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Abstract

The increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide
lung cancer radiation therapy planning has been well documented. Motion management strategies during
treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and
accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to
clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous,
driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population. Such
variation dictates a comprehensive and patient-specific incorporation of motion management strategies into
PET/CT-guided radiotherapy rather than a one-size-fits-all tactic. This review summarizes challenges and
opportunities for clinical translation of advances in PET/CT-guided radiotherapy, as well as in respiratory
motion-managed radiotherapy of lung cancer. These two concepts are then integrated into proposed
patient-specific workflows that span classification schemes, PET/CT image formation, treatment planning, and
adaptive image-guided radiotherapy delivery techniques.
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Review

Introduction

Lung cancer is the leading cause of cancer mortality
worldwide, resulting in 1.4 million deaths annually [1].
At the time of presentation, non-small cell lung cancer
has often spread to multiple mediastinal lymph nodes
and can no longer be successfully resected. Concurrent
chemoradiation therapy is a mainstay of locally advanced
lung cancer treatment, but standard-of-care regimens
suffer from local failure rates as high as 85 percent for
advanced stage non-small cell lung cancer patients [2].
Among other contributing factors, the potential efficacy
of radiotherapy in these patients is compromised by un-
certainty in lesion and normal tissue delineation due to
respiratory-induced tumor motion, which has limited
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the precise planning and delivery of curative doses.
Time-dependent computed tomography (CT) and posi-
tron emission tomography (PET) has the ability to re-
solve this motion and therefore define the extent of
disease, both anatomically and functionally. In addition,
the achievable therapeutic ratio of radiotherapy may be
improved by image-guided dose intensification to PET-
defined biological target volumes that are at highest risk
of recurrence, and dose sparing of functional lung
volumes that are at highest risk of complication. The ap-
plication of motion-managed PET/CT to radiotherapy
planning coupled with motion-managed and image-
guided delivery will further individualize radiation oncol-
ogy care of lung cancer patients.

Imaging with PET/CT is becoming a standard-of-care
in the staging of lung cancers, but it is still underutilized
in its direct integration to radiotherapy planning. Target
volumes and uncertainty margins derived from PET im-
aging have been used without established consensus due
to the complexity of the image formation process that
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yields quantitative radiotracer uptake information. Like-
wise, no consensus exists on optimal motion manage-
ment techniques that can both reduce respiratory
motion-induced image blurring and artifacts in PET/CT
images of lung lesions as well as limit dosimetric errors
during treatment planning and delivery. To address this
multifaceted challenge, how does one best apply motion-
managed PET/CT imaging to guide effective radiother-
apy of lung cancer? Many clinical and technical tradeoffs
must be accounted for between potential solutions, each
of which may not benefit all individual patients within a
typical heterogeneous treatment population. Table 1
summarizes the resulting gap between current clinical
practice and potential application of research concepts,
while Figure 1 illustrates the landscape of proposed
approaches to various stages of lung cancer patient care
in motion-managed and PET/CT-guided radiotherapy.

A review of challenges and needed advances in PET/
CT guidance and motion management of lung cancer
radiotherapy is presented, followed by a perspective on
translational strategies to make both guidance and man-
agement highly congruent to the individual patient.

PET/CT guidance in lung cancer radiotherapy

While the clinical use of PET/CT in lung cancer patients
is compelling, its application to radiotherapy has lagged
somewhat and tends to be limited to qualitative assess-
ment of disease extent or semi-quantitative tumor vol-
ume delineation as part of the treatment planning
process [3,4]. If PET/CT treatment simulation becomes
standardized, clinical translation of research advances in
biological target definition and imaging uncertainty miti-
gation will follow.

Clinical usage

The most prevalent application of PET/CT to lung can-
cer patient care is diagnosis and staging using metabolic
imaging of the radiotracer 2-deoxy-2-['® F]fluoro-D-glu-
cose (FD@). In particular, the high sensitivity and specifi-
city of FDG PET for the detection of involved regional
lymph nodes and distant metastases [5] has resulted in
the alteration of disease stage in a high percentage of
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lung cancer patients [6,7]. Though a topic of debate,
some have even suggested that PET/CT imaging may re-
duce and eventually eliminate the need for more invasive
diagnostic procedures such as mediastinoscopy, long
considered the gold standard exam for lung cancer sta-
ging [8].

In addition to disease staging, FDG PET/CT is utilized
in radiation therapy planning for gross tumor volume
(GTV) and clinical target volume (CTV) definition
[9,10]. PET/CT volumes are most often delineated
manually by radiation oncologists, but may also be
defined with quantitative techniques that operate on the
standardized uptake value (SUV) in each image volume
element (voxel). GTV segmentation based on PET/CT
greatly reduces inter-observer variation relative to seg-
mentation on CT alone [11-13] by discriminating be-
tween atelectasis, necrosis, and viable tumor.
Additionally, PET/CT-defined tumor volumes achieve
higher conformity to surgically resected and histopatho-
logically defined volumes compared to those based on
CT alone [14]. CTV definition is routinely altered by
volume reduction from PET-negative lymph nodes and
volume expansion from PET-positive nodes [5,7]. Over-
all target definition has been changed in an estimated
range of 30 to 60 percent of patients [15]. As a result,
the Radiation Therapy in Oncology Group (RTOG) 0515
has recommended standardizing the CTV definition of
lung cancers by encompassing only the GTV and PET-
positive lymph nodes [9].

Besides FDG PET, other '® F-labeled radiotracers with
potentially higher specificity towards imaging of particu-
lar molecular pathways have undergone or are in the
process of clinical translation. These include but are not
limited to surrogates of hypoxia using nitroimidazole
compounds (e.g. [*® F]fluoromisonidazole [16]), cellular
proliferation using thymidine analogs (e.g. [*® F]fluor-
othymidine [17,18]), osteablastic and osteoclastic activity
using [*® F]NaF [19-21], and amino acid metabolism
using tyrosine analogs (e.g. ['®F]fluoroethyltyrosine
[22]). Though their role in guiding lung cancer radio-
therapy is not yet established, the panel of imaging bio-
markers represents a distinct trend towards personalized

Table 1 Comparison of current clinical practice and research advances in motion-managed and PET/CT-guided

radiotherapy of lung cancer

Process Clinical practice Research advance Challenge Opportunity
PET/CT Static PET/CT for diagnosis and  Respiratory motion-tracked PET/CT for Precision and accuracy in  Standardization of
imaging staging treatment planning simulation PET/CT quantification PET/CT protocols
Treatment  Single plan from manual tumor  Adaptive plan from multi-phase tumor Fast and reliable target Evaluation of potential
planning segmentation with motion segmentation and biological target definition  definition from motion- therapeutic gains
uncertainty margin to maximize therapeutic ratio managed PET/CT
Treatment  Image-guided radiotherapy Image-guided and motion-tracked Adaptive motion tracking  Real-time verification of
delivery radiotherapy algorithm dose under motion

management
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Figure 1 Landscape of potential approaches to patient care in motion-managed and PET/CT-guided radiotherapy of lung cancer.
Across the stages of patient care, numerous approaches offer increasingly complex strategies. Details of each approach are given in Table 2.

molecular profiling of patient disease to refine both sta-
ging and target definition. For example, the prognostic
value of tumor hypoxia as evaluated by PET/CT in pre-
dicting poor clinical outcome has great potential for
eventual clinical translation.

Current challenges
Clinical application of FDG PET/CT in lung cancer
radiotherapy planning has been deterred by uncertainties
in detection and quantification, which have led to diffi-
culties in staging mediastinal involvement, regional
lymph nodes, and distant metastases in certain cases
[23]. Furthermore, the greatest source of uncertainty
stems from a lack of consensus on tumor segmentation
methods for target volume definition [24,25], particularly
when comparing manual and simple threshold techni-
ques [26]. This leads to large volume differences and
poor correlation between some PET and CT-based target
definitions [27,28]. Specifically, lung lesion shape and
motion trajectory can shrink target volumes defined by
absolute PET standardized uptake value (SUV) thresh-
olds or inversely expand volumes defined by relative
PET SUV thresholds [29]. Ground truth comparisons
between PET/CT target volumes and pathological speci-
mens are difficult without precise registration of the
immunohistochemical fluorescence or autoradiographi-
cal image of the surgically resected sample and the seg-
mented PET/CT image.

In addition to uncertainties in target delineation, pre-
cise and accurate quantification of PET/CT presents a

challenge to radiotherapy planning of lung lesions.
Tumor motion causes blurring of CT-derived anatomical
electron densities and PET-derived activity concentra-
tions, which can yield significant errors in the calcula-
tion of absorbed radiation doses from the former and in
quantification of PET uptake from the latter [30,31].
These errors are compounded when attempting to cor-
rect for annihilation photon attenuation in PET from a
CT image whose phase-sorted bins across the respira-
tory cycle do not properly match, resulting in positional
errors that can exceed 10 mm [27].

Recent advances

Uncertainties in PET/CT-guided radiotherapy of lung
cancer need to be mitigated by the implementation of
robust target definitions and treatment planning algo-
rithms. Improvements in PET/CT quantification include
partial volume corrections methods to overcome limita-
tions in PET spatial resolution, most commonly through
sharpening of small image features with a point spread
or imaging system response function [32]. PET images
that more accurately reflect the underlying radiotracer
distribution allow for more reliable automatic or object-
ive tumor segmentation. Tumor volume definition algo-
rithms range from motion-encompassing maximum
intensity projections (MIP) [33], to linear regression of
deterministic thresholds [34] and stochastic estimation
of multivariate textural features. Recently, Hatt and col-
leagues have devised a fuzzy locally adaptive Bayesian
(FLAB) segmentation algorithm [35]. The FLAB method
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relies on a probabilistic classification scheme of the PET
image intensity distribution with fuzzy transitions be-
tween classes of voxels rather than discrete boundaries,
which was shown to provide more robust metrics than
summary statistics from simple SUV thresholds [36].
The most recent implementation of the algorithm,
3-FLAB, fits the image voxel uptake distribution into
three classes: background, tumor, and tumor subvolume
[37].

Once the radiotherapy target has been defined, treat-
ment planning algorithms have emerged that can account
for many sources of systematic and random errors, in-
cluding those arising from motion-derived uncertainties
during imaging of lung lesions. A class of objective func-
tions, such as those found in the robust optimization
package developed by Bortfeld and Unkelbach, allows for
inputs in the form of probability density functions [38].
These functions calculate the relative likelihood that a
given variable will have a particular value, which then
places constraints on the planned dose distributions to re-
duce the overall variance from this source of uncertainty.
Other investigators have constructed target coverage
probability distributions from these uncertainties to esti-
mate and correct for the propagated error in the planned
dose distributions [39].

Advances in PET/CT-guided radiotherapy may enable
the precise definition of lung cancer target volumes and
prescriptions for biologically conformal delivery. Clinical
trials investigating toxicity limits of PET/CT-based dose
escalation to tumor subvolumes [40] include an upcom-
ing RTOG study utilizing both pre-treatment and mid-
treatment PET/CT-defined target volumes (RTOG
1105). However, the requisite level of quantification at
sufficiently high spatial resolution may not allow for sig-
nificant dose escalation to lung lesions without the expli-
cit management of inter-fraction and intra-fraction
motion.

Respiratory motion management in lung cancer
radiotherapy

Respiratory motion can be managed in one of the fol-
lowing two ways: motion suppression for static simula-
tion imaging and treatment delivery, or motion
compensation for dynamic simulation imaging and treat-
ment delivery. An overview of motion management
strategies is given here; for further details, please refer to
the American Association of Physicists in Medicine Task
Group 76 report [41].

Motion suppression

Respiratory motion suppression during treatment simu-
lation imaging and treatment delivery is achieved either
through breath hold or forced shallow breathing. Deep
inspiration breath holds (DIBH) are used most
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commonly due to their clinical feasibility. DIBH has
been shown to significantly decrease the lung density
within the treatment field, thereby allowing tumor dose
escalation without increasing late tissue complication
risks in the form of pneumonitis or pulmonary edema
[42]. However, intra-patient variation in inspiratory amp-
litude restricts the reproducibility of this procedure
[43,44], which can be mitigated to varying degrees with
effective audio-visual coaching of breathing techniques
[45]. Residual motion during the breath hold can be
measured with the aid of a respiratory surrogate marker.

Active breathing control (ABC) systems, including the
commercial Active Breathing Coordinator™ (Elekta,
Norcross, GA), were developed to permit more reprodu-
cible breath holds. ABC consists of a spirometer-
controlled valve that can be set by the patient to close at
a predefined lung volume, typically chosen between 50
and 80 percent of the maximum [46]. The patient con-
trols the duration of the breath hold, making the process
flexible to inter-patient and intra-patient variations in
breathing patterns. Changes in absolute lung volume are
assumed to be the primary cause of respiratory-induced
tumor motion, meaning that control over this parameter
can effectively reduce uncertainty in time-dependent
tumor position by “freezing” the breathing state. Several
requirements must be met under ABC-managed PET/
CT imaging and treatment delivery: continuity of re-
spiratory trace, patient suitability to achieve reproducible
breath hold, and sufficient temporal efficiency. Spiro-
metric measurement of lung volume relies on continu-
ous changes in airflow within an airtight breathing
apparatus, which has been shown to be susceptible to
signal drifts [47]. Under circumstances when the seal on
the ABC breathing tube mouthpiece temporarily breaks,
or when the spirometer propeller rapidly changes angu-
lar direction at end-of-exhale, the respiratory trace may
exhibit discontinuities that reduce the accuracy of the
lung volume calculation. These errors are compounded
by the inability of certain patients to consistently reach
lung volumes that allow sufficiently large breath holds,
typically at least 15 seconds. Short and infrequent breath
holds reduce the temporal efficiency of both PET/CT
imaging and treatment delivery, leading to protracted
procedures that may no longer be clinically viable. ABC-
based motion suppression is therefore indicated in
patients with lung function that permits reproducible in-
spiration and the ability to frequently engage in a forced
breath-hold [48].

Abdominal compression limits the amplitude of dia-
phragmatic respiration and thereby induces shallow
chest breathing. It is commonly implemented with a
frame-mounted chest plate, where the level of compres-
sion is controlled either through the position of a screw
or from pneumatic pressure. Abdominal compression
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may be suited for lower lung lobe lesions near the dia-
phragm, where displacement of the abdominal surface is
a strong correlate to tumor trajectory, but it is limited in
suppressing motion of upper lung lobe lesions that are
influenced by chest breathing. In a study on abdominal
compression in 10 lung cancer patients, the inspiration-
expiration tumor motion envelope, as measured on re-
spiratory motion-tracked CT, was reduced from a mean
of 13.6 mm to 8.3 mm and 7.2 mm under average forces
of 47.6 N and 90.7 N, respectively [49]. The strength of
this investigation was in the appropriate selection of
patients with lower lobe lung and liver lesions for ab-
dominal compression.

Motion compensation

The primary methods of motion compensation during
treatment simulation imaging and treatment delivery
exist: gating during a defined window of the respiratory
cycle or tracking motion through correlation to the en-
tire respiratory cycle. Both strategies require direct mea-
sures of tumor motion or indirect measures of the
respiratory motion as a surrogate for tumor motion.
Direct measures of target motion include implantable
fiducial markers that are contrast enhancing in x-ray
fluoroscopy image acquisition [50], wireless electromag-
netic transponders and positron emission tomography
(Xu et al. 2006). Indirect measures include, but are not
limited to, external reflective optical or infrared markers
of abdominal displacement [51], lung volume spirometer
[47], or image segmentation of the diaphragm on x-ray
projections combined with a lung motion model prior to
CT reconstruction [52].

Respiratory gating typically bins the imaging acquisi-
tion or treatment delivery according to the direct or in-
direct measures of target motion amplitude [53,54], or
alternatively according to the phase of the their periodic
cycle [55]. As an example, the Real-time Position Man-
agement System™ (RPM) (Varian Medical Systems Inc.,
Palo Alto, CA) uses the abdominal displacement of in-
frared reflective markers to respiratory-gate both CT and
PET image acquisitions on General Electric scanners, as
well as treatment delivery [56]. Despite measuring iden-
tical markers of the respiratory signal, RPM-gated CT is
accomplished retrospectively on triggers at peak inspir-
ation in the RPM trace following image acquisition [45],
whereas RPM-gated PET is achieved prospectively on
the same peak inspiration triggers to define the gating
cycle during image acquisition [57,58]. CT projections
and PET coincidence events within the cycle are then
sorted into bins according to a fixed percentage of the
estimated breathing phase, typically 10 percent phases
for CT and 20 percent phases for PET. While in
principle one can choose an arbitrary gate during the
breathing cycle for simulation imaging and treatment
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delivery, two techniques are used most frequently: end-
of-exhale gating and peak-inhale gating. The end-of-
exhale gating window features a longer dwell time dur-
ing each breathing period and minimal residual tumor
motion relative to other phases, whereas the peak-inhale
gating window maximizes the lung volume to potentially
increase separation between the tumor and neighboring
critical structures.

Respiratory motion tracking uses similar external or
internal markers as respiratory gating, but instead of
specifying a finite window for imaging and treatment de-
livery, the tumor position is imaged over all breathing
phases [59] and tracked during delivery in near real-time
[60]. Assuming reliable correlation between the internal
tumor motion and surrogate markers, the imaged trajec-
tory at treatment simulation can be adaptively matched
to the predicted trajectory during treatment delivery.
Keall and colleagues first proposed the superposition of
the respiratory motion pattern onto the planned radi-
ation fluence map to allow for motion-tracked and
intensity-modulated radiotherapy delivery [61]. They
later validated this concept with dynamic multileaf colli-
mator tracking [60,62].

Current challenges
Motion suppression techniques are prone to residual
motion during treatment from hysteresis breathing pat-
terns in the lateral and anterior-posterior dimensions, as
well as over the course of treatment from daily setup
errors. Patient coaching and tolerance for the motion
suppression procedure strongly influences the degree of
mitigation for residual tumor motion, meaning that se-
lection of suitable candidates is of utmost importance.
Management of these residual errors requires measure-
ment from surrogate markers or on-board image guid-
ance. Large residual errors, even under motion
suppression, require respiratory-gated image acquisition
and radiotherapy delivery for certain patients.
Respiratory gating efficacy is challenged by a tradeoff
between motion blurring, image noise and treatment ef-
ficiency. For example, decreasing the respiratory-gated
bin size will improve the temporal resolution of PET
images to resolve tumor motion but at the cost of fewer
detected coincidence events per bin and noisier images
[58]. Respiratory-gated CT image sets are not usually
noise-limited but are susceptible to artifacts from incor-
rectly sorted images based on a periodic motion. Treat-
ment delivery over smaller gating windows reduces the
intra-gate residual motion uncertainty but increases total
delivery time substantially [63]. In particular, random
drifts in absolute amplitude negatively affect end-of-
exhale gating during imaging and treatment sessions, as
well as between sessions.
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Respiratory tracking using surrogate markers requires
high and reproducible correlation to the internal tumor
motion, which is patient-specific, imaging-specific, and
radiotherapy fraction-specific. Furthermore, respiratory
motion-tracked treatment delivery hinges on the accur-
acy and precision of tumor motion prediction algorithms
to reposition the treatment couch or radiation beam at a
particular time corresponding to a phase of the breath-
ing cycle. For example, an adaptive filter algorithm can
predict the position of a moving tumor 200 milliseconds
into the future to overcome the latency of MLC move-
ment, but estimation of this position carried an average
uncertainty of 20 percent of the motion amplitude [60].

Recent advances

Advances in respiratory gating include improved defini-
tions for gating windows that allow for greater control
over image noise/motion resolution tradeoffs, reprodu-
cible gated delivery and clinically efficient procedures.
Liu and colleagues developed a quiescent period PET
gating algorithm that retrospectively bins an RPM dis-
placement histogram based on the percentage of total
counts within the gating window centered on the mode
of the distribution [64]. Alternatively, they proposed pro-
spectively gating during a quiescent period based on a
percentage of peak inspiration for each breathing cycle,
which accounts for inter-cycle variations and minimizes
drifts in the average position over time (see Figure 2).
Furthermore, improved quantification of gated PET/CT
from accurate CT-based attenuation correction is
accomplished by correlating the internal trajectory of
tumor centroids to the RPM block displacement [65].
Such regression analysis is critical to calculate the rela-
tionship between respiratory marker time-dependent
positions as surrogates for tumor time-dependent posi-
tions in each individual patient. In general, correlation
studies between measures of external respiratory motion
surrogates and internal tumor motion have reported lin-
ear relationships in the superior-inferior dimension of
motion but poorer agreement in patients with significant
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hysteresis or a lesion attached to another structure, since
they may exhibit more chaotic trajectories [66].
Advances in respiratory tracking have increased near
real-time tumor motion prediction [67]. Two classes of
algorithms have emerged as leading candidates for clin-
ical application: (periodic) auto-regressive moving aver-
age (PARMA) and support vector machine (SVM)
learning, both of which adapt to drifts and random com-
ponents superposed on the sinusoidal signal. The ARMA
[68] and PARMA [69] methods realize up to 500-ms
motion prediction at the 95 percent confidence interval,
while SVM-based methods achieved 2-mm root-mean-
square error at 1-s motion prediction [70]. Predicted
tumor trajectories can then be programmed into robotic
couches with fully three-dimensional translational and
rotational degrees of freedom to ensure that the radi-
ation beam continuously conforms to its intended target
[71-73]. For example, the Synchrony™ respiratory track-
ing solution (Accuray, Sunnyvale, CA) adapts to changes
in breathing patterns through repeat x-ray projections
that update the correlative relationship between internal
target motion and external marker motion [74]. Alterna-
tively, the treatment couch can remain stationary and
the predicted trajectories are then programmed into the
multileaf collimator to actively reshape the radiation
beam to conform to the moving target [75]. These two
approaches to respiratory-tracked radiotherapy delivery
are implemented from differing frames of reference: the
couch in the patient’s coordinate system, or the collima-
tor in the beam’s coordinate system. Couch and beam
tracking may be eventually combined so as to mitigate
errors in couch displacement, reported to range from
0.1-0.3 mm [72], and collimator leaf displacement limits.

Personalized motion-managed and PET/CT-guided
radiotherapy workflows

Given the high degree of variability between lung cancer
patients, clearly some may be better suited for motion-
suppressed radiotherapy while other may benefit from
motion-compensated radiotherapy. The advantages and
disadvantages of various motion-managed and PET/CT-

> ‘
Figure 2 Comparison of ungated (A) and quiescent period gated (B) ['® FIFDG PET image reconstructions. The maximum standardized
uptake value (SUV) is increased in the gated image of a detached lesion and the SUV profiles (C) show clear sharpening of the gated uptake

spatial distribution (black line). This improvement in quantification would potentially alter the definition of biological targets for
motion-compensated and PET/CT-guided radiotherapy.
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Table 2 Motion-managed and PET/CT-guided radiotherapy components
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Approaches

Advantages

Disadvantages

Comments

Motion measurement

Abdominal
displacement
markers

Clinical feasibility

Insensitive to small abdominal
displacements

Indicated for most patients. Use patient-specific block
position, camera aperture and brightness to maximize
detectable abdominal displacement

Lung volume
spirometer

Stronger correlation to
internal target motion

Patient coaching complexity

Indicated in patients with small abdominal
displacements

Fiducial implants

Direct image of internal
target motion

Invasive procedure and subsequent
migration

Indicated in patients with accessible lesions when
other respiratory signal surrogates not indicated

Image segmentation
of diaphragm ROI

Non-invasive measure of
respiratory motion

Challenges associated with
deformable registration across
phases

Ensure phase-sorted images not undersampled
through sufficient projections or reliable undersampled
image reconstruction algorithms

Motion control

Deep inspiration
breath hold

Clinical feasibility

Lack of reproducibility and temporal
inefficiency

Indicated in patients with sufficient lung function to
allow for reliable breath hold under audiovisual
coaching

Active Breathing
Control

Reduction of motion
envelope

Lung function requirement to permit
forced breath hold

Determine patient-specific lung volume for breath hold
(50-80% of max)

Abdominal
compression

Reduction of abdominal
displacement

Upper lobe lesions subject to motion
in non-diaphragmatic breathers

Indicated in diaphragmatic breathers with additional
measurement of residual motion when possible to
enact tolerance criteria

PET/CT image acquisition

Static PET/CT

Reproducibility

Motion-blurred image

Indicated for low amplitude motion lesions (e.g. upper
lobe, chest wall attached)

Static prospectively
gated PET/CT

Suppression of motion
blurring without loss of SNR

Temporal inefficiency

Use in conjunction with ABC for patients with random
breathing pattern that can achieve sufficient lung
volume

Dynamic motion-
tracked PET/CT

Better representation of
target motion

Challenge to reproduce correlation
at treatment

Use in conjuction with RF block, spirometer, fiducials,
or image segmentation over all phases of breathing
cycle for patients with periodic breathing

PET/CT image processing

Phase-averaged
PET/CT

Robust low noise image

Reduced contrast and quantitative
accuracy without motion information

Evaluate helical CT to determine whether to use
phase-averaged PET or motion-compensated PET/CT

Maximum Intensity
Projection PET/CT

Represents high confidence
interval of motion envelope

PET image SNR reduced to
equivalent counts for single phase

Weight intensity projection distribution across
respiratory phases to improve SNR while maintaining
motion envelope confidence interval

Quiescent period
gated PET/CT

Variance reduction from
motion over reproducible
phase bin

Image quality dependent on
fractional counts within quiescent
window

Patient-specific gating window based on either relative
displacement amplitude or absolute phase

Multiphase PET/CT

Motion compensated images
with little information loss

Requires sufficient correlation
between respiratory signal and
target motion

Optimize number of phases and phase bin sizes as
function of lesion size, location, motion amplitude

Target definition

Manual contour

Patient-specific target
delineation

Inter-observer variability in target
definition

Useful as higher order correction to target definition
following automated techniques

Absolute/relative
threshold

Clinical feasibility

Uncertainty in threshold due to
noise or variation in backround
uptake

Validate threshold-defined targets as prognostic factors
of treatment outcome in abdominothoracic cancer
patients

Confidence interval

Target motion margins
weighted by spatiotemporal
likelihood map

Limited to single target envelope by
ignoring phase-specific information

Establish relevant confidence interval criteria based on
MIP or motion-weighted intensity projection to build
dose volume relationship for fixed normal tissue
integral dose

Phase adaptive

ROI specific to different

Complexity of threshold

Validate phase-adapted threshold-defined targets

threshold phases of target motion determination for all phases against known target parameters in motion phantoms
Phase adaptive Robust to image noise and Dependent on initialization Validate in motion phantoms followed by comparison
stochastic heterogeneities conditions and susceptible to of prognostic value to phase-averaged targets

segmentation

statistical variation
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Table 2 Motion-managed and PET/CT-guided radiotherapy components (Continued)

Radiotherapy plan optimization

Single plan from ROl Clinical feasibility

Single plan may require frequent
adaptation during treatment course

Indicated in patients with fewer normal tissue
tolerance constraints that allow for sufficient target
dose

Single plan feasibility with
motion-compensated target
definition

Single plan from
optimal margin
target definition

Reduced delivery degrees of
freedom compared to phase-
adapted plan

Indicated in patients whose single plan normal tissue
constraints do not allow for sufficient target dose

Physical/biological
advantages to differential
delivery across phases

Phase-adapted plan

No consensus on weighting scheme
for phase fluence maps

Indicated in patients whose single motion-
compensated plan normal tissue constraints do not
allow for sufficient target dose

Radiotherapy plan quality assurance

Single plan to static
phantom

Clinical feasibility

Ignores impact of motion on clinical
deliverability of treatment plan

Baseline measure of plan deliverability prior to motion
uncertainties

Accounts for realistic motion
trajectories

Single plan to
patient-specific
motion phantom

Plan deliverability limited by motion

Plans that fail QA due to motion should be replanned
on individual phases

Characterize deliverability of
phase-correlated plan

Phase-adapted plan
to patient-specific
motion phantom

Higher sensitivity to phantom setup
and dosimeter measurement
uncertainties

Ensure precise and accurate setup of phantom and
sufficient spatiotemporal resolution of dosimeters

Image-guided radiotherapy (IGRT) delivery

IGRT Clinical feasibility

Reliant on motion control or static
lesion to maximize delivery efficacy

Daily imaging to verify target motion envelope within
PTV

Respiratory-gated
IGRT

Compromise between
delivery reproducibility and
treatment efficacy

Temporal inefficiency

Ensure gating window provides sufficient target
coverage to phase gate-matched PTV through daily
imaging and respiratory signal measurement

Respiratory-tracked
IGRT

Advanced delivery optimized
to complete target motion
trajectory

Requires accurate and precise
motion prediction algorithm to
account for delivery system latency

Ensure correlation between imaged target trajectory
and planned phase-correlated target trajectory

Adaptive radiotherapy

Adapt to morphological and
biological changes during RT

Planned adaptive
treatment

Adapted plan does not account for
changes in image signal due to
motion

Establish criteria for adapting plan that include
uncertainties in imaging signal change due to motion

Adapt to motion-
compensated morphological
and biological changes
during RT

Planned phase-
adaptive treatment

Challenge of re-planning from mid
Tx motion-compensated PET/CT or
from on-board imager alone

Determine disease and site-specific criteria for adapting
plan based on PET/CT or on-board imager

guided radiotherapy approaches are listed in Table 2.
The systematic integration of these approaches to form
patient-specific clinical workflows has great potential to
improve accuracy of treatment planning and delivery.
The workflows are characterized by many distinct
components: patient classification, PET/CT image acqui-
sition and reconstruction, target and prescription defin-
ition, radiotherapy planning, treatment plan quality
assurance, image-guided radiotherapy delivery, and
adaptive procedures. Each workflow component section
concludes with a translational question to the clinical
and scientific communities for further investigation,
whose answers will rely on strong interdisciplinary
collaboration.

Patient classification

Due to the high degree of heterogeneity in the lung can-
cer patient population, including variations in
respiratory-induced tumor motion, personalized motion

management of PET/CT-guided radiotherapy begins
with intelligent patient classification. Various forms of
classification have arisen across several biomedical disci-
plines, most notably genomics, proteomics, and metabo-
lomics, to account for cancer-specific variations within
large bioinformatic datasets. A similar approach can be
applied to develop hierarchical clustering models of lung
cancer patient populations according to respiratory para-
meters and diagnostic imaging metrics. One example
patient-specific workflow, shown schematically in
Figure 3, uses several decision criteria to triage prospect-
ive patients into different imaging, treatment planning,
and treatment delivery protocols. The objective would
be to integrate patient-specific information in order to
maximize the achievable quantitative accuracy and pre-
cision throughout a motion managed and PET/CT
radiotherapy workflow.

Signal processing of respiratory traces has revealed
that lung cancer patients can be grouped into three
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Patient Classification

Motion Management Motion
Suppression

Residual
tumor
motion?

Static

PET/CT Image Formation P

Motion-gated
Reconstruction

Baseline
Diagnostic Factors

Periodic

Motion
Compensation

Motion-tracked
Reconstruction

Motion-gated
Reconstruction

ROlin

Treatment Planning

Image-guided
Radiotherapy

Treatment Delivery

Aanl

cycle by predictively tracking the motion.

Figure 3 Example workflow of patient-specific motion management and PET/CT guidance for lung cancer radiotherapy. Beginning with
patient classification based on diagnostic factors, motion is either suppressed or compensated for during the PET/CT acquisition. Static,
respiratory-gated, or respiratory motion-tracked images are then used to define biological targets for treatment plans. Radiotherapy is delivered
under image guidance when motion is suppressed, during a particular respiratory gate that is matched to the plan or throughout the respiratory

multiple

Gated and
Image-guided
RELGEETN

Motion-tracked and
Image-guided
RELTGEIETY

J

broad categories: 60 percent of patients can be classified
as periodic breathers with reproducible end-expiration
displacement, 20 percent as periodic breathers with nor-
mal distributions of end-expiration displacement, and 20
percent as chaotic breathers [29]. In addition to spectral
analysis of respiratory patterns, baseline diagnostic im-
aging factors from CT (lesion size and location), as well
as those from available PET studies (FDG avidity and up-
take spatial heterogeneity), could refine the definition of
these patient classes. The classes should account for a
high percentage of the inter-patient variability that is
likely to impact the motion management technique dur-
ing PET/CT treatment simulation, radiotherapy plan-
ning and delivery.

Given this set of baseline parameters, patients could,
for example, be stratified to several cohorts: (A) respira-
tory motion-gated PET/CT and radiotherapy, (B) re-
spiratory motion-tracked PET/CT and radiotherapy, or
(C) motion-suppressed PET/CT and radiotherapy. In
general, the most complex treatment simulation and de-
livery should be reserved for patients with reproducible
periodic tumor motion that can be compensated for
with high precision and accuracy. Following this classifi-
cation scheme, patients with long end-expiration breath-
ing pattern could follow Cohort A with a quiescent
period RPM-gated PET/CT imaging protocol with
phase-matched 3D conformal or intensity-modulated

radiotherapy delivery. Those with focal lesions, homoge-
neous FDG avidity, and periodic breathing patterns
could follow Cohort B with a respiratory motion-tracked
PET/CT and predictive phase-optimized volumetrically
modulated arc therapy delivery. Finally, those with dif-
fuse lesions, mediastinum or chest wall attachment, het-
erogeneous FDG avidity, and chaotic breathing patterns
could follow Cohort C with active breathing control or
abdominal compression during PET/CT-guided radio-
therapy. This would result in three sets of patients who
would undergo dramatically different motion-managed
and PET/CT-guided radiotherapy regimens.

Certain assumptions and caveats apply. For instance,
contingencies must be in place in the event that a given
external respiratory motion surrogate (i.e. RPM block,
ABC spirometer, etc.) does not correlate with the internal
tumor trajectory. In this case, respiratory gating or track-
ing may be better achieved with direct imaging of the in-
ternal motion, as measured by implanted fiducial markers
or diaphragm image segmentation (see Figure 4). More
broadly speaking, not all individual patients may fall
within one of the classification categories due to the con-
tinuous distribution of the imaging and respiratory signal
parameters across the patient population. It is important
to quantify residual errors that ensue from each motion
management strategy, which would then be propagated
through the simulation imaging, treatment planning, and
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radiotherapy regimen.

Figure 4 Four-dimensional cone beam computed tomography for image-guided radiotherapy. Images acquired at the time of treatment
delivery are sorted into temporal phases according to the time-dependent diaphragm position. Coronal (A), transaxial (B) and sagittal (C) views at
30 percent phase show the gross tumor volume (red contour), planning target volume (orange contour) and esophagus (green contour). The PTV
was defined on the maximum intensity projection of a respiratory-gated simulation CT. While the PTV encompasses the motion of the lesion
prior to treatment delivery, its definition may be enhanced through individual phase adaption as part of a motion-managed and PET/CT-guided

treatment delivery processes. In this manner, uncertainties
in target volumes and quality assurance tolerances could
be determined for individual patients and incorporated
via spatial and dosimetric margins within the PET/CT-
guided treatment plan.

How do we effectively translate the vast array of pa-
tient classifiers to a clinically meaningful and implemen-
table selection algorithm?

PET/CT image acquisition and reconstruction

Three types of PET/CT image acquisition can be per-
formed either under free-breathing or breath-hold con-
ditions: static, gated, or correlated acquisitions. Static
acquisitions utilize all image projections without any
respiratory motion information from which to sort
the data. Gated acquisitions set triggers to bin data
within a particular window (e.g. peak inspiration or end-
of-expiration) that defines a breathing state. Correlated
acquisitions sort all image projections into differing re-
spiratory states to image the complete time-dependent
tumor position.

In cases where tumor motion carries an uncertainty
that is significantly smaller than other sources of error
in the image formation process, either with or without
motion suppression, then simple static whole body PET/
CT acquisitions are indicated. Clinical PET scanners
have an average image spatial resolution of 5 mm, which
implies that detectable changes in activity concentration
distribution from the complete resolution of tumor mo-
tion alone would need to arise from amplitudes of at
least 10 mm according to the Shannon-Nyquist sam-
pling criterion. Patients with upper lobe lesions that are
tethered to the mediastinum or outer chest wall are
likely to have small motion envelopes characterized by a
complex and highly deformable trajectory. Therefore,
static PET/CT acquisitions under active breathing con-
trolled breath holds or abdominal compression should
in principle result in the least variability in quantification
of image intensity values in these patients, but at the

cost of more difficult clinical feasibility due to challenges
in patient coaching and tolerability.

At the other end of the spectrum, cases with tumor
motion-derived uncertainty exceeding 10 mm in sinus-
oidal amplitude call for respiratory motion-tracked PET/
CT. CT acquisition in cine mode is followed by PET ac-
quisition of the list mode coincidence events, which for
example can be both RPM-sorted into matching phases
of the breathing cycle. This requires correlation of the
external RPM block position with the internal tumor
position on a patient-specific basis for PET attenuation
correction. Correlation of the external respiratory surro-
gate and internal tumor motion trajectories can be veri-
fied independently from diaphragm segmentation-sorted
CT images.

Respiratory gating can be accomplished either pro-
spectively or retrospectively in patients that present with
viable gating windows. Patients with pronounced quies-
cent peaks at end-expiration could undergo retrospect-
ively gated PET/CT acquisitions that balance image
noise and motion resolution tradeoffs, as shown in
Figure 5A. On the other hand, patients with drifts in
the quiescent period at end-expiration may benefit from
prospectively gated PET/CT acquisitions that adapt to
inter-cycle variations in motion amplitude and moving
averages. Respiratory gating may not be suitable
for patients with largely diffuse and attached lesions that
exhibit chaotic motion trajectories, as shown in
Figure 5B.

In general, motion-managed PET/CT acquisitions ei-
ther consist of a small percentage of total detected
events in the gating window or a division of total detec-
tions across the respiratory states. Either case necessi-
tates increased detection sensitivity to achieve similar
signal-to-noise or contrast-to-noise ratios as in motion-
free static images. PET acquisitions in 3D mode (lead
septa retracted) have been shown to have higher noise-
equivalent count rates for clinical injected activities of
[*®FIFDG (5-10 mCi) than in 2D mode (lead septa
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Figure 5 Examples of motion management strategies for two patients receiving PET/CT-guided radiotherapy. The top row denotes a
patient whose baseline diagnostic factors indicate a highly period tumor motion and respiratory pattern, suitable for respiratory motion-tracked
PET/CT and motion-tracked radiotherapy. The bottom row illustrates a patient whose chaotic respiratory pattern makes them suitable for PET/CT
and radiotherapy under active breathing control (ABC) and prospective respiratory gating during a finite time period. Figure adapted from
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Liu et al. and Chin et al. [29,65,76].

inserted) [77]. 3D PET acquisitions are therefore poten-
tially advantageous for respiratory motion-managed
image formations.

Image reconstruction considerations depend on the
signal-to-noise and contrast-to-noise properties of the
motion-managed image acquisition technique. Given the
large heterogeneities in thoracic tissues that can impact
CT-based attenuation correction of PET activity concen-
trations, iterative PET reconstructions based on expect-
ation maximization or maximum likelihood tend to
produce fewer streak artifacts than those based on ana-
Iytic filtered backprojection for lung cancer patient im-
aging studies. Image filtration during or post
reconstruction reduces high spatial frequency noise but
also worsens resolution of respiratory-induced tumor
motion.

As the trend towards complex statistical modeling of
imaging systems grows, what is necessary to standardize
motion managed PET/CT acquisition and reconstruction
protocols across institutions worldwide for clinical
translation?

Target volume and prescription definition

Definitions of target volumes on reconstructed PET/CT
images can be standardized to encompass the residual
uncertainty due to respiratory motion within any of the
management strategies during image acquisition [78].
One method to define the target and its complete mo-
tion envelope has been suggested by Bettinardi and col-
leagues, whereby they systematically expanded the set of
gross tumor volumes (GTV) to internal target volumes
(ITV) defined on maximum intensity projections (MIP)
across all breathing phases of the respiratory motion-
tracked CT and PET images and subsequently calculated

the union of the MIP-defined ITVs [79]. This initially
led to significantly larger target volumes as compared to
those defined on static PET/CT images. However, the
expansion of static PET/CT-defined volumes with
population-based motion uncertainty margins reduces
the difference with patient-specific MIP PET/CT-defined
volumes.

Motion-compensated target volumes can be defined
within a fixed quiescent gating period or across all re-
spiratory motion-tracked periods. Manual segmentation
of respiratory phase-specific target volumes is cumber-
some and ideally should be accomplished with an auto-
mated procedure. One example includes target contour
definition on a single-phase PET/CT image set that is
then propagated to the remaining phases via deformable
image registration algorithms [80]. This is achieved with
high fidelity using the respiratory motion-tracked CT
dataset, which define the deformation fields that are sub-
sequently applied to the corresponding respiratory
motion-tracked PET dataset. A second automated PET/
CT target definition could involve the implementation
of auto-segmentation algorithms to contour each re-
spiratory phase-sorted PET/CT, which would not rely
explicitly on deformable registration.

Following target definition under PET/CT guidance
and motion management, the target prescription can be
defined in a variety of ways. Radiation dose escalation to
PET-based subvolumes, so-called dose painting, was
proposed conceptually over ten years ago [81] and is
now being tested in early phase clinical trials [40]. Aris-
tophanous and colleagues have recently investigated the
implementation of dose painting in lung cancer radio-
therapy planning using motion-managed PET, which
introduces several challenges to prescribing dose to



Bowen et al. Clinical and Translational Medicine 2012, 1:18
http://www.clintransmed.com/content/1/1/18

moving tumors, and in some cases, independently mov-
ing biological target subvolumes [82]. An alternate pre-
scription definition, dose-painting-by-numbers, involves
the direct translation of PET image intensity values to
prescribed dose, yielding non-uniform spatial distribu-
tions across the target volume [83,84]. The advantage of
non-uniform prescriptions in the context of motion
management of lung cancer radiotherapy is that uncer-
tainties in the tumor motion and image acquisition
propagate on average to smaller errors in a continuously
varying planned dose distribution compared to errors
from uniform prescriptions with sharp dose boundaries.

Will we translate biological imaging-based prescrip-
tions for clinical radiotherapy from top-down empirical
models, bottom-up radiobiological models, or some
combination of both?

Treatment planning

Motion-managed and PET/CT-guided treatment plan-
ning begins with the calculation of radiation dose on the
appropriate CT images that best represent the patient
anatomy during treatment delivery. For conventional
radiotherapy under free breathing conditions and no
motion compensation, a slow scan or phase-averaged
CT image dataset should be used to simulate the
motion-blurred anatomical features and equivalent at-
tenuating properties [41]. For motion-suppressed radio-
therapy (e.g. under active breathing control or
abdominal compression conditions), a fast helical CT
scan may be sufficient to capture small residual motion
envelopes [41]. For motion-compensated radiotherapy, a
respiratory-gated or correlated CT should be used to
represent the patient geometry within the gating window
or across individual respiratory states.

Optimization of planned radiation dose distributions
can directly compensate for motion-blurred delivery or
incorporate motion-managed target volumes. In order
to account for degradation of the prescribed dose gra-
dient at the edge of moving target volumes during de-
livery, patient-specific margins that consist of edge-
enhanced dose intensity maps can be constructed [85].
Dose can also be optimized based on an average tumor
trajectory calculated from a respiratory motion-tracked
CT [86] to yield respiratory phase-adapted treatment
plans [87]. Respiratory phase-optimized and volumet-
rically modulated arc therapy, proposed by Chin and
Otto, takes advantage of respiratory motion as an add-
itional degree of freedom to preferentially increase dose
during portions of the breathing cycle throughout a
continuous treatment delivery when the target is iso-
lated from proximal critical structures. This combin-
ation of gating and tracking results in plans that are
superior to other static, gated, and tracking-based plan-
ning methods [76].

Page 12 of 16

Numerous treatment-planning methods motivate care-
ful patient stratification in a similar manner to PET/CT
image acquisition and reconstruction. For static and
gated PET/CT acquisitions that yield a single set of
ROIs, optimizing target margins for delivery can account
for residual tumor motion. On the other hand, motion-
tracked PET/CT acquisitions that yield phase-specific
ROIs can be utilized in a more complex treatment plan-
ning strategy. Planned dose can be optimized to uni-
formly irradiate a maximum intensity projection of the
target volume to a lower dose, which would ensure a
minimum level of target coverage that includes micro-
scopic extension of disease. Dose can then be escalated
to the phase-specific PET/CT-defined biological target
volumes with either equal weighting, or preferentially to
a particular phase with unequal weighting. The key to
these dose escalation strategies is to maintain a fixed in-
tegral dose to organs-at-risk. Furthermore, by explicitly
including the impact of tumor motion on radiobiological
models of cell survival, planned radiation dose could be
optimized to improve radiobiological metrics of treat-
ment plan quality, which include tumor control prob-
ability, normal tissue complication probability, and
generalized equivalent uniform dose [88].

What clinical role will multi-objective optimization
play in selecting for treatment plans that minimize dosi-
metric uncertainties from various motion management
strategies?

Quality assurance

Residual uncertainties in the estimation of tumor motion
during suppressive or compensatory imaging acquisition
techniques [89] can be propagated to target volumes,
treatment plans, and finally to treatment delivery. This is
especially important for random errors that cannot be cor-
rected via on-board image guidance prior to or during
treatment delivery. To account for these errors in the de-
livery of the treatment plan, dosimetric measurements in
respiratory torso phantoms can be used to simulate deliv-
ery of motion uncompensated or compensated radiother-
apy under free-breathing conditions, or to simulate
residual motion following suppression strategies.

Ideally, patient-specific tumor motion trajectories
would drive the phantom during the delivery of the
planned radiation intensity map. Measurements with an
array of detectors that offer sufficient spatial resolution
can then assess the degree to which treatment plans are
being delivered both precisely and accurately. Quality as-
surance tolerance limits can be enacted for each type of
delivery, ranging from static radiotherapy to respiratory-
gated or tracked radiotherapy. These limits greatly de-
pend on what deviation is deemed to have a significantly
negative impact on patient care. In general, complex re-
spiratory motion-tracked and phase-optimized delivery
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requires tighter margins for error to avoid geographical
misses and potential mistreatment that exceeds accept-
able levels of normal tissue toxicity.

Will patient-specific quality assurance for motion
managed and PET/CT-guided radiotherapy be ultimately
conducted in anthropomorphic phantoms or through
real-time dose reconstruction for each treatment
fraction?

Image-guided treatment delivery

Daily image guidance is essential during delivery of
motion-managed and PET/CT-guided radiotherapy of
lung cancer. On-board imaging accounts for systematic
variations in patient setup, tumor position and motion
trajectory under static, gated, or motion-tracked
delivery.

Static or gated radiotherapy delivery under active
breathing control or abdominal compression relies on
careful verification of tumor position and its residual
motion envelope from respiratory motion-tracked cone-
beam CT (CBCT). The goal is simply to ensure that the
motion-suppressed target falls within the planning target
volume (PTV) margins throughout the treatment course,
shown for an example patient in Figure 4. In the case of
gated radiotherapy under active breathing control, the
radiation beam would be automatically turned on when
the ABC spirometer valve is closed by the patient for a
breath hold and turned off when the valve is opened for
free breathing.

Respiratory-gated radiotherapy delivery with external
respiratory motion surrogates involves a less direct pro-
cedure. For example, the daily RPM-defined gated deliv-
ery window needs to be matched to the original RPM-
defined gated PET/CT imaging window. The gated de-
livery window would then be verified independently
against a respiratory motion-tracked CBCT-defined, so
that the internal tumor position falls within the motion-
compensated target volume throughout the treatment
course. As with any gated delivery, the radiation beam
on/off position would be coupled to the RPM system
that controls when the respiratory state resides within
the gating window.

Respiratory motion-tracked radiotherapy delivery
across all respiratory states requires precise tracking of
internal fiducials or external respiratory surrogates. The
external motion trajectory of these surrogates must cor-
relate to the internal tumor motion trajectory on a per-
patient basis at the time of delivery. Under predictive
couch tracking of respiratory motion, the time-
dependent tumor position as measured by respiratory
motion-tracked CBCT must be fixed from the beam’s
eye view and fall within the motion-compensated PTV
margins. Under predictive multileaf collimator beam
tracking of tumor motion, the CBCT-defined tumor
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trajectory must correlate to the motion-adaptive set of
PTVs over all breathing phases.

Daily dose delivery verification during each treatment
fraction may eventually be possible with the electronic
portal imaging devices (EPID) [90]. These detector
arrays can quantify the spatial distribution and magni-
tude of the exit radiation beam energy flux that has not
been attenuated within the patient, which combined
with knowledge of the beam’s entrance characteristics
and patient’s attenuation map relates an estimate of the
patient’s absorbed dose. This form of dose reconstruc-
tion, if properly calibrated to absolute dosimeters, could
provide a more direct estimate of dosimetric errors in
the context of motion-managed radiotherapy.

How do we integrate improved motion tracking and
dose verification detector systems with fast dose compu-
tation on graphical processor units (GPU) for real-time
adaptive treatment delivery?

Adaptive procedures

Changes in tumor mass, morphology, and molecular
phenotype heterogeneity over the course of treatment
can greatly impact the effectiveness of motion-managed
and PET/CT-guided radiotherapy. Tumor shrinkage and
anatomical deformations can drastically alter the internal
motion trajectory, which consequently may no longer
correlate to prior trajectories and respiratory surrogate
signals. An initial large upper lobe lesion that is attached
to the chest wall may not require the same type of mo-
tion management as a residual lesion that has detached
during the treatment course (ref here).

Daily four-dimensional imaging with CT, typically kilo-
voltage cone beam CT, enables the calculation of dose
on the most current representation of patient anatomy
and aides in the decision of whether to adapt the treat-
ment plan to both changes in tumor morphology and
trajectory. Furthermore, these changes will likely affect
PET avidity and degree of heterogeneity, which can im-
pact biological target definition. However, adaptive
radiotherapy based on FDG PET must be approached
cautiously due to false positive signal from radiation-
induced tissue inflammation, which may be further con-
taminated by residual motion.

What action threshold criteria should be adopted in
adaptive radiotherapy to conform to changing morph-
ology, molecular phenotype, and respiratory-induced
tumor motion patterns?

Conclusions

Advances in lung cancer radiotherapy under FDG PET/
CT guidance and respiratory-induced tumor motion
management are numerous and approaches are increas-
ingly complex. Molecular imaging continues to impact
diagnosis and staging of lung cancer, but refinements in
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target volume definition and eventually prescribed dose
definition are needed. Tumor and nodal motion is
accounted for in radiotherapy planning and delivery with
uniform spatial margins and daily image guidance, but
in the future could be suppressed or compensated for
throughout treatment simulation imaging, planning, and
delivery. The greatest challenge to the clinical applica-
tion of these advancements remains the ability to effect-
ively tailor therapeutic strategies to individual patients
within a highly heterogeneous population. Identifying
patients who will benefit from respiratory motion-
tracked radiotherapy versus those who will benefit from
respiratory-gated radiotherapy under PET/CT guidance
should continue to be a high priority within the radi-
ation oncology research community. The eventual deliv-
ery of conformal and escalated radiation dose, either to
motion-suppressed or motion-compensated biological
target volumes, holds great promise to increase local
control rates of lung cancer, reduce normal tissue com-
plication rates, and consequently improve patient
outcomes.
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