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Abstract 

Background:  High-grade serous ovarian cancer (HGSC), the most common ovarian carcinoma type, is associated 
with the highest mortality rate among all gynecological malignancies. As chemoresistance has been demonstrated 
as the major challenge in improving the prognosis of HGSC patients, we here aimed to identify microRNA (miRNA) 
biomarkers for predicting platinum resistance and further explore their functions in HGSC.

Results:  We developed and applied our network vulnerability-based and knowledge-guided bioinformatics model 
first time for the study of drug-resistance in cancer. Four miRNA biomarkers (miR-454-3p, miR-98-5p, miR-183-5p and 
miR-22-3p) were identified with potential in stratifying platinum-sensitive and platinum-resistant HGSC patients and 
predicting prognostic outcome. Among them, miR-454-3p and miR-183-5p were newly discovered to be closely 
implicated in platinum resistance in HGSC. Functional analyses highlighted crucial roles of the four miRNA biomark-
ers in platinum resistance through mediating transcriptional regulation, cell proliferation and apoptosis. Moreover, 
expression patterns of the miRNA biomarkers were validated in both platinum-sensitive and platinum-resistant ovar-
ian cancer cells.

Conclusions:  With bioinformatics modeling and analysis, we identified and confirmed four novel putative miRNA 
biomarkers, miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p that could serve as indicators of resistance to plati-
num-based chemotherapy, thereby contributing to the improvement of chemotherapeutic efficiency and optimiza-
tion of personalized treatments in HGSC.
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Background
High-grade serous ovarian cancer (HGSC) is the most 
common histotype accounting for more than 70% deaths 
from ovarian cancer [1], the leading cause of gynecologic 
malignancy-induced mortality in women [2, 3]. Due to a 
lack of early symptoms and effective screening measures, 

the majority of patients (> 80%) are diagnosed at the 
advanced stages (FIGO stage III or IV), with 22,440 new 
cases and 14,080 deaths recorded in the United States in 
2017 [2]. Despite improvements in treatment based on 
optimized surgery techniques and combinational chemo-
therapy over the past two decades, the overall 5-year sur-
vival rate is only 30% in patients with advanced ovarian 
cancer due to the initial and acquired resistance to plat-
inum-based chemotherapy [4, 5]. Therefore, identifying 
biomarkers that facilitate detection of patients who may 
benefit from the platinum-based chemotherapy or other-
wise hold significant potential in optimizing personalized 
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therapy, avoiding unnecessary treatment, and eventually 
improving prognosis of women with ovarian cancer.

MicroRNAs (miRNAs) are approximately 22-nt non-
coding RNAs that post-transcriptionally modulate gene 
expression in a sequence-specific manner via mRNA deg-
radation or translational repression [6]. These molecules 
are extensively involved in regulation of cellular pro-
cesses, including proliferation, differentiation, and apop-
tosis. Moreover, 52.5% human miRNA genes are located 
in fragile sites or genomic positions associated with can-
cer [7], suggesting a close association with tumorigenesis. 
Accumulating evidence has demonstrated that multiple 
miRNAs are aberrantly expressed in various cancer types 
and contribute to the initiation and progression of can-
cer as oncogenes or tumor suppressors [8]. Importantly, 
these miRNAs can be effectively used as predictive bio-
markers or therapeutic targets to optimize cancer diag-
nosis and treatment regimens [9, 10].

As platinum resistance is a major obstacle in ovarian 
cancer treatment, extensive efforts have been made to 
discover miRNA biomarkers involved in drug resistance. 
For example, Vecchione et  al. [11] identified a miRNA 
signature comprising miR-484, -642, and -217 useful in 
predicting chemoresistance in ovarian cancer and further 
demonstrated effects of miR-484 on tumor angiogen-
esis through regulating the VEGFB and VEGFR2 sign-
aling pathways. Up-regulation of miR-93 was shown to 
affect cellular response to cisplatin via regulating PTEN/
Akt signaling in cisplatin-resistant ovarian cancer cells 
[12]. miR-141 has been identified as a crucial regulator 
of cisplatin sensitivity via targeting KEAP1 involved in 
the NF-κB pathway [13]. However, the majority of stud-
ies on platinum resistance to date have primarily focuses 
on identifying differentially expressed miRNAs followed 
by molecular mechanism research; therefore, they were 
unable to consider interaction relationships between dif-
ferent interacting biological players or uncover key regu-
lators at the system level.

Cancer is a complex disease involving dysregulation 
of multiple signaling pathways. Application of com-
putational approaches to characterize miRNA and/or 
mRNA signatures from a systems biology perspective 
has been extensively adopted in various cancers [14]. In 
our previous studies, miRNA-mRNA network-driven 
computational methods including Pipeline of Outlier 
MicroRNA Analysis (POMA) and MicroRNA Bio-
marker Discovery (MicroRNA-BD), were developed to 
identify miRNA biomarkers for predicting cancer ini-
tiation and metastasis with high performance [15, 16]. 
Here, we focused on identifying miRNA biomarkers 
with promising potential in indicating platinum resist-
ance for HGSC patients, thereby facilitating the optimi-
zation of personalized therapy. Firstly, we developed a 

computational method based on miRNA-mRNA regu-
latory network and single-line regulation theory to 
identify miRNA biomarkers that may be useful predic-
tors of platinum resistance and prognostic outcomes 
in HGSC. The functional mechanisms of the identi-
fied miRNAs were further investigated by performing 
GO and pathway enrichment analyses. Importantly, to 
establish the platinum resistance-associated functions 
of these miRNAs, their expression patterns were vali-
dated in platinum-resistant and -sensitive ovarian can-
cer cells.

Methods
Data collection
To explore miRNA biomarkers associated with plat-
inum-resistance in ovarian cancer, the mRNA and 
miRNA expression data and clinical data of 31 plat-
inum-sensitive and 37 platinum-resistant HGSC 
patients were downloaded from the publicly available 
International Cancer Genome Consortium (ICGC) 
based on search term ‘OV-AU’, which has been pub-
lished by Patch et al. [17] in Nature (2015). The miRNA 
raw data were deposited in the Gene Expression 
Omnibus (GEO) datasets with the accession number 
GSE65821, and the transcriptome sequencing raw data 
were deposited in the European Genome-phenome 
Archive (EGA) repository under the accession code 
EGAD00001000877.

To validate the expression pattern of the identified 
miRNA biomarkers associated with platinum resistance, 
miRNA expression datasets of platinum-sensitive ovar-
ian cancer cell lines (A2780_S and OVCAR3_S) and cor-
responding platinum-resistant ovarian cancer cell lines 
(A2780_R and OVCAR3_R) were downloaded from gene 
expression omnibus (GEO) under the accession number 
of GSE84200.

Identification of differentially expressed mRNAs 
and miRNAs
The empirical bayes (eBayes) method in ‘limma’ R package 
[18, 19] was employed to identify differentially expressed 
mRNAs and miRNAs between platinum-resistant and 
platinum-sensitive HGSC patients. The Benjamini–
Hochberg false discovery rate method was employed to 
adjust raw P-values. The mRNAs and miRNAs were con-
sidered significantly differentially expressed based on the 
following criteria: fold change > 1.5 or < 0.67 and adjusted 
P-value < 0.05. Similarly, differentially expressed miRNAs 
between platinum-resistant and -sensitive ovarian cancer 
cells (A2780 or OVCAR3) were identified using the same 
method.
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Construction of the platinum‑resistance associated 
miRNA‑mRNA network in HGSC
To investigate the contributory roles of miRNAs in regu-
lating platinum resistance in ovarian cancer, the plati-
num-resistance associated miRNA-mRNA network in 
HGSC (PRMNH) was constructed based on the follow-
ing two steps. Firstly, a human miRNA-mRNA regula-
tory network was generated using both experimentally 
validated and computationally predicted miRNA–mRNA 
regulatory interactions from public databases as used 
in the miRNA-BD tool [20]. Secondly, differentially 
expressed mRNAs and miRNAs were mapped onto the 
human miRNA-mRNA network to extract the PRMNH, 
which was visualized using Cytoscape 3.6.1 software 
[21]. Topological property analyses, including degree, 
betweenness centrality (BC) and closeness centrality 
(CC), were then performed using the ‘igraph’ package 
in R. Among them, node degree refers to the number of 
connecting edges; node betweenness is determined by 
the number of shortest paths passing the node and rep-
resents the role of the node in transactions among other 
nodes; CC represents the closeness extent of a node to 
other nodes.

Identification of platinum resistance‑associated miRNA 
biomarkers
As reported by Lin et al. [16], miRNAs with significantly 
high number of single-line regulation in the miRNA-
mRNA network (NSR) values possess stronger inde-
pendent regulatory ability, which are vulnerable and 
important to the stability of biological network. Accord-
ingly, MicroRNA-BD has been developed to discover 
miRNA biomarkers by considering the single-line regu-
latory power (measured by NSR) and the tendency to 
regulate transcription factor gene (measured by TF gene 
percentage, TFP) [20]. Here, miRNAs with significantly 
higher NSR values (P < 0.01, Wilcoxon signed-rank test) 
in PRMNH were identified using MicroRNA-BD tool. As 
a miRNA that regulates platinum resistance-associated 
target genes is more likely to play key roles in resistance 
to chemotherapy, the selected miRNAs were further fil-
tered based on the existence of platinum resistance-asso-
ciated target genes in PRMNH. The functions of miRNA 
target genes were further searched in the PubMed data-
base. Known platinum resistance-associated miRNAs in 
ovarian cancer were obtained from the review by Zhang 
et al. [22] and papers by Wang et al. [23] and Arrighetti 
et al. [24].

Receiver operating characteristic (ROC) curve analysis
To evaluate the sensitivity and specificity of identi-
fied miRNA biomarkers for distinguishing between 

platinum-sensitive and platinum-resistant patients, ROC 
curve analyses were conducted using the ‘ROCR’ package 
in R [25].

Survival analysis
To establish the prognostic value of miRNA biomark-
ers, patients were divided into high-expression and low-
expression groups using the upper quartile of miRNA 
expression level as the threshold. Then, Kaplan–Meier 
survival analyses were conducted to evaluate the dif-
ferences in progression free survival (PFS) and overall 
survival (OS) times between high-expression and low-
expression groups by the ‘survival’ package in R, and the 
log-rank test was employed to assess the statistical signif-
icance of the survival curves (P < 0.05).

Functional enrichment analysis
To investigate the functions of the identified miRNA bio-
markers, miRNA targets were predicted using Targets-
can7.2 [26]. Next, GO enrichment analysis of miRNA 
target genes was performed using DAVID Bioinformatics 
Resources version 6.7 [27] and pathway enrichment anal-
ysis of those genes was carried out via Ingenuity Pathway 
Analysis (IPA) [28]. The Benjamini–Hochberg method 
was applied to adjust raw P-values to the false discovery 
rate. Adjusted P-values < 0.05 and fold enrichment > 1.5 
were used as the cut-off for selecting statistically sig-
nificant GO and KEGG terms. Enriched GO terms were 
additionally clustered based on similar functions using 
the Enrichment Map plugin in Cytoscape 3.6.1 [29].

Results
Functional characterization of the platinum 
resistance‑associated miRNA‑mRNA network in HGSCs 
(PRMNH)
To systematically explore the miRNA biomarkers associ-
ated with resistance to chemotherapy, differential expres-
sion analyses were initially performed by comparing the 
expression profiles of miRNAs and mRNAs between 31 
platinum-sensitive and 37 platinum-resistant HGSC 
patients, respectively. A total of 39 miRNAs (Additional 
file 1) and 1210 mRNAs (Additional file 2) displayed sig-
nificantly differential expression pattern. By integrating 
functional miRNA-mRNA regulatory relationships using 
MiRNA-BD tool [20], we then constructed PRMNH con-
sisting of 190 miRNA-mRNA regulatory pairs among 26 
differentially expressed miRNAs and 140 differentially 
expressed mRNAs (Fig. 1a, Additional file 3). Among the 
known platinum resistance-associated miRNAs (Addi-
tional file  4) commonly identified in ovarian cancer cell 
lines, such as A2780, OVCAR3, and SKOV3 [22–24], we 
recognized 8 up-regulated miRNAs involved in regu-
lating platinum resistance in PRMNH, while 18 other 



Page 4 of 11Qi et al. Clin Trans Med            (2019) 8:28 

differentially expressed miRNAs (16 up-regulated and 2 
down-regulated miRNAs) were detected for the first time 
(Fig.  1b). The comparing result suggests that this study 
could provide more insights into the mechanism of plati-
num resistance in ovarian cancer. To further investigate 
miRNAs function in PRMNH, GO enrichment analy-
sis was carried out for the target genes of miRNAs in 
PRMNH. As shown in Fig. 1c, the differentially expressed 
target genes of miRNAs in PRMNH mainly participated 
in transcriptional regulation, response to extracellular 
stimulus, and regulation of nucleic acid metabolic pro-
cesses, which are closely linked to cancer initiation or 
progression [30]. Therefore, systematic analysis of the 
miRNA-mRNA regulatory relationship could provide 
comprehensive insights into the dysregulated functions 
of miRNAs involved in platinum resistance in ovarian 
cancer.

As observed, the degree distribution of all nodes in the 
PRMNH closely followed a power law distribution with 
R2 = 0.936 (Fig. 1d), indicating that similar to many bio-
logical networks, PRMNH was a scale-free network. 
Accordingly, we investigated the hub and bottleneck 

nodes in PRMNH, which were typically defined as the 
top 10% of the highest degree nodes and betweenness 
centrality nodes, respectively. Strikingly, eight miRNAs 
(miR-454-3p, miR-98-5p, miR-708-5p, miR-10a-5p, miR-
146a-5p, miR-135b-5p, miR-22-3p and miR-183-5p) 
possessed properties of both hub and bottleneck nodes 
(Fig.  1b), suggesting significant potential in regulating 
platinum resistance in HGSC.

Identifying miRNA biomarkers associated with platinum 
resistance in HGSC based on miRNA‑mRNA regulatory 
network
In PRMNH, target genes can be divided into single-line 
and multiple-line regulated groups based on the number 
of miRNAs that regulate the same target gene (Fig.  2a). 
As reported, miRNA-mRNA pairs with single-line regu-
lated interactions are considered as the vulnerable struc-
ture in the network; therefore, they tend to be more 
important for the stability of biological networks [20]. To 
date, the strategy of single-line regulation has been suc-
cessfully applied to discover miRNA biomarkers involved 
in diagnosis and prognosis of various complex diseases 

Fig. 1  Structural and functional characteristics of PRMNH. a Layout of PRMNH consisting of 190 regulations between 26 miRNAs and 140 mRNAs 
with differential expression patterns. b Intersection between known platinum resistance-associated miRNA biomarkers and up- or down-regulated 
miRNAs in PRMNH. The light red and green ellipses represent up-regulated and down-regulated miRNAs in PRMNH, respectively; light yellow 
ellipses represent known miRNA biomarkers involved in platinum resistance. miRNAs with properties of both hub and bottleneck nodes were 
highlighted with blue color. c Top 10 significantly enriched GO terms at the biological process level of miRNA target genes in PRMNH. The fan area 
represents the number of target genes implicated in the corresponding GO term. d Degree distribution of all nodes in PRMNH
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[15, 16, 31, 32]. Considering the key role of platinum 
resistance-associated genes in chemotherapy response, 
we adopted two criteria to identify miRNA biomarkers 
based on PRMNH: (1) miRNAs containing significantly 
higher NSR value; (2) the presence of miRNA target gene 
associated with platinum resistance.

As shown in Table  1 and Additional file  5, four miR-
NAs (miR-454-3p, miR-98-5p, miR-183-5p and miR-
22-3p), met the screening criteria and were consequently 
identified as platinum resistance-associated miRNA 
biomarkers. These miRNA biomarkers possessed sig-
nificantly higher NSR values compared with all miRNAs 
in the PRMNH (P = 0.01032, Wilcoxon rank sum test) 
and all miRNAs in the human miRNA-mRNA network 
(P = 0.01705, Wilcoxon rank sum test) (Fig. 2b). Moreo-
ver, the four miRNAs served as the hub and bottleneck 
components in the platinum resistance-associated 
miRNA-mRNA network (Fig.  1a), further supporting 
their strong regulatory ability.

Prognostic performance of the identified miRNA 
biomarkers
To evaluate the performance of the platinum resistance-
associated miRNA biomarkers, ROC curve analysis was 

performed to evaluate sensitivity and specificity of these 
miRNA biomarkers in distinguishing between plati-
num-sensitive and platinum-resistant HGSC patients. 
As shown in Fig.  3a, the area under curve (AUC) val-
ues ranged from 0.60 to 0.66, indicating relatively supe-
rior prediction performance of the identified miRNA 
biomarkers.

Kaplan–Meier survival analysis of HGSC patients 
with relatively high- or low-level expression patterns of 
miRNA biomarker was further conducted to measure 
the ability of miRNA biomarkers in predicting clinical 
outcomes. All four biomarkers tended to be associated 
with PFS and OS times of patients with HGSC. Nota-
bly, patients with high expression level of miR-454-3p 
(P = 0.04, log-rank test) and miR-98-5p (P = 0.006, log-
rank test) had a significantly shorter PFS time, while 
those patients with high expression level of miR-183-3p 
(P = 0.03, log-rank test) and miR-22-3p (P = 0.048, log-
rank test) had a significantly shorter OS time (Fig.  3b, 
c). Thus, the results revealed that miR-454-3p and miR-
98-5p had prognostic potential in predicting progression 
outcome, while miR-183-3p and miR-22-3p may serve 
as prognostic biomarkers in evaluating overall clinical 
outcome.

Fig. 2  Schematic description of criteria for identifying platinum resistance-associated miRNA biomarkers based on miRNA-mRNA regulatory 
relationships. a Schematic description of miRNA-mRNA regulatory types. b NSR distribution of the identified miRNA biomarkers, all miRNAs in 
PRMNH and all miRNAs in the human miRNA-mRNA regulatory network. Statistical significance was calculated using the Wilcoxon rank-sum test

Table 1  Details of the platinum resistance-associated miRNA biomarkers identified in this study

a  Number of single-line regulation in the miRNA-mRNA network
b  Number of platinum resistance-associated genes (NPRG) among miRNA targets

miRNA ID Log2(FC) P-value NSRa value P-value of NSR NPRGb value

miR-454-3p 1.50 0.0228 33 2.98E−08 6

miR-98-5p 0.93 0.0165 24 5.96E−08 3

miR-183-5p 0.81 0.0441 5 0.001048 1

miR-22-3p 1.00 0.0406 4 0.001988 1
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Functional roles of the identified miRNA biomarkers 
associated with platinum resistance
To gain further insights into the putative biological roles 
of the four identified miRNA biomarkers, DAVID was 
employed for enrichment analyses of their target genes 
based on GO terms. As shown in Fig.  4a, significantly 
enriched GO terms at the biological process level were 
mainly clustered into five groups (transcriptional regu-
lation, embryonic morphogenesis, cell morphogenesis, 
cell migration and regulation of cell proliferation), which 
were closely linked to platinum resistance in ovarian 

cancer. Accumulating evidence has demonstrated that 
dysregulation of extensive genes expression is a hall-
mark of cancer cells [30], and transcriptional regulation 
mediated by miRNAs contributes to chemoresistance in 
ovarian cancer [13, 33]. Furthermore, the epithelial-mes-
enchymal transition (EMT), an important step in mor-
phogenesis, is associated with cancer progression and 
metastasis [34]. Matassa and co-workers disclosed that 
down-regulation of TRAP1 promotes cell migration and 
EMT [35] along with inducing resistance to cisplatin-
based chemotherapy [36].

Fig. 3  Prognostic performance of the identified miRNA biomarkers evaluated based on ROC curve and Kaplan–Meier survival analyses. a Sensitivity 
and specificity of miRNA biomarkers in predicting platinum resistance in HGSC were assessed by ROC curve analysis and AUC values. The dashed 
diagonal line in the ROC plot refers to AUC = 0.5, which means discrimination with random chance. b, c Kaplan–Meier survival curve analyses for 
progression-free survival (PFS) (b) and overall survival (OS) (c) of HGSC patients were conducted to evaluate the prognostic performance of miRNA 
biomarkers in predicting survival times. P-values were calculated using the log-rank test
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We further performed functional enrichment analy-
sis on the target genes of miRNA biomarkers based on 
IPA pathways. Here, we focused on the top 15 enriched 
signaling pathways, e.g., axon guidance signaling, Wnt/β-
catenin signaling, ephrin receptor signaling, ATM sign-
aling, ovarian cancer signaling, and SAPK/JNK signaling 
(Fig.  4b). Overall, target genes of the identified miRNA 
biomarkers enriched in ovarian cancer signaling were 
closely linked with Wnt/β-catenin, MAPK and PI3  K/

AKT pathways that mediate tumor invasion and metas-
tasis, cell survival and apoptosis (Fig. 5, Additional file 6). 
Given the critical role of Wnt/β-catenin signaling in stem 
cell development [37], it has been found to be implicated 
in initiation and progression of multiple cancer types 
including ovarian cancer via components mediating cell 
proliferation and apoptosis [38, 39]. Upregulation of the 
Wnt pathway has been shown to promote chemoresist-
ance in ovarian cancer via modulating cellular stem-like 

Fig. 4  Gene ontology (GO) and pathway enrichment analyses of target genes of the identified miRNA biomarkers. a Clusters of miRNA biomarker 
target-enriched GO terms at the biological process level. In the functional enrichment map, each node refers to a GO term and is grouped based on 
GO similarity; each edge represents there were shared genes between two connecting GO terms. Node size is determined by the gene number in 
each GO term. Node color intensity represents enrichment significance. Edge thickness is determined by the number of shared genes between two 
connecting GO terms. b Top 15 significantly enriched IPA pathways of target genes of the identified miRNA biomarkers

Fig. 5  The ovarian cancer pathway enriched by target genes of the identified miRNA biomarkers in IPA. Objects with purple circles or triangles are 
acting locus by mapped genes
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properties [40] or EMT [41]. Strikingly, axon guidance 
signaling pathway that closely associated with various 
types of cancers, such as prostate cancer [42] and pan-
creatic cancer [43], was the most enriched pathway 
of the target genes of miRNA biomarkers (Additional 
file 7). Increasing evidence shows that many proteins of 
axon guidance pathway play critical roles in tumorigen-
esis [44]. As a target gene of miR-454-3p, EFNA5 is an 
important component of axon guidance pathway and 
has been recognized as promising prognostic biomarker 
and therapeutic target for ovarian cancer [45]. In addi-
tion, the ATM signaling (Additional file  8) and SAPK/
JNK signaling (Additional file 9) enriched by target genes 
of the identified miRNA biomarkers were associated with 
chemoresistance by mediating DNA damage and repair, 
and apoptosis, respectively [46, 47].

Therefore, we have uncovered that the miRNA bio-
markers could serve as key regulators by targeting genes 
implicated in tumor invasion and metastasis, cell cycle, 
apoptosis, etc., thereby playing critical roles in chemore-
sistance in ovarian cancer.

Validation of the identified miRNA biomarkers 
in platinum‑resistant and platinum‑sensitive cell lines
To further validate association of the identified miRNA 
biomarkers with platinum resistance, their expression 
pattern between platinum-sensitive and platinum-resist-
ant ovarian cancer cell lines were analyzed using miRNA 
expression datasets from GSE84200. Then, the log2(fold 
change) of miRNA biomarkers between platinum-resist-
ant and platinum-sensitive HGSC tissue (termed as 
HGSC samples (R/S)) was compared with that between 
platinum-resistant and platinum-sensitive ovarian can-
cer cell line A2780 (termed as A2780 (R/S)) or OVCAR3 
(termed as OVCAR3 (R/S)). As shown in Fig.  6, miR-
454-3p, miR-98-5p and miR-183-5p had a consistent 
trend of expression alteration in HGSC tissue and A2780 
cells, while miR-22-3p displayed the same fold change 

of expression level in HGSC tissue and OVCAR3 cells. 
Therefore, the expression pattern of the four miRNA bio-
markers was confirmed in ovarian cancer cell lines.

Discussion
In this study, to gain insights into the mechanisms under-
lying chemoresistance in HGSC, an integrated method 
was proposed for identifying putative platinum resist-
ance-associated miRNA biomarkers through construct-
ing PRMNH that consists of regulatory miRNA-mRNA 
pairs with differential expression patterns between plat-
inum-resistant and platinum-sensitive HGSC patients. 
Given the critical importance of vulnerable nodes in the 
biological network structure, this approach was improved 
by introducing the criteria of number of platinum resist-
ance-associated genes (NPRG) among miRNA targets 
based on the theory of single-line regulation, which has 
been successfully applied to identify miRNA biomark-
ers for detection of pediatric acute myeloid leukemia and 
prostate cancer metastasis [15, 20]. Thus, comprehensive 
evaluation of miRNA structural vulnerability and func-
tional relevance to chemoresistance would facilitate the 
identification of platinum resistance-associated miRNA 
biomarkers.

Based on the computational approach, four miRNAs 
(miRNA-454-3p, miRNA-98-5p, miR-183-5p and miR-
22-3p) were identified as putative biomarkers for predict-
ing platinum resistance in HGSC. The expression patterns 
of these miRNAs were further validated in ovarian cancer 
cell lines, A2780 or OVCAR3 (Fig.  6). Consistent with 
our results, Wang et  al. [23] reported up-regulation of 
miR-98-5p in cisplatin-resistant epithelial ovarian cancer. 
Furthermore, they uncovered that increased miR-98-5p 
expression could inhibit miR-152 expression by directly 
regulating Dicer 1, thereby inducing cisplatin resistance 
in epithelial ovarian cancer [23]. Van et al. [48] demon-
strated that miR-22 is up-regulated in platinum-resistant 
ovarian cancer patients. Another study by Zhou et  al. 

Fig. 6  Validation of expression patterns of the identified miRNA biomarkers in A2780 and/or OVCAR3 ovarian cancer cells. The orange color 
represents the fold change of miRNAs between platinum-resistant and platinum-sensitive HGSC patients; the blue color represents the fold change 
of miRNAs between platinum-resistant and platinum-sensitive A2780 cell lines; the green color represents the fold change of miRNAs between 
platinum-resistant and platinum-sensitive OVCAR3 cell lines
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[49] revealed that miR-22 overexpression results in not 
only suppression of proliferation and migration, but also 
increased cisplatin sensitivity of osteosarcoma cells. Zhao 
et al. [50] found that miR-454-3p-mediated ceRNA inter-
action between lncRNA HOXA11-AS and Stat3 could 
promote cisplatin resistance of lung adenocarcinoma 
cells. Up-regulation of miR-183-5p has been reported 
in multiple cancer types including ovarian cancer [51], 
endometrial cancer [52] and lung cancer [53]. However, 
no evidence on the potential contribution of miR-454-3p 
and miR-183-5p to platinum resistance in ovarian can-
cer has been documented. Therefore, miR-454-3p and 
miR-183-5p were firstly discovered to be associated with 
chemoresistance in ovarian cancer, highlighting the role 
of the present study in broadening our understanding of 
miRNAs involved in platinum resistance.

It’s well known that prognosis assessment is of great 
significance for making an appropriate therapeutic 
strategy. Due to tumor heterogeneity [54], we observed 
apparent individual differences of miRNA and mRNA 
expression patterns either in the platinum-sensitive 
group or in the platinum-resistant group. Accordingly, 
the AUC values of the four miRNA biomarkers ranged 
from 0.60 to 0.66, indicating relatively higher predictive 
capability for stratifying platinum-sensitive and plati-
num-resistant HGSC patients. Furthermore, the four 
miRNA biomarkers served as independent predictive 
factors of PFS or OS in HGSC patients, implying good 
prognostic performance. Thus, our method, mainly based 
on the miRNA-mRNA regulatory network and single-
line regulation theory, was robust in identifying platinum 
resistance-associated miRNA signatures in HGSC.

Efforts have been made in the present study to explore 
the functional mechanism of the identified miRNA bio-
markers by GO and IPA pathway enrichment analysis 
of their target genes. Notably, target genes of the four 
miRNA biomarkers were closely implicated in cancer 
progression-related processes, such as transcriptional 
regulation, morphogenesis, and cell migration and pro-
liferation (Fig.  4a). Platinum drugs function by forming 
DNA-platinum adducts, leading to DNA damage and 
further inducing apoptosis [4]. Target genes were further 
shown to be enriched in platinum resistance-associated 
biological pathways, including axon guidance signaling 
related to tumorigenesis, Wnt/β-catenin signaling associ-
ated with cell proliferation and apoptosis, ATM signaling 
implicated in DNA damage and repair, SAPK/JNK signal-
ing related to apoptosis, RhoGDI signaling implicated in 
tumor proliferation and metastasis and CDK5 signaling 
involved in cell cycle, etc (Fig.  4b). Our collective find-
ings clearly suggested that the identified miRNA bio-
markers contributed to platinum resistance in HGSC by 
regulating cell proliferation, migration, apoptosis and cell 

cycle. Thus, the identified miRNA biomarkers indicat-
ing platinum resistance could serve as potential predic-
tors of therapeutic response for HGSC patients, thereby 
promoting clinical improvements in management and 
therapy for HGSC.

Conclusion
In summary, by employing a network-based computa-
tional method, we discovered four miRNA biomarkers, 
miR-454-3p, miR-98-5p, miR-183-5p and miR-22-3p 
that could potentially serve as indicators of resistance to 
platinum-based chemotherapy thereby contributing to 
reduce treatment costs and improve patients’ prognosis. 
The functions of the identified miRNA biomarkers were 
further explored via GO and IPA pathway enrichment 
analyses, providing insights into the mechanisms by 
which these miRNAs contribute to platinum resistance in 
HGSC.
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