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Pancreatic cancer microenvironment: 
a current dilemma
Burak Uzunparmak1 and Ibrahim Halil Sahin2*

Abstract 

Pancreatic cancer is one of the leading causes of cancer-related death in the United States and survival outcomes 
remain dismal despite significant advances in molecular diagnostics and therapeutics in clinical practice. The micro-
environment of pancreatic cancer carries unique features with increased desmoplastic reaction and is infiltrated by 
regulatory T cells and myeloid-derived suppressor cells which negatively impact the effector immune cells. Current 
evidence suggests that stellate cell-induced hypovascular stroma may have direct effects on aggressive behavior of 
pancreatic cancer. Preclinical studies suggested improvement in drug delivery to cancer cells with stroma modifying 
agents. However these findings so far have not been confirmed in clinical trials. In this article, we elaborate current-
state-of-the science of the pancreatic cancer microenvironment and its impact on molecular behavior of cancer cells, 
chemotherapy resistance and druggability of stroma elements in combination with other agents to enhance the 
efficacy of therapeutic approaches.
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Introduction
Pancreatic cancer is one of the most challenging cancers 
among gastrointestinal malignancies due to various fac-
tors including aggressive molecular behavior driven by 
the loss of multiple tumor suppressor genes [1, 2], lack of 
effective immune response with low immunogenicity [3] 
and complex tumor microenvironment [4]. To date, the 
mainstay treatment of pancreatic cancer is a combination 
of cytotoxic agents in adjuvant and metastatic settings [5, 
6]. Despite efforts in the past decades, targeted therapy 
approaches have not yielded substantial improvement 
in clinical outcomes essentially due to complex signal-
ing pathways [7]. Immunotherapeutic agents have also 
been investigated in pancreatic cancer and unfortunately 
promising preclinical results have not translated into a 
clinical response with the exception of MSI-H pancreatic 
cancer which constitutes only ~ 1% of the patients [8, 9]. 
To date, many theories have been proposed to explain 

disappointing outcomes with immunotherapy and tar-
geted therapies while the microenvironment of pancre-
atic cancer has been deemed to be one of those major key 
factors for the failures.

The pancreatic cancer microenvironment harbors 
unique characteristics that directly impact the molecu-
lar behavior of cancer cells. It is known to be relatively 
dense and enriched by pancreatic stellate cells [10] which 
produce a redundant amount of stromal elements includ-
ing collagens, laminin, and fibronectin; a process called 
desmoplasia [11]. Current evidence suggests that stellate 
cells are activated by proinflammatory cytokines orches-
trated by myeloid-derived suppressor cells (MDSC) 
[12] which are frequently present in the pancreatic can-
cer stroma. Stellate cell-induced desmoplasia leads to a 
hypovascular microenvironment which configures the 
molecular signature of cancer cells. For example, micro-
environment related hypoxia transforms cancer cell and 
induces modifications in the gene expression profile 
which facilitates adaptation to the continuously chang-
ing microenvironment [13]. Another study reported 
that hypoxia-inducible factor-1α (HIF-1α) upregulates 
the multidrug resistance gene, pointing to a distinct 
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mechanism for stroma-induced chemotherapy resistance 
[14]. A mouse model of human pancreatic cancer cells 
showed increased expression of a variety of prosurvival 
genes such as cell cycle promoting genes (Cyclin B1), 
apoptosis inhibitor genes (Bcl-2 and survivin), and nota-
bly DNA repair genes (BRCA2 and Rad51) [15]. Moreo-
ver, upregulation of HIF-1α in cancer cells also reduces 
the efficacy of radiotherapy [16]. Taken together, current 
evidence indicates that pancreatic cancer microenviron-
ment has direct and consequential effects on molecu-
lar characteristics of cancer cells by impacting the gene 
expression profile as well as altering drug delivery (Fig. 1).

In this article, we discuss potential impacts of the 
pancreatic cancer microenvironment on therapeutic 
approaches and targetability of this dense tumor stroma 
to optimize the efficacy of treatments for this aggressive 
disease.

Targeting tumor microenvironment in combination 
with cytotoxic agents
Chemotherapy resistance, one of the key causes for 
the aggressive nature of this disease was attributed to 
multiple factors related to tumor characteristics such 
as epithelial-to-mesenchymal transition (EMT) [17], 
increased cancer stem cells population [18] and hypo-
vascular tumor microenvironment [19]. Stellate cell-
induced desmoplasia was particularly intriguing as 

highly dense stromal tissue limits blood flow to can-
cer cells and consequently reduces the efficacy of drug 
delivery [20]. Studies suggest that sonic hedgehog 
signaling (Fig.  2) is the key driver of the desmoplasia 
process in pancreatic cancer [21]. This discovery was 
followed by a study where the investigators examined 
a sonic hedgehog inhibitor, IPI-926, in combination 
with gemcitabine and the authors reported transiently 
increased intratumoral concentration of gemcitabine 
in mouse models [22]. Consistent with these findings, 
another preclinical study investigating the ormelox-
ifene, a sonic hedgehog inhibitor, reported reduced des-
moplasia leading to chemosensitization of pancreatic 
cancer cells to gemcitabine [23]. In a genetically engi-
neered mouse model of pancreatic cancer, increased 
amounts of hyaluronan in the extracellular matrix 
was associated with poor vascular function, leading 
to impaired drug delivery; a phenomenon that was 
reversed by pegylated human recombinant PH20 hya-
luronidase (PEGPH20) [24]. These promising preclini-
cal findings led to the investigation of stroma depleting 
agents and sonic hedgehog inhibitors in clinical trials. 
PEGPH20 has been examined in combination with 
gemcitabine and nab-paclitaxel in a phase II study [25]. 
The authors reported better progression free survival 
in the investigational arm (HR 0.51; 95% CI 0.26–1.00; 
p = 0.048) and high levels of hyaluronan was found to 
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Fig. 1  Unique characteristics of pancreatic cancer microenvironment. Pancreatic cancer stroma is enriched with pancreatic stellate cells (PSCs) 
that produce excessive amounts stromal elements such as collagens, laminin and fibronectin leading to desmoplasia, a process, which produces a 
hypovascular microenvironment, impairing local drug delivery, rendering tumors resistant to chemotherapeutics. Cancer stem cells (CSCs), which 
are known to be multidrug resistant also play a role in chemoresistance [1]. Pancreatic cancer microenvironment is “highly” infiltrated by a variety of 
immunosuppressive cell types such as myeloid derived suppressor cells (MDSCs) and regulatory T cells (Tregs) that mitigate the effector function 
of cytotoxic T cells (CTLs), leading to immune evasion. That constitutes an important factor for ineffectiveness of immunotherapies in pancreatic 
cancer along with the hypoimmunogenic nature of the cancer due to low mutation burden and lack of significant neoantigens [2]
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be a predictor of response [25]. However, the combina-
tion of PEGPH20 with FOLFIRINOX was detrimen-
tal in the study by Ramanathan et  al. [26] particularly 
due to increased toxicity leading to early termination 
of treatment in many patients enrolled in the investi-
gational arm. The concerns created by the conflicting 
results presented by these studies will be addressed in 
the phase III trial of PEGPH20 in combination with 
gemcitabine and nab-paclitaxel [27]. A phase II study of 
IPI-926 (saridegib), a sonic hedgehog inhibitor, in com-
bination with gemcitabine was conducted to enhance 
drug delivery but led to worse overall survival out-
comes compared to the placebo arm [28]. In a Phase 
II clinical trial by Catenacci et  al. [29] vismodegib did 
not improve overall response rate and no significant 
enhancement in the delivery of gemcitabine to the 
tumor microenvironment was noted. These disappoint-
ing results from clinical trials triggered “back to the 
bench” studies, in which stromal elements of the tumor 
microenvironment were indeed shown to restrain 
the pancreatic cancer cells and inhibition of this pro-
cess did not reverse drug resistance rather unleashed 
cancer cells that are highly metastatic [30, 31]. It is 
important to note that, sonic hedgehog signaling is 

significantly more active in pancreatic cancer stem cells 
[32] which may be the driver of the desmoplastic pro-
cess. Therefore, reversal of hypovascular stroma may 
simply unleash the strain of aggressive cancer clones, 
ultimately potentiating their metastatic capacity [33]. 
Even though dense tumor stroma may be reducing the 
penetrance of chemotherapeutic agents to cancer cells, 
there may be other important factors for chemoresist-
ance in pancreatic cancer such as increased expression 
of DNA repair pathway genes and upregulation of anti-
apoptotic proteins [34–37].

At this juncture, studies combining stroma modulat-
ing agents in combination with cytotoxic agents have 
not demonstrated significant activity to change cur-
rent clinical practice. Phase III trial of PEGPH20 with 
gemcitabine and nab-paclitaxel will likely provide more 
understanding on targetability of pancreatic cancer 
stroma in combination with cytotoxic agents. Future 
studies focusing on characterization of desmoplasia 
and its cause-effect relationship with pancreatic cancer 
stem cells may shed further light on druggability of the 
pancreatic cancer microenvironment in combination 
with cytotoxic agents.
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Fig. 2  Sonic hedgehog signaling pathway. In the absence of sonic hedgehog ligand (Shh), the surface receptor Patched1 (PTCH1) inhibits 
Smoothened (SMO), resulting in sequestration of Gli1 in the cytosol by Suppressor of fused (SUFU). Binding of Shh to PTCH1 abolishes constitutive 
inhibition of SMO by PTCH1, leading to liberation of Gli1 from SUFU. Released Gli1, then, translocates to the nucleus, where it promotes gene 
expression. Sonic Hedgehog inhibitors IPI-926 (Saridegib) and Vismodegib block SMO activity
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Targeting tumor microenvironment in combination 
with other targeted therapies
Targeted therapy in pancreatic cancer has not substan-
tially achieved progress particularly due to its complex 
signaling network and rebound activation of alterna-
tive growth signaling pathways [7]. Erlotinib, which is a 
small molecule tyrosine kinase inhibitor targeting epi-
dermal growth factor receptor is currently the only FDA 
approved targeted therapy in combination with gemcit-
abine for metastatic pancreatic cancer albeit offers very 
limited therapeutic value [38]. There are only a limited 
number of studies in the literature that investigated the 
impact of pancreatic cancer stroma on targeted thera-
pies. In a study by Lonardo et  al. [39] inhibition of the 
Nodal/Activin pathway in pancreatic cancer stem cells 
abolished their self-renewal capacity and in  vivo tumo-
rigenicity, and abrogated the gemcitabine resistance of 
orthotopically inoculated stem cells. Yet, gemcitabine 
sensitivity was unsatisfactory in the engrafted human 
cancer tissue with stroma which was reversed by a sonic 
hedgehog pathway inhibitor [39]. In another preclinical 
study, a mammalian target of rapamycin (mTOR) inhibi-
tor in combination with a sonic hedgehog inhibitor led 
to better disease control and chemosensitized the cancer 
stem cells to cytotoxic agents [40]. These studies support 
the notion that combining targeted therapies with stroma 
modifying agents may carry therapeutic significance if 
targeted agents have potential clinical activity on chem-
oresistant cancer cells, particularly cancer stem cells. It is 
important to note that although sonic hedgehog signal-
ing directed therapies may generate a stroma depleting 
effect, they should not be considered as targeted thera-
pies for cancer stem cells as pancreatic cancer stem cells 
do not appear to be addicted to this pathway [28, 29]. 
Moreover, even though these agents can be considered in 
strategies to enhance drug delivery to the tumor micro-
environment, the literature is also not consistent on this 
effect [23, 29].

Targeting tumor microenvironment in combination 
with immunotherapy
The efficacy of immunotherapy in pancreatic can-
cer has been widely studied in preclinical and clinical 
studies. However, at this time the benefit of immuno-
therapy appears to be limited to only microsatellite insta-
bility-high (MSI-H) pancreatic cancer patients who had 
an objective clinical response with pembrolizumab in 
a phase II clinical trial [41]. Single agent immune check 
point inhibitors and cancer vaccines have not improved 
clinical outcomes in microsatellite stable (MSS) pan-
creatic cancer patients [42, 43] and the benefit com-
bined models yet to be determined [44] (NCT03190265, 

clinicaltrials.gov). Although the exact mechanisms of 
resistance to immunotherapies remain elusive, the cur-
rent state-of-the-science suggests that pancreatic can-
cer is a hypoimmunogenic tumor due to low mutation 
burden and lack of significant neoantigens which are 
tumor-specific mutated peptides [45]. Moreover, stellate-
cell induced desmoplastic reaction also creates a physi-
cal barrier for CD8+ T cells recruitment leading to a 
safe haven for the growth of cancer cells and evasion of 
immune response [46]. Beside these facts, the microen-
vironment of pancreatic cancer is also infiltrated by a 
variety of immunosuppressive inflammatory cells such 
as MDSC and regulatory T cells (Tregs) [3]. These cells 
are known to mitigate the effector function of cytotoxic 
T cells leading to immune evasion (Fig. 2), which points 
out that pancreatic cancer stroma could be an important 
factor for ineffective anti-cancer immune response. Inter-
estingly, increased Tregs in the microenvironment also 
correlates with circulating Tregs [47] suggesting there 
may be synchronized systemic and microenvironmen-
tal immune dysregulation. Although preclinical stud-
ies suggested there may be an improvement in immune 
response upon depletion of Tregs [48], this benefit 
has not been confirmed in clinical studies [43]. In the 
ECLIPSE trial, depletion of Tregs in the tumor microen-
vironment with cyclophosphamide in combination with 
GVAX vaccine did not lead to a significant improve-
ment in anti-cancer immune response with the clinical 
outcomes being consistently disappointing [49]. There 
is preliminary evidence that cancer vaccine in combina-
tion with low dose cyclophosphamide may optimize the 
tumor microenvironment and sensitize cancer cells to 
immune checkpoint inhibitors [50]. This triple combina-
tion approach is currently being investigated in clinical 
trials in different clinical settings (Table 1). MDSCs have 
been targeted in a mouse model and the authors reported 
that education of these cells may enhance the efficacy of 
immune checkpoint inhibitors in pancreatic cancer [51]. 
Carcinoma-associated fibroblasts have also been linked 
to downregulation of anti-cancer immune response [52]. 
A preclinical study with mouse models showed that tar-
geting carcinoma-associated fibroblasts may enhance 
the efficacy of anti-PD-L1 based therapy [53]. How-
ever, another preclinical study reported that depletion 
of carcinoma-associated fibroblast may indeed trigger 
immunosuppuression with increased infiltration of Tregs 
which was reversed by an anti-CTLA4 antibody [54]. 
Inhibition of the sonic hedgehog pathway by use of nano-
particles in combination with cytotoxic agents was also 
reported to increase tumor vascularity without altering 
fibroblasts and stromal collagen, leading to an increase 
in T cell infiltration in the tumor microenvironment with 
improvement in mouse survival [55]. It is important to 
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note that this approach without the use of nanoformu-
lation has been investigated in clinical trials and did not 
show any substantial improvement in survival outcomes 
[29]. Currently, other approaches to modify the tumor 
microenvironment are also being investigated. A pre-
clinical study suggested reduction of fibrosis in the tumor 
microenvironment via inhibition of focal adhesion kinase 
(FAK), enhancing T cell responsiveness to PD-1 based 
check point inhibitors [56]. Overall, the combination of 
stroma modulating agents with immunotherapy shows 
limited clinical benefit in pancreatic cancer and is to be 
further investigated by future studies. There is a hope 
that further studies may uncover potentials of immuno-
therapy in combination with stroma targeting agents.

Future perspectives
At this juncture, the pancreatic cancer microenvironment 
remains a dilemma for scientists particularly due to con-
tradictory findings from reported preclinical and clinical 
studies. Current evidence fails to substantially support 
the notion of using stroma modifying agents to enhance 
cytotoxic drug delivery in pancreatic cancer. It is impor-
tant to note that chemoresistance of pancreatic cancer is 
not solely related to the dense and fibrotic microenviron-
ment and there are intrinsic factors that are associated 
with reduced sensitivity to cytotoxic agents as discussed 
above. Notably, phylogenesis of pancreatic cancer is not 
independent of its microenvironment and a high degree 
of hypoxia led by desmoplasia likely impacts the evolu-
tionary expression profile throughout the development of 
cancer. Therefore, reversal of fibrotic stromal tissue with-
out additive strategies targeting chemoresistant cancer 
cells will likely not be effective on the aggressive behav-
ior of pancreatic cancer and may also lead to detrimen-
tal outcomes. However, targeted agents that are proven 
to be “highly” effective on multidrug resistant cancer cells 
may be an approach that can be investigated in preclini-
cal studies and can be further examined in clinical trials 
if highly promising. Further studies on molecular biology 
for pancreatic cancer are also warranted to better under-
stand the mechanisms leading to chemoresistance, which 
may trigger new approaches for targeted therapies in 
combination with stroma modulating agents.

The efficacy of immunotherapy in pancreatic cancer 
has been so far disappointing in MSS patients. The lack 
of clinical response may partially be explained by the 
microenvironment, which is predominantly infiltrated 
by immune suppressive cells such as Tregs and MDSCs. 
Strategies targeting stroma and immune regulatory cells 
have not yielded significant clinical response at least 
partially due to hypoimmunogenic nature of pancreatic 
cancer. Cancer vaccines which are designed to prime 
immune cells and optimize the tumor microenvironment 

have not led to significant clinical progress due to 
rebound activation of inhibitory signals on cytotoxic T 
cells such as PD-1. The additive role of immune check-
point inhibitors to GVAX is currently being investigated 
which may lead to a measurable anti-cancer immune 
response. Stromal remodeling therapies may also 
enhance the generation of secondary and tertiary lym-
phoid structures and potentiate the anti-cancer effect if 
combined immunotherapy approaches achieve substan-
tial clinical response.

Conclusion
To date, the unique features of the pancreatic cancer 
microenvironment have been extensively studied. How-
ever, the complexity of interaction between the micro-
environment and cancer cells remains to be better 
characterized. The failure of stroma modifying agents 
revealed that we have not yet comprehended exact conse-
quences of this dual interaction on the development and 
progression of pancreatic cancer. Although the current 
state of the science regarding the complex microenviron-
ment of pancreatic cancer has not revealed druggable 
targets, ongoing and future studies may shed more light 
to unknowns of this complex interaction and uncover 
more facts on this dilemma which may provide further 
therapeutic tools to scientists and physicians to advance 
treatment options for this malicious disease.
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