair
[96-100]. Wound healing/profibrotic (M2) macrophages
appear at this stage, either via differentiation of newly
recruited infiltrating monocytes or by in situ transition
of previously differentiated infiltrating inflammatory (M1)
macrophages to a wound healing/profibrotic (M2) pheno-
type. STAT6 is activated during this transition and
promotes IL-4/IL-13-mediated differentiation of wound
healing/profibrotic (M2) macrophages by upregulating
their expression of arginase (Arg1) and multiple other
wound healing/profibrotic phenotype genes [101].
Wound healing/profibrotic macrophages possess an
anti-inflammatory phenotype and stimulate and activate
fibroblasts towards their increased ECM production and
secretion [96-101]. The macrophage phenotype is also in-
fluenced by changes in the mechanical, cellular and meta-
bolic characteristics of the target tissue [102-104].
The wound healing/profibrotic macrophages in the late

tissue repair stage initiate the transition to the resolution/
tissue remodeling stage. They also support endothelial cell
survival and release TGF-β that triggers transdifferentia-
tion of fibroblasts to activated myofibroblasts [72,73], a
unique population of mesenchymal cells that display in-
creased production of fibrillar type I and type III collagens,
expression of α-smooth muscle actin (α-SMA) and a re-
duction in the expression of ECM degradative enzymes
such as the MMPs [105-114]. More recent studies have
demonstrated that endothelial cells may also undergo a
phenotypic transition into profibrotic mesenchymal cells,
a process known as endothelial to mesenchymal transition
(EndoMT), following stimulation by TGF-β produced by
the macrophages present in the tissue [115-124].
Resolution/remodeling stage
In the final phase, the wound scar tissue is remodeled by
replacement of the provisional ECM with a stronger,
durable ECM, characterized by extensive collagen cross-
linking and the gradual replacement of type III collagen
with type I collagen [125-127]. These changes are followed
by senescence or apoptosis of activated myofibroblasts
[128,129] and regression of the neovasculature [130-132].
The macrophage phenotype during this stage remains un-
clear with some studies in the liver suggesting the exist-
ence of a unique population of fibrinolytic scar-associated
macrophages required for fibrosis resolution [86,133-136],
although others have reported these macrophages to be
profibrotic [137,138].

Monocytes/macrophages in tissue fibrosis
Dysregulation of normal wound healing results in patho-
logic fibrosis and the replacement of normal tissues with
fibrotic tissue causing progressive loss of function in the
affected organs [139-142]. Chronic fibroproliferative dis-
eases account for a large proportion of total worldwide
mortality [143-146] and the lack of effective fibrotic dis-
order treatment represents a substantial unmet need. Fi-
brosis can result from the activation of various common
pathways as well as from activation of tissue-specific
pathways with unique consequences for fibrosis progres-
sion in the particular organ. Various cells types including
endothelial cells, epithelial cells, activated myofibroblasts
and macrophages participate in one or more steps in the
fibrotic process [147-149]. Most fibrotic diseases also
manifest substantial vascular remodeling with impaired
angiogenesis followed by progressive obliteration of
blood vessels that is often an early feature suggesting
that endothelial injury may be a precipitating event in fi-
brosis pathogenesis [150-152].
It is important to note in any discussion of research on

the role of monocytes and macrophages in the initiation
and persistence of tissue fibrosis in human disease that
the majority of investigations employ animal models, most
commonly mice to identify the molecular pathways im-
portant in the regulation of this process. Studies of mono-
cyte/macrophage involvement in patients with these
diseases tend to be primarily descriptive, examining the
macrophages present in samples from patients with the
disease compared to normal controls. Each approach has
its drawbacks and it is essential to consider these draw-
backs when attempting to draw conclusions from compar-
isons of experimental results from one model system to
the other. Studies conducted with human samples offer
little opportunity for experimental manipulation of differ-
entiation conditions and often are reflective of only a sin-
gle timepoint during the course of a highly dynamic
process. Also, because even small changes in tissue micro-
environment can induce major changes in monocyte/
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macrophage phenotypes, the relevance of results from the
experimental manipulations performed in animal models
to human disease may be limited. Therefore, the import-
ance of characterizing the monocyte/macrophage popula-
tions involved employing multiple methodologies and
functional characteristics cannot be underestimated, par-
ticularly for the indentification of specific populations to
be targeted to modulate the fibrotic process. Recently,
with the advent of systematic studies exploiting advances
in transcriptome analysis and the identification of expres-
sion of multiple cell surface markers from large sample
sets of human and murine immune cells from the Human
Immunology Project Consortium and the Immunological
Genome Project, respectively, a valuable and growing re-
source is being generated that should allow for more con-
sistent and accurate translation of experimental results
obtained from animal models of tissue fibrosis to their hu-
man disease counterparts [35-41]. Another valuable re-
source that may allow for better evaluation of the role of
molecular pathways identified using animal models or
in vitro analysis of human monocytes/macrophages is the
generation of the MITRG and MISTRG mouse strains
carrying human versions of cytokine encoding genes im-
portant in human innate immune cell development [153].
Injection of human fetal liver or adult CD34+ progenitor
cells into these mice results in the humanized develop-
ment and function of monocytes, macrophages and NK
cells, generating a model that may allow the evaluation of
therapeutic candidates for monocyte/macrophage-medi-
ated tissue fibrosis in an in vivo milieu more reflective of
the human physiology.
Monocytes and macrophages play a pivotal role in co-

ordinating the various stages of the wound healing
process by their ability to produce and secrete numerous
growth factors, cytokines and other mediators capable of
exerting paracrine effects on other cells in affected tis-
sues [27,59-72,154-157]. Failure of the early inflamma-
tory phase of the wound healing process to resolve, as
indicated by the persistence of inflammatory macro-
phages, causes sustained and excessive synthesis and de-
position of ECM components, leading to fibrotic tissue
formation [158,159], and their shift into the wound heal-
ing/profibrotic macrophage phenotype further increases
tissue fibrosis, through their increased and persistent ex-
pression of TGF-β [160] and through their induction of
a change in the balance of ECM metabolism toward
ECM deposition and accumulation [161-168]. However,
it should be emphasized that an anti-fibrotic function
for wound healing/profibrotic macrophages has been dem-
onstrated in both human and mouse models [169-172].
Furthermore, other investigations have indicated either a
primary or secondary role for inflammatory (M1) macro-
phages with CCR8 [173], CCR4 [174] and Annexin A1
[175] implicated as important regulators of this process.
However, it has been demonstrated that both inflammatory
(M1) and wound healing/profibrotic (M2) populations
participate in fibrosis and suggest a requirement for in-
flammation or defective inflammation resolution in fibrosis
pathogenesis [176-179].

Role of TLR-macrophage interactions in tissue fibrosis
The role of TLR signaling in fibrosis-associated inflam-
mation and macrophage activation is an area of intense
interest. TLR signaling mediates certain pathways in fi-
brotic diseases such as SSc and NSF [180-186]. Expres-
sion of TLR4 and its coreceptors MD2 and CD14 is
increased in human lesional SSc skin and this increase
correlates with disease severity and progression [187].
Chronic dermal LPS exposure in mice induces expres-
sion of proinflammatory chemokines and upregulation
of various TGF-β regulated genes as well as recruitment
and activation of both inflammatory (M1) and tissue
remodeling/profibrotic (M2) macrophages [187]. TLR2,
TLR4 and MyD88 expression is increased in mice with
renal fibrosis induced by unilateral ureteral obstruction
(UUO) with concomitant increases in tissue remodeling/
profibrotic (M2) macrophage infiltration and collagen
deposition [188]. Tissue remodeling/profibrotic (M2)
macrophage depletion but not T-cell depletion abro-
gated UUO-mediated fibrosis. Signaling through these
receptors triggered a TH2 immune response with in-
creased expression of IL4 followed by IL-10 and TGF-β
expression, increased macrophage infiltration and exag-
gerated collagen deposition. All these changes were ab-
rogated in TLR2, TLR4 and MyD88 knockout mice
indicating the crucial role of TLR and MyD88 in their
occurrence. In contrast to these results, Staphylococcus
aureus biofilm infection of MyD88 knockout mice re-
sulted in the increased recruitment of activated M2 mac-
rophages and fibrosis development in a TLR-independent
manner, possibly involving IL-1R, IL-18R or IL-33R activity
[189]. It has also been shown that during ischemia/reperfu-
sion-induced kidney injury in mice, various DAMPs are
generated including the calcium-binding protein S100A8/
A9 complex that activates TLR4 signaling. However,
S100A8/A9 knockout mice display enhanced renal damage
and fibrosis that correlates with increased expression of
M2 macrophage markers raising some controversy about
the role of S100A8/A9 in TLR mediated fibrosis [190].

Monocyte/macrophage polarization phenotype in human
fibrotic diseases and animal models of tissue fibrosis
There is extensive histopathological, and in vitro and
in vivo experimental evidence with various animal models
of tissue fibrosis as well as correlational and descriptive
studies from human patients implicating tissue remodel-
ing/profibrotic (M2-like) monocytes or macrophages as
the primary mediators of tissue fibrosis and numerous
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studies have explored their role in various human fibrotic
disorders.

Systemic Sclerosis and animal models of skin fibrosis
SSc is a systemic autoimmune disease characterized by pro-
gressive fibrosis of skin and multiple internal organs and se-
vere microvascular alterations [191]. SSc pathogenesis is
complex and poorly understood [147-149,192,193]. The se-
vere fibrotic process results from ECM overproduction by
activated fibroblasts triggered by complex paracrine and
autocrine interactions between various cells including fibro-
blasts, endothelial cells and macrophages. Multiple reports
have described the macrophage subpopulations present in
SSc patients and in the skin of murine models of SSc. Sol-
uble levels of CD163, a protein exclusively expressed in
monocytes and macrophages [194] associated with M2
monocytes/macrophages, are elevated in SSc patient serum
and these high CD163 levels correlate with SSc disease se-
verity [195-198]. A detailed analysis of monocyte/macro-
phage subsets in skin samples and PBMC isolated from SSc
patients showed a marked increase in cells displaying the
tissue remodeling/profibrotic (M2) macrophage markers
CD163 or CD204 [199]. The elevated soluble CD163
present in SSc patient plasma may be explained by the
higher levels of TNF-α converting enzyme that mediates
shedding of the CD163 ectodomain [200] in PBMC of pa-
tients with early SSc [201]. Levels of CCR2, a chemokine
receptor crucial for M2 macrophage activation were ele-
vated in macrophages and various other cells types in SSc
patients with early diffuse disease but not in patients with
late or limited SSc [202]. A recent analysis of global chemo-
kine expression in SSc described high CCL19 and CXCL13
levels present in the skin of patients with diffuse SSc,
whereas CCL18 levels were increased in the skin of patients
with either limited or diffuse SSc [203]. Of interest were the
observations that CCL19 expression was induced by TLR
pathway activation in vitro and colocalized in vivo by im-
munofluorescence with CD163+ macrophages [203]. Sev-
eral reports described evidence that circulating monocytes
and macrophages in patients with SSc-associated lung fi-
brosis displayed elevated levels of markers of the tissue re-
modeling/profibrotic (M2) phenotype including CD163,
CCL18 and IL10 [204] and a recent investigation described
increased expression of multiple alternative macrophage ac-
tivation markers that correlated with progression of SSc as-
sociated pulmonary fibrosis [205]. Although affected SSc
tissues display perivascular accumulation of macrophages
[150] the mechanisms responsible have not been elucidated,
however, recent studies in two murine models of tissue fi-
brosis have implicated MMP12, a macrophage and endo-
thelial cell secreted elastase [206,207].
Human and mouse skin also contain multiple and dis-

tinct subsets of DC [208-212] and in light of the important
functions of DC in innate and adaptive inflammation, a
role for these cells in the development of SSc has been
postulated. Indeed, two reports have described decreased
numbers of dendritic cells in skin isolated from human
SSc patients compared with skin from normal donors
[213,214] although this decrease occurred early in the pro-
gression of the disease and was present even in patients
with a disease duration of 1 year of less and were substan-
tially less abundant in patients with only mild fibrosis. An
analysis of the response of human monocyte-derived DC
isolated from SSc patients found an altered response to
TLR stimulation in DC from patients with either the lim-
ited or diffuse form of SSc compared to those of normal
patients with increased expression of IL6 and IFN-α and
decreased expression of IL-12 whereas IL-10 expression
was markedly increased only in SSc patients with diffuse
disease [215]. SSc sera containing anti-topoisomerase
autoantibodies was found to induce plasmacytoid DC dif-
ferentiation in PBMC characterized by high type I IFN
production [216]. Lastly, in the murine bleomycin model
of skin fibrosis, CD11cbright DC lose their even distribu-
tion in the skin and migrate to the dermis, in proximity to
α-SMA+ myofibroblasts [217].

Nephrogenic Systemic Fibrosis in mouse and human
NSF is a generalized fibrotic disorder occurring in some
patients with chronic kidney disease exposed to Gd-based
contrast agents (GdBCA) [218-220]. The clinical manifes-
tations include severe and usually progressive skin indur-
ation, joint flexion contractures and fibrotic involvement
of various internal organs. Recent studies have implicated
remodeling/profibrotic (M2) macrophages in NSF patho-
genesis. Human monocytes and tissue remodeling/profi-
brotic (M2-like) macrophages differentiated ex vivo by
M-CSF and IL-10 increased the expression of the remod-
eling/profibrotic (M2)-associated cytokines IL-4, IL-13,
VEGF, and numerous chemokines in an NF-κB-dependent
manner following exposure to the GdBCA Omniscan.
Furthermore, culture supernatants of the Gd-activated
monocytes/remodeling/profibrotic (M2-like) macrophages
induced α-SMA and types I and III collagen expression in
cultured normal human dermal fibroblasts [181,182]. A
related study showed that ex vivo differentiated remodel-
ing/profibrotic (M2-like) macrophages were more respon-
sive to GdBCA agents than inflammatory (M1-like)
macrophages and this increased response was triggered by
NLRP3 inflammasome activation [183].

Idiopathic Pulmonary Fibrosis and pulmonary fibrosis in
mouse animal models
IPF is a progressive interstitial lung disease of un-
known etiology characterized by often progressive lung
fibrosis causing irreversible loss of pulmonary function
[221,222]. Several studies have shown that Ly6Chi monocyte
infiltration followed by differentiation into remodeling/
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profibrotic (M2-like) macrophages correlates with fibrosis
progression and severity in bleomycin-induced pulmonary
fibrosis [23,223-225]. Caveolin-1 (CAV1), the major pro-
tein component of caveolae and an important regulator of
TGF-β signaling, is downregulated in the skin and lungs
of SSc patients [226-229]. The profibrotic effects of CAV1
deficiency are likely related to impaired TGF-β receptor
degradation, however, CAV1 downregulation in SSc inter-
stitial lung disease has also been reported to increase
tissue fibrosis by influencing monocyte migration and re-
cruitment. This effect was mediated through induction of
monocyte and fibrocyte expression of the remodeling/pro-
fibrotic (M2) macrophage marker CXCR4 that regulates
monocyte retention in the bone marrow [230]. Further-
more, CAV1 and several other fibrosis associated cyto-
kines and proteins, including IL-33, IL-9 and MMP28
regulate macrophage differentiation in pulmonary fibrosis
in mice [231-236]. Alveolar macrophages in bronchoalve-
olar lavage fluid (BALF) in bleomycin-induced fibrosis
expressed the remodeling/profibrotic (M2) factors IL-13
and TGF-β and had increased IL-33 expression whereas
IL-33 knockout mice displayed impaired remodeling/pro-
fibrotic (M2) polarization and greatly diminished fibrosis
[231]. Several recent studies have examined the role of
MMP28 in the development and progression of pulmon-
ary fibrosis, effects that appear to be mediated through the
regulation of pulmonary macrophage phenotype [232,233].
Mice with a genetic deletion of MMP28 are protected from
bleomycin-induced fibrosis and showed diminished re-
modeling/profibrotic (M2) responses [234]. Wild type
MMP28 expression in mice is specific for Ly6Chi mono-
cytes that give rise to three subpopulations following
M-CSF-mediated differentiation and activation by LPS or
IL-4/IL-13. Inflammatory (M1-like) CD11blow CD45high

cells lack MMP28 expression, whereas the remodeling/pro-
fibrotic (M2-like) CD11bhigh CD45high subpopulation and
the CD11bint CD45int subpopulation display robust
MMP28 expression [234]. Numerous cytokines and other
macromolecules have been shown to participate in the mo-
lecular events leading to pulmonary fibrosis [235-238]. For
example, IL-9 knockout mice had impaired remodeling/
profibrotic (M2) macrophage polarization and were pro-
tected from silica-induced fibrosis [235], whereas, chronic
IL-10 exposure in mice resulted in increased pulmonary fi-
brosis, increased remodeling/profibrotic (M2) macro-
phages in BALF and in the lungs as well as increased
levels of CCR2 and CCL2 [236]. Conditional deletion of
the tyrosine phosphatase Shp2 in mouse myeloid cells
increased remodeling/profibrotic (M2) macrophage dif-
ferentiation in response to IL-4 resulting in decreased
susceptibility to pulmonary fibrosis [237]. Types I and
III collagens caused increased CCL18 and IL-1ra
production in human alveolar macrophages in vitro, as
well as, increased expression of CCL2 and CD204,
indicating that they had assumed a tissue remodeling/
fibrotic (M2-like) phenotype [238].
In an evalution of the role of DC in IPF, lung biopsies

isolated from human IPF patients, DC-SIGN+ DC were
more numerous than in biopsies of normal donors and
demonstrated a more perivascular localization, in some
cases forming a novel type of organized lymphoid region
within the lung [239,240]. In bleomycin induced pul-
monary fibrosis in mice, mature Cd11c+ MHCII+ DC
were found to accumulate in large numbers in proximity
with T cells displaying an active or memory phenotype
by day 7 following bleomycin exposure [241]. Treatment
of mice with VAG539, an inhibitor of DC costimulatory
molecules was shown to attenuate bleomycin-induced
pulmonary fibrosis.

Liver fibrosis in mice and humans
Liver fibrosis is one of the most frequent fibrotic disor-
ders affecting humans and has multiple and diverse
causes including hepatitis virus infections and excessive
ethanol consumption, frequently resulting in liver failure
and portal hypertension [242]. Increased tissue remodel-
ing/fibrotic (M2) macrophage polarization has been de-
scribed in hepatitis B virus and Schistosoma-induced
hepatic fibrosis [243,244]. The number of monocytes in
the liver is markedly increased following injury and liver
monocyte subsets display distinct phenotypic character-
istics [245,246]. The greatest proportion of monocytes in
the normal and injured liver in humans belong to the
CD14++CD16+ intermediate subset although this popula-
tion dramatically increases following liver injury owing to
increased transepithelial migration of this population rela-
tive to the classical CD14++CD16- and the CD14loCD16+

monocyte subsets as well as to their increased in situ differ-
entiation. This intermediate population possesses high
phagocytosis activity and secretes the inflammatory media-
tors TNF-α, IL-6, IL-8 and IL-1β as well as the tissue re-
modeling/fibrotic IL-13, CCL1, CCL2, CCL3, CCL5, CSF1
and GMCSF molecules. A central regulator of monocyte
recruitment in response to CCL4 induced or non-alcoholic
steatohepatitis in mice is the CCL2/CCR2 signaling path-
way. Upon injury, CCL2/CCR2 signaling induce infiltration
of Ly6C+ inflammatory monocytes into the liver resulting
in the promotion of liver fibrosis as well as angiogenesis
[247-250]. CCR2/CCR6 deficient mice fail to recruit Ly6C+

monocytes and are thus protected from CCL4-induced
hepatic fibrosis [251,252]. Similarly, pharmacologic inhib-
ition of CCL2 signaling diminishes macrophage infiltration
and steatohepatitis [253] and actually promotes fibrosis
resolution [254]. Significantly, mice lacking Tlr4, Tlr9 or
MyD88, important upstream regulators of CCL2 expres-
sion, were similarly protected from steatohepatitis [251].
Conversely, the CX3CR1 fractalkine receptor acts to limit
liver fibrosis by controlling the differentiation of monocytes
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and macrophages involved in fibrosis resolution [255].
In the absence of CX3CR1, intrahepatic monocyte dif-
ferentiation skews to favor inflammatory TNF-α- and
NO-producing macrophages that result in inflamma-
tion persistence and enhanced liver fibrosis. Taken to-
gether, these observations render the CCL2/CCR2 and
the CX3CR1 pathways important targets for developing
potential therapies for the treatment of liver fibrosis
[19,256]. Several studies have described a unique popula-
tion of macrophages with properties of both inflammatory
(M1) and tissue remodeling/fibrotic (M2) macrophages,
termed scar-associated macrophages, arising from re-
cruited Ly6Chi monocytes expressing high levels of
MMP13 that mediate regression of liver fibrosis in animal
models [86,131-136].
DC cells have also been proposed as regulators of liver

fibrosis. Increased numbers of a mixed population of
Cd11c+ DC have been observed in the livers of mice with
hepatic fibrosis induced by TAA and leptin [257] with
many of these cells also positive for MHCII and CD4. The
isolated DC could stimulate NK and T cells both in vitro
and in vivo. Cd11c+ cell depletion in these mice reduced
the expression of TNF-α, IL-6 and other proinflammatory
cytokines. Co-culture of Cd11c+ DC with hepatic stellate
cells caused increased proinflammatory cytokine expres-
sion and increased stellate cell proliferation and it was
shown that this effect was dependent on TNF-α [258].

Renal and cardiac fibrosis in mice and humans
Numerous disorders cause kidney fibrosis including
glomerulonephritis, diabetic nephropathy, SSc with kid-
ney involvement and rare disorders such as immuno-
globulin A nephropathy [158]. Although inflammation is
an important component of renal fibrosis [158] the role
of macrophage phenotype changes in the pathogenesis
of these diseases has only just begun to be investigated.
Injured kidneys selectively recruit Ly6Chi monocytes and
these recruited monocytes differentiate into functionally
distinct macrophage populations [18]. Analysis of human
pediatric and adult immunoglobulin A nephropathy renal
biopsies in another report found significant CD163+ or
CD204+ tissue remodeling/fibrotic (M2)-like macrophage
infiltration in close proximity to activated myofibroblasts
[259], an intriguing observation since ex vivo differentiated
macrophages have been shown to induce myofibroblast
phenotypic changes and α-SMA expression in cultured fi-
broblasts [260]. Recently, an analysis of renal allograft bi-
opsies from kidney transplant patients isolated one year
post-transplantation found that the majority of infiltrating
macrophages were CD68+ CD204+ tissue remodeling/fi-
brotic (M2) macrophages characterized by increased ex-
pression of IFN-γ-responsive genes and that macrophage
infiltration strongly correlated with the subsequent devel-
opment of renal fibrosis [261]. A role of DC in renal fibrosis
has recently been examined. In a mouse model of UUO-
induced renal fibrosis, the numbers of both Cd11c+ F4/80+

and Cd11c+ F4/80- increased 24 hours after injury with
both subpopulations displaying increased MCH2 and CD68
positivity, however Cd11c- DTR-specific depletion either at
1 day pre-UUO or 5 days post-UUO had no effect on levels
of type III collagen, α-SMA, TGF-β or TNF-α [262].
Cardiac fibrosis resulting from myocardial infarction

or in association with other fibrotic disorders such as
SSc or NSF involves accumulation of ECM proteins in
the myocardium resulting in myocardial failure [263].
There has been recent interest in the role of macrophage
polarization in the pathogenesis of cardiac fibrosis. It
has recently been shown that inhibition of TLR2 de-
creased angiotensin II-induced cardiac fibrosis through a
potent reduction in the tissue infiltration by inflamma-
tory cells, particularly macrophages [264], and another
study found that MMP28 regulated the fibrotic response
to myocardial infarction in mice, with MMP28 deletion
exacerbating cardiac fibrosis, an effect mediated by in-
hibition of M2 macrophage activation [265]. The role of
CAV1 in cardiac interstitial fibrosis was examined in ex-
perimentally induced myocardial infarction in mice and
reported that deletion of CAV1 resulted in increased
numbers of tissue remodeling/fibrotic (M2) macro-
phages in the infarct zone and that infusion of the CAV1
scaffolding domain peptide abrogated the increased tis-
sue remodeling/fibrotic (M2) macrophage accumulation
and reduced cardiac fibrosis [266].

Skeletal muscle fibrosis in mice and humans
As in other tissues, fibrosis can occur following injury to
the muscle, or as a consequence of the normal aging
process, or in association with a pathologic condition such
as Duchenne muscular dystrophy [267]. Macrophage sub-
populations perform opposing activities in muscle regen-
eration. Inflammatory (M1) macrophages secrete TNF-α
and IL-1β mediating monocyte recruitment and removal
of necrotic cells at early stages after the initiating event.
Tissue remodeling/fibrotic (M2) macrophages secrete IL-
10 and TGF-β and become more abundant at advanced
stages of the process, facilitating tissue repair and healing
and inactivating the initial inflammatory macrophages
[268]. It has recently been shown in mice that a mutation
in the C/EBPβ promoter impairs differentiation of tissue
remodeling/fibrotic (M2) macrophages resulting in the
ability to remove necrotic tissue but with defects in myofi-
ber regeneration, likely caused by changes in arginine me-
tabolism [269]. Shifts in macrophage phenotypes and
competition for arginine can affect the severity of the
muscle pathology seen in the mdx mouse model of mus-
cular dystrophy by promoting cardiac and muscle fibrosis
[270,271]. The expression of integrin-β3 in macrophages
has been found to affect macrophage polarization and
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infiltration since mice lacking integrin-β3 show in-
creased infiltration of tissue remodeling/fibrotic (M2)
macrophages into injured muscle and that these infil-
trating macrophages express higher levels of TGF-β1,
increased TGF-β1 Smad signaling, impaired muscle re-
generation and increased fibrosis [272].
Interestingly, diaphragms from mdx mice display

markedly increased expression of CCR2 and its chemo-
kine ligands and increased recruitment of Ly6Chi mono-
cytes that differentiate into CD11bhi macrophages [273].
Knockout of CCR2 abrogates Ly6Chi monocyte recruit-
ment and prevents skewing of macrophage differenti-
ation to favor the inflammatory (M1) phenotype and
decreases muscle fibrosis. The PDE5 inhibitor sildenafil
significantly reduced muscle weakness after 14 weeks of
treatment in mdx mice and slowed the establishment of
mdx diaphragm fibrosis accompanied by a reduction in
MMP13 expression and normalized expression levels of
TNF-α [274]. The proposed antifibrotic agent imatinib
mesylate markedly reduced limb muscle necrosis, in-
flammation and fibrosis accompanied by inhibition of c-
able and PDGFR phosphorylation and the suppression of
TNF-α and IL-1β expression in mdx mice [275,276].

Opportunities for utilizing macrophage polarization as a
clinical and therapeutic tool
Elucidation of the role of monocyte/macrophage differ-
entiation and polarization in the context of fibrosis
pathogenesis and resolution will provide novel oppor-
tunities for designing therapies to restore the balance be-
tween normal tissue repair and pathologic fibrosis [277].
Several new strategies are being explored as therapeutic
modalities to modulate the crucial contribution of
monocytes/macrophages to fibrotic disease pathogenesis.
Monocyte recruitment is being targeted based on the
differential expression of chemokine receptors by mono-
cyte/macrophage subpopulations to encourage migration
and tissue accumulation of beneficial macrophages or to
prevent the recruitment of harmful profibrotic macro-
phages. Since CCR1 and CCR2 are more highly
expressed on Ly6Chi inflammatory (M1)-like monocytes
whereas CCR5 and CX3CR1 are more characteristic of
the Ly6Clow tissue remodeling/fibrotic (M2)-like mono-
cytes [11-13], targeting CCR2 and CCR6 signaling would
be expected to interfere with Ly6Chi monocyte recruit-
ment [278,279]. Although this approach is promising its
success is uncertain since the Ly6Chi population can dif-
ferentiate into the Ly6Clowsubpopulation in situ follow-
ing migration into the affected tissues.
Autologous monocyte/macrophage transfer can also

be employed to alter monocyte subpopulations. A recent
analysis utilizing such an approach showed that mesen-
chymal stromal cell transfer following coronary artery
occlusion-induced myocardial infarction increased the
proportion of tissue remodeling/fibrotic (M2) macro-
phages at the infarct site compared with monocyte trans-
fer [280] accompanied by increased macrophage cytokine
secretion, and improved infarct healing and repair. The
beneficial effects were mediated by macrophages as they
were abrogated by transient macrophage depletion [280].
This approach could introduce an enriched potentially
therapeutic subpopulation of autologous cells or of cells
genetically modified to target specific macrophage path-
ways to ameliorate fibrosis induction or to induce fibrosis
resolution. However, one potential drawback of this ap-
proach is that the phenotype of the transferred mono-
cytes/macrophages could be reprogrammed in situ by the
microenvironment of the destination organ [281,282].
Antibody-conjugated microparticles can specifically

target macrophage subpopulations based on differential
properties of the nanoparticles used [283] or by conjuga-
tion with subpopulation specific markers [284,285]. Such
an approach could be adapted to deliver phenotype
modifying or cell lethal contents to specific macrophage
populations. For example, administration of a peptide se-
quence unique to tissue remodeling/fibrotic (M2) mac-
rophages identified by subtractive phage biopanning and
fused to the KLA proapoptotic peptide [286] decreased
mortality in CT-26 tumor-bearing mice by inducing a
decreased number of tumor-associated macrophages
[287]. These approaches alone, or in combination, offer
the potential to nullify the fibrotic potential or to en-
hance the fibrosis resolving properties of specific macro-
phage subpopulations.

Conclusions
Although monocyte/macrophage polarization in tissue
fibrosis pathogenesis and resolution is an area of intense
interest, the actual role of this phenomenon in vivo re-
mains unclear. Extensive in vitro experimentation impli-
cates M2 macrophages as the primary mediators of tissue
fibrosis, however, the data from in vivo studies present a
more complex picture. The M1 macrophage subpopula-
tion is considered as the primary mediator of inflamma-
tion whereas the M2 macrophage subpopulation is
considered to be the primary mediator of wound healing
and pathologic fibrosis. The role of macrophage pheno-
types in vivo, however, may be less definitive owing to the
plasticity of monocyte/macrophage subpopulation pheno-
types in response to local environmental factors. Numer-
ous studies of organ-specific monocyte/macrophage
subpopulations in specific organs often suggest that tissue
remodeling/fibrotic (M2)-like monocytes and macrophages
mediate fibrosis, however, other studies indicate a role for
inflammatory (M1)-like macrophages or a requirement for
both major subpopulations in the development of tissue fi-
brosis and in the pathogenesis of fibrotic disorders. In-
creasing knowledge about the differential properties of the
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multiple monocyte and macrophage subpopulations will
undoubtedly lead to novel therapeutic strategies for the se-
lective targeting of specific subpopulations involved in the
development of pathologic fibrotic conditions. Among
these novel approaches several have already shown their
feasibility including for example, modifying monocyte re-
cruitment and macrophage differentiation, transfer of au-
tologous monocyte/macrophage populations, and the use
of nanoparticles and lysosomes designed to be selectively
bound by specific subpopulations and to modify their func-
tional capabilities or induce their selective elimination.
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