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Oncolytic viruses and checkpoint 
inhibitors: combination therapy in clinical trials
Christopher J. LaRocca and Susanne G. Warner* 

Abstract 

Advances in the understanding of cancer immunotherapy and the development of multiple checkpoint inhibitors 
have dramatically changed the current landscape of cancer treatment. Recent large-scale phase III trials (e.g. PHOCUS, 
OPTiM) are establishing use of oncolytic viruses as another tool in the cancer therapeutics armamentarium. These 
viruses do not simply lyse cells to achieve their cancer-killing effects, but also cause dramatic changes in the tumor 
immune microenvironment. This review will highlight the major vector platforms that are currently in development 
(including adenoviruses, reoviruses, vaccinia viruses, herpesviruses, and coxsackieviruses) and how they are combined 
with checkpoint inhibitors. These vectors employ a variety of engineered capsid modifications to enhance infectiv-
ity, genome deletions or promoter elements to confer selective replication, and encode a variety of transgenes to 
enhance anti-tumor or immunogenic effects. Pre-clinical and clinical data have shown that oncolytic vectors can 
induce anti-tumor immunity and markedly increase immune cell infiltration (including cytotoxic CD8+ T cells) into the 
local tumor microenvironment. This “priming” by the viral infection can change a ‘cold’ tumor microenvironment into 
a ‘hot’ one with the influx of a multitude of immune cells and cytokines. This alteration sets the stage for subsequent 
checkpoint inhibitor delivery, as they are most effective in an environment with a large lymphocytic infiltrate. There 
are multiple ongoing clinical trials that are currently combining oncolytic viruses with checkpoint inhibitors (e.g. CAP-
TIVE, CAPRA, and Masterkey-265), and the initial results are encouraging. It is clear that oncolytic viruses and check-
point inhibitors will continue to evolve together as a combination therapy for multiple types of cancers.
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Background
Immunotherapy is at the forefront of cancer research and 
treatment with the American Society of Clinical Oncol-
ogy (ASCO) naming immunotherapy as the advance 
of the year in both 2016 and 2017 [1, 2] and specifically 
citing adoptive cell immunotherapy as this year’s most 
important advancement [3]. The large number of clinical 
trials currently employing immunotherapeutic agents is a 
testament to the monumental advances they are making 
in cancer treatment.

Individual immunotherapies have demonstrated 
remarkable treatment effects in melanoma, lung can-
cer, and multiple intra-abdominal malignancies [4]. In 

particular, a class of drugs known as checkpoint inhibi-
tors has been of great interest to researchers and cli-
nicians (Table  1). These antibodies block the negative 
regulators of T cell function (immune checkpoints), 
thereby increasing T-cell activation [4, 5]. The United 
States Food and Drug Administration (FDA) first 
approved ipilimumab (a monoclonal antibody inhibiting 
cytotoxic T lymphocyte-associated antigen-4 [CTLA-4]) 
for the treatment of metastatic melanoma in 2011 [5]. A 
few years later in 2014, the FDA approved nivolumab and 
pembrolizumab (both monoclonal antibodies targeting 
programmed death receptor 1 [PD-1]) for the treatment 
of advanced melanoma [6].

The principle of combining therapeutics with comple-
mentary mechanisms has also been applied to checkpoint 
inhibition across a range of malignancies including gas-
trointestinal and soft tissue cancers [4, 7]. For instance, 
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the Checkmate 067 trial demonstrated the effect of the 
combination of ipilimumab and nivolumab in patients 
with untreated melanoma [8]. In these patients with 
advanced disease, the combination of these two agents 
resulted in a vast overall survival improvement at 3 years 
compared with ipilimumab alone (58% vs 34%) [8, 9].

The rapidly advancing field of clinical oncolytic viro-
therapy is itself coming to be understood as a unique 
type of immunotherapy. Oncolytic viruses are naturally 
occurring or genetically modified viruses that infect, rep-
licate in, and kill cancer cells without harming normal 
cells [10]. Recent decades have seen dramatic advances 
in gene manipulation capabilities and thus improvements 
in vector design [11]. Additionally, the understanding 
of how an oncolytic adenovirus alters the local tumor 
microenvironment (TME) has led some to think of the 
field as ‘oncolytic immunotherapy’. Following viral infec-
tion, there are increased levels of local cytokine expres-
sion as well as an influx of immune cells including natural 
killer (NK) cells, activated T cells, and antigen present-
ing cells (APC) [12]. Furthermore, PD-L1 expression is 
known to increase on tumor and immune cells following 

viral infection [13]. Taken together, these changes alter 
the local TME and change it from ‘cold’ to ‘hot’ with a 
flood of cytokines and immune effectors.

Checkpoint inhibition works best when there is a large 
lymphocytic infiltrate, which is not always the case for a 
given tumor [13, 14]. The changes to the local TME fol-
lowing oncolytic virus delivery creates a situation that 
can be exploited with novel combination regimens, 
namely oncolytic vectors and checkpoint inhibitors. 
The efficacy of combining oncolytic viruses and check-
point inhibition has been shown in pre-clinical data, and 
there are currently more than 15 ongoing clinical trials 
employing a combination regimen of these two types of 
cancer therapeutics (Table  2). With the abundance of 
ongoing pre-clinical and clinical studies, it is certain that 
the futures of viral oncolysis and checkpoint inhibition 
will be intertwined.

In this review, we will explore the combination of onc-
olytic virotherapy with checkpoint inhibitors. There are 
many different vector platforms under investigation, all 
of which are in different stages of development. We will 
look at a sampling of pre-clinical data, published human 
trials, and highlight important ongoing clinical trials.

Oncolytic viruses
Current-generation oncolytic viral vectors can be engi-
neered to target specific types of cancer cells, selectively 
replicate within them, and locally express a transgene 
[11]. The tumor tropism of a virus is a key property 
that is essential to maximize cancer-killing effects on 
the tumor, while minimizing the damage to surround-
ing normal tissues. One approach to optimizing vector 
replication selectivity is via a tumor-specific or tissue-
specific promoter element that is incorporated into the 
viral genome. Prostate-specific antigen (PSA), cyclooxy-
genase-2 (Cox2), and human telomerase reverse tran-
scriptase (TERT) promoters are just a few examples of 
promoter sequences that can be used to confer selec-
tive viral replication to target tissues [15–19]. Addition-
ally, deletions in key portions of the viral genome can 
also allow for selective viral replication. For example, 
deletions in the E1 region of the adenoviral genome can 
cause oncolytic adenoviruses to not replicate in normal 
cells due to the absence of key viral protein products 
[20]. Then, there must be additional pathway or signal-
ing alterations to facilitate oncolytic virus replication 
in tumors. One example in many cancers is a defect in 
the Retinoblastoma (RB)-E2F pathway, which ultimately 
allows a virus to replicate as its normally negative regu-
latory function is absent [16]. Also, regulatory proteins 
from certain cancers (such as the human papilloma virus 
E6 and E7 oncoproteins) can functionally transcomple-
ment missing viral proteins (such those in an adenovirus 

Table 1  Currently approved checkpoint inhibitors

RCC​ renal cell cancer, NSCLC non-small cell lung cancer, HNSCC head and neck 
squamous cell carcinoma, HL Hodgkin lymphoma (classic), PMBCL primary 
mediastinal B cell lymphoma, MSI-H microsatellite instability high, dMMR 
mismatch repair gene deficient, HCC hepatocellular carcinoma
a  Approval granted for use in combination with another therapeutic agent

Drug name Target Manufacturer Approved disease 
site

Ipilimumab CTLA-4 Bristol-Meyers 
Squibb

Melanoma
RCC​a

Pembrolizumab PD-1 Merck Melanoma
NSCLC
HNSCC
HL
PMBCL
Urothelial carcinoma
MSI-H/dMMR Solid 

Tumors
Gastric Cancer
Cervical Cancer

Nivolumab PD-1 Bristol-Meyers 
Squibb

Melanoma
RCC​
NSCLC
HNSCC
HL
Urothelial carcinoma
Colorectal cancer
HCC

Avelumab PD-L1 Merck/Pfizer Merkel cell carcinoma
RCC*
Urothelial carcinoma

Durvalumab PD-L1 Astra Zeneca Urothelial carcinoma
NSCLC

Atezolizumab PD-L1 Genentech Urothelial carcinoma
NSCLC
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with E1 deletions) to allow for viral replication [21, 22]. 
No matter the mechanism, a key component of any well-
designed vector is the ability to selectively replicate in 
target cells of interest.

As gene therapy approaches have improved, research-
ers have been able to insert numerous transgenes into 
multiple different vector platforms to achieve a variety of 
effects. The size of the viral genome affects the transgene 
capacity, which makes certain vector systems with larger 
genomes more desirable. Genes encoding interferon 
alpha, granulocyte macrophage colony stimulating factor 
(GM-CSF), and multiple cytokines have all been used as 
transgenes in oncolytic vectors [12, 23–25]. In addition, 
the sodium iodide symporter (NIS) gene has been used 
to allow for monitoring of viral replication [26, 27]. The 
ability to tailor transgene-insertion to the unique pur-
poses of an individual vector makes oncolytic virotherapy 
a versatile tool in the cancer treatment armamentarium.

Following viral inoculation (especially through an 
intravenous route), circulating antibodies and the com-
plement cascade can negate the efficacy of an oncolytic 
virus [11]. As many patients have previously encountered 
viruses due to vaccination or environmental exposure, it 
is no surprise that there is a high incidence of neutral-
izing antibodies to some oncolytic viruses [16]. These 
effects are often more pronounced following the sec-
ond and subsequent doses of virus which may serve as 
a boost to the existing immune response; consequently, 
researchers have developed multiple approaches to mini-
mize virus neutralization [28]. Strategies include using 
alternate serotypes, shielding the virus by PEGylation of 
the viral coat or polymer coating, suppression of the host 
immune system, and using a carrier (such as mesenchy-
mal stem cells) to deliver the virus to the tumor bed [11, 
16, 29–31].

Improved infection efficiency, highly-selective replica-
tion, and transgene expression make modern-day onco-
lytic viruses a robust cancer therapeutic that are readily 
adaptable to combination therapy with other anti-cancer 
agents.

The immune response and checkpoint inhibitors
The lytic effects of an oncolytic virus only represent a por-
tion of virally-induced cancer-killing potential. Another 
main component of viral-mediated killing results from 
the vector’s interactions with the immune system. Immu-
nogenic cell death (ICD) can occur through multiple dif-
ferent mechanisms including autophagy, necrosis, and 
apoptosis with each of these inducing a different degree 
and type of immune response [32], but none of these are 
adequate to fully characterize the complex interactions 
that result in oncolytic virus-mediated cell death [11].

Virus-induced oncolysis can cause the dying cancer 
cell to release damage associated molecular patterns 
(DAMPs). These entities (which include cell surface 
proteins, membrane proteins, and nucleic acids) are 
released following cell death and can serve as ‘danger 
signals’ to prime the immune system [33]. Pathogen-
associated molecular patterns (PAMP) are produced 
by various types of microorganisms (including viruses) 
and are ultimately recognized by pattern recognition 
receptors (PRRs) in the innate immune system [34]. 
These ‘danger signals’ are then picked up by antigen 
presenting cells (APC) such as dendritic cells (DC) and 
presented to T cells, which then can potentially initiate 
a systemic, adaptive immune response [12].

The activation of T cells is a multi-step process 
which begins with the major histocompatibility com-
plex (MHC) on antigen presenting cells (APC) dis-
playing antigens for recognition by T cell receptors. 
To achieve T cell activation, there must be a costimu-
latory signal in the form of B7 molecules on the APC 
surface binding to CD28 molecules on the T cell sur-
face (Fig. 1a) [35]. CTLA-4 is a member of the immu-
noglobulin superfamily and is an inhibitory molecule 
expressed on the surface of activated T cells [36]. It 
competitively inhibits the binding of B7 to CD28 and 
effectively diminishes the degree of T cell activation 
and proliferation (Fig. 1b) [5]. Ipilimumab is one exam-
ple of a monoclonal antibody that inhibits CTLA-4 and 
thereby increases T cell activation. PD-1 is a member 
of the immunoglobulin superfamily present on a vari-
ety of immune cells including activated T cells, B cells, 
NK cells, and antigen presenting cells [37]. Cytokines 
resulting from infection or tumor formation can induce 
the release of programmed death receptor ligand 1 
(PD-L1), which negatively affects the function of T 
cells and B cells (Figs. 1c, 2A) [6]. Pembrolizumab is an 
example of an anti-PD-1 antibody which modulates the 
PD-1/PD-L1 axis to decrease the negative regulation on 
lymphocyte activation (Fig. 1d) [6, 13].

The TME is a complex milieu of inflammatory and 
immune cells that creates an environment which facil-
itates tumor growth [38]. As discussed previously, 
immunologically ‘cold’ tumors have a paucity of local 
infiltrating immune cells, while ‘hot’ tumors have a 
plethora of circulating immune cells [39]. This is impor-
tant as immunologically ‘hot’ tumors are known to be 
more responsive to therapy with checkpoint inhibi-
tors [40]. Therapeutics that can induce a migration 
of immune cells into the TME can be combined with 
checkpoint inhibitors to achieve an enhanced effect, 
and oncolytic viruses have thus far shown much prom-
ise in this regard (Fig. 2B, C) [41, 42].
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Oncolytic viruses in combination with checkpoint 
inhibitors
Herpesviruses
Defining characteristics of the Herpesviridae fam-
ily include a linear, double-stranded DNA genome, an 

icosahedral capsid, and a glycoprotein envelope [43]. 
These are large viruses that can be up to 200 nm in size 
with a genome that is approximately 150 kb [16]. Impor-
tantly, while viral replication occurs in the host cell 
nucleus, it does not cause insertional mutagenesis as it 

Fig. 1  Schematic of T cell interactions. a Major histocompatibility complex (MHC) on antigen presenting cell (APC) binding to T cell receptor 
(TCR) along with the costimulatory B7-CD28 interaction. b CTLA-4 competitively inhibits the binding of B7 to CD28 and results in dampened T 
cell activation and proliferation. c PD-1 on a T cell binding to PD-L1 expressed on a cancer cell to decrease T cell activation. d Anti-PD-1 antibody 
binding to PD-1 and eliminating the negative effect of the PD-1/PD-L1 axis on T cell function

Fig. 2  Combining oncolytic vectors and checkpoint inhibitors. A Illustration of the PD-1/PD-L1 axis between a T cell and cancer cell, which 
suppresses T cell activation. B Oncolytic viruses have the ability to directly lyse and kill cancer cells (grey cells), but also can exert a change in the 
local tumor microenvironment by increasing immune cell activation and PD-L1 expression on cancer cells. C Following priming by an oncolytic 
virus infection and transition to a ‘hot’ tumor microenvironment, checkpoint inhibitors (anti-PD-1 antibody) are more efficacious at decreasing T cell 
suppression
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does not insert into the host genome [16]. There are eight 
members of this family that commonly infect humans, 
but Human herpesvirus 1 (a member of the alpha sub-
family and more commonly known as herpes simplex 
virus type 1 [HSV-1]) has been the most studied and 
tested as a backbone for oncolytic vectors [44].

Talimogene laherparepvec (T‑Vec)
The first FDA-approved oncolytic vector for use in the 
United States was talimogene laherparepvec (T-Vec). It 
has a HSV-1 backbone that is modified with deletions in 
ICP34.5 to augment the tumor selective replication of the 
virus [45]. T-Vec was also modified with deletions in the 
ICP47 gene to decrease neurovirulence and inclusion of 
the human GM-CSF transgene to augment the immune 
response via improved antigen presentation and T-cell 
priming [46]. Phase I studies of T-Vec demonstrated it to 
be a well-tolerated agent. For HSV-seronegative patients, 
the maximum tolerated single, intratumoral dose was 107 
plaque forming unit (pfu)/mL as this titer caused exten-
sive local reactions of inflammation and erythema at the 
injection site [47]. Notably, HSV-seropositive patients 
had much less of a local cutaneous reaction. For a multi-
injection cohort, seronegative patients were pre-treated 
with 106 pfu/mL to seroconvert and then treated with 
two doses of either 107 or 108 pfu/mL with minimal cuta-
neous reactions [47]. Additionally, there were no obvious 
differences in clinical response between HSV-seroposi-
tive and HSV-seronegative patients in this study [47]. In 
the phase III OPTiM trial, injection of intralesional T-Vec 
demonstrated a statistically significant improvement in 
durable overall response rate when compared to GM-CSF 
alone (16.2% vs 2.1%, p < 0.001) in patients with unresect-
able stage IIIB or IV melanoma [48]. Additionally, 15% 
of measureable visceral (uninjected) lesions reduced in 
size by 50% or more following treatment with T-Vec [48]. 
Importantly, intralesional injection with T-Vec into met-
astatic melanoma lesions alters the immune cell makeup 
of the tumor microenvironment as demonstrated by a 
decrease in multiple suppressor cell populations includ-
ing CD4+ Tregs, CD8+ T suppressor cells, and myeloid 
derived suppressor cells (MDSC) [49]. Finally, T-Vec-
induced local and systemic Melanoma Antigen Recog-
nized by T cells (MART)-1-specific CD8+ effector cells, 
which suggests the establishment of anti-tumor immu-
nity [49].

Given the distinct mechanisms of action of T-Vec and 
the checkpoint inhibitor ipilimumab (anti-CTLA-4), 
researchers have postulated that their combined effect 
on the immune microenvironment and T cell modula-
tion may be greater than either of the monotherapies. In 
a phase Ib study, T-Vec was combined with ipilimumab 
in patients with untreated stage IIIB or IV melanoma. 

The objective response rate was 50% and 44% of patients 
enrolled had a durable response that lasted at least 
6  months [50]. There were no dose-limiting toxicities 
and overall adverse event rates were comparable to that 
of ipilimumab monotherapy. Interestingly, the authors 
observed that patients who demonstrated better disease 
control had increased levels of activated CD8+ T cells 
(flow cytometry analysis of whole blood samples) when 
compared to those patients who had disease progres-
sion following T-Vec monotherapy [50]. This difference 
did decrease following ipilimumab, and consequently 
the authors suggest that T-Vec might stimulate a differ-
ent subset of T cells that could generate a more specific 
anti-tumor response when compared to those stimulated 
by ipilimumab [50]. In the subsequent phase II trial, 39% 
of patients in the combination arm (T-Vec + ipilimumab) 
demonstrated an objective response while only 18% of 
patients in the ipilimumab arm demonstrated a response 
(p = 0.002) [51]. Additionally, distant un-injected sites 
demonstrated abscopal responses as decreases in vis-
ceral lesions were demonstrated in 52% of patients in the 
combination arm but only in 23% of patients in the ipili-
mumab arm [51]. The combination of T-Vec with an anti-
CTLA-4 antibody has demonstrated a greater efficacy 
while still maintaining tolerability and has the potential 
to become a standard therapy for patients with advanced 
melanoma.

T-Vec is also being tested in combination with an anti-
PD1 antibody (pembrolizumab) for the treatment of 
melanoma patients. The ongoing Masterkey-265 trial was 
designed as a phase Ib/III trial, and thus far results have 
been promising (NCT 02263508). In the phase Ib study, 
there were no dose limiting toxicities and the objective 
response rate was 62% with a complete response rate 
of 33% [41]. The authors demonstrated increased levels 
of PD-L1 expression, increased amounts of circulating 
CD8+ and CD4+ T cells, and increased inflammation 
at tumor sites distant from the injected lesions (even in 
patients with low levels of tumor infiltrating lymphocytes 
[TIL]) [41]. These analyses were performed prior to anti-
PD1 antibody delivery, which suggests that the oncolytic 
virus can change the immune cell makeup surrounding 
the tumor which is then more conducive to combination 
therapy with a checkpoint inhibitor. A phase III study is 
ongoing and the results are highly anticipated.

HF 10
HF 10 is another oncolytic virus in the HSV family. It 
differs from T-Vec in that it is a spontaneously mutated 
virus without any insertions of foreign genes. Natural 
deletions and insertions resulted in an overexpression of 
UL53 and UL54 as well as a loss of expression of UL43, 
UL49.5, UL55, and UL 56 [52]. This has translated into 
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high innate tumor tropism, a high degree of viral repli-
cation, and potent antitumor efficacy across a variety of 
malignancies [52]. It has been used in a phase II clinical 
trial with patients who have Stage IIIB/C or IV unresect-
able melanoma in combination with ipilimumab (NCT 
02272855). There were no disease limiting toxicities, and 
the best overall response rate was 41%, while the disease 
stability rate was 68% [53].

Adenoviruses
The Adenoviridae family consists of non-enveloped 
viruses with double-stranded DNA genomes that are 
surrounded by an icosahedral capsid [54]. These viruses 
range from 70 to 90 nm in size and possess a genome of 
approximately 35 kb that is relatively easy to modify and 
lends itself well to the insertion of transgenes [16]. From 
the 57 known serotypes of adenovirus (divided into cat-
egories A–G based upon their agglutination properties 
and oncogenic potential in rodent models), serotype 5 
from group C has been one of the most commonly used 
backbones in oncolytic viruses [55].

Tasadenoturev (DNX‑2401)
This is a replication competent oncolytic adenovirus 
with enhancements to confer increased infectivity as 
well as tumor selectivity [56]. The selective replication 
of the vector results from a 24 base pair deletion in the 
E1A region of the adenoviral genome, which allows the 
virus to replicate in cancer cells that lack a functional 
Rb pathway, but not in normal cells [57]. The vector was 
tested in a phase I trial for thirty-seven patients with 
recurrent malignant glioma. One group (n = 25, group 
A) underwent intratumoral injections to evaluate dos-
ing and response across different viral titers, while the 
other group (n = 12, group B) underwent intratumoral 
injection via implanted catheter and subsequent surgi-
cal resection. Tumor size reductions were documented in 
72% of patients in Group A with a median overall survival 
time of 9.5  months [58]. Immunohistochemical analysis 
of resected specimens demonstrated decreases in the 
expression of TIM-3, but none of the other checkpoint 
proteins including PD-1 or PD-L1 [58]. T-cell exhaustion 
is one of the ways that tumor cells can create a locally 
immunosuppressed environment, and it is known that 
inhibitory receptors (e.g. TIM-3, PD-1) can provide some 
regulation of these exhausted T cells [59]. The authors 
suggest that since viral inoculation with DNX-2401 may 
partially overcome some aspects of T-cell exhaustion and 
have subsequently used this as a rationale to investigate 
the virus in combination with anti-PD-1 antibodies [58]. 
The CAPTIVE trial is an ongoing phase II study employ-
ing the virus and pembrolizumab in patients who have 

had glioblastoma that has progressed after initial therapy 
(NCT 02798406).

ONCOS‑102 (Ad 5/3 Δ24 GM CSF)
ONCOS-102 is a serotype 5 adenovirus with multiple 
modifications including a chimeric 5/3 fiber-knob region 
to augment infectivity, a 24 base pair deletion in the E1a 
region conferring selective replication in Rb-pathway 
deficient cells, and expression of GM-CSF to boost the 
immune cell infiltrate at the site of viral inoculation [60]. 
This virus has been extensively tested in a pre-clinical 
setting and has already progressed to phase I trials. In 
a study of 12 patients with treatment refractory solid 
tumors (including mesothelioma, sarcoma, ovarian, 
colorectal, liver and lung cancers), there were no grade 
4/5 adverse events following intratumoral injections 
[61]. Inoculation  with the vector resulted in a profound 
immune cell infiltration to the tumor. When compared 
to pre-treatment biopsies, ONCOS-102 resulted in a 
5.9 times increase in the expression of CD3 (a T cell 
marker) and a four-fold increase in CD8+ cells in the 
tumor on post-treatment biopsies [61]. Additionally, two 
patients (one with mesothelioma, the other with ovar-
ian cancer) developed systemic anti-tumor immunity as 
demonstrated through the comparison of pre and post 
treatment peripheral blood mononuclear cells (PBMC) 
in blood samples to determine the specificity of CD8+ 
T-cells for cancer-testis (CT) antigens [61]. Here, the 
mesothelioma patient demonstrated a profound induc-
tion of MAGE-A3-specific CD8+ T cells, and the ovar-
ian cancer patient demonstrated CD8+ T cells that were 
specific for NY-ESO-1 [62, 63]. Furthermore, two of the 
patients with mesothelioma demonstrated increased lev-
els of PD-L1 expression in the tumors following treat-
ment with ONCOS-102 [61]. These observations serve as 
the basis for potential combination therapies with check-
point inhibitors, and there is an ongoing clinical trial 
utilizing ONCOS-102 with pembrolizumab in patients 
with advanced melanoma who have progressed after PD1 
blockade (NCT 03003676).

Other adenoviruses
Thus far, we have only discussed approaches whereby the 
drug of interest (checkpoint inhibitor) is given separately 
from the oncolytic vector. This has been described as a 
‘trans approach’ while a ‘cis approach’ would consist of 
a gene encoding the product of interest (human mono-
clonal antibody for anti-PD1 or anti-CTLA-4) being 
inserted into the viral genome [64].

The Hemminki group has reported an oncolytic ade-
novirus that included a transgene expressing an anti-
body specific for CTLA-4 [65]. The vector (Ad 5/3 Δ24a 
CTLA4) was shown to produce a high level of the human 
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monoclonal antibody against CTLA4, which was effec-
tive at inducing T cell activity [65]. Du et al. also reported 
construction of an oncolytic adenovirus with an anti-
CTLA4 antibody inserted into the E3 region (SKL002), 
which was efficacious in both in vitro and in vivo mod-
els [66]. This vector was under the control of the E2F-1 
promoter, which resulted in selective replication in can-
cer cells deficient in the Rb pathway. Notably, the vec-
tor demonstrated strong in vivo effects in subcutaneous 
mouse models for lung cancer and melanoma.

Vaccinia viruses
Vaccinia viruses are members of the Poxviridae family 
and have large (~ 190 kb) double-stranded DNA genomes 
that are suitable for transgene insertion [67]. These 
viruses replicate in the host cytoplasm and so the risk of 
insertional mutagenesis is all but eliminated [16]. Due to 
its role in smallpox vaccination programs, the potential 
for immune system stimulation and the safety profile of 
this vector system is well documented [68]. These viruses 
do not have a specific cell-surface receptor required for 
entry into the host, which contributes to the natural tro-
pism for a variety of cancer cells and makes it an attrac-
tive backbone for oncolytic virotherapy [69].

Pexa‑Vec
Pexa-Vec (pexastimogene devacirepvec, JX-594) is an 
oncolytic vaccinia virus that expresses the human GM-
CSF and beta-galactosidase transgenes [70]. In addition, 
it has an inactivated thymidine kinase gene that provides 
for selective replication that is dependent upon high lev-
els of thymine production, which is common to many 
cancer cells [71]. In addition to its oncolytic and immu-
nostimulatory properties, Pexa-Vec is also known to 
target vascular cells within the tumor. It has been dem-
onstrated in laboratory and in human studies that this 
virus is capable of targeting and infecting tumor associ-
ated endothelial cells, which ultimately results in vascular 
disruption and oncolysis [72]. The vector has been tested 
in multiple clinical trials and has been shown to be well 
tolerated with antitumor activity across a range of solid 
malignancies [73–76]. In a recent abstract presented at 
the 2018 ASCO meeting, Anthoney et al. presented data 
in patients with metastatic liver tumors who were given a 
single dose of intravenous (IV) Pexa-Vec and then under-
went surgical resection [77]. They demonstrated a robust 
activation of natural killer cells, antigen presenting cells, 
and CD4/CD8+ T cells. The study will go on to explore 
combinations of the viral vector with nivolumab for the 
treatment of liver tumors (NCT 03071094). Furthermore, 
Pexa-Vec is currently being studied in conjunction with 
immune checkpoint inhibitors in two additional ongoing 

clinical trials for colorectal cancer and other advanced 
solid tumors (NCT 03206073, NCT 02977156).

Reoviruses
Reoviruses are members of the Reoviridae family and 
are typically 75–85 nm in diameter [16]. They are non-
enveloped viruses with icosahedral capsids and double-
stranded RNA genomes [78]. Reoviruses replicate in 
the cytoplasm and produce viral RNAs that activate the 
PKR (protein kinase R) pathway [16]. Interestingly, in 
Ras-transformed cells, the PKR pathway is inhibited 
which results in the release of translational inhibition 
and serves to augment the replication and oncolysis of 
reoviruses [79]. Given the number of cancers with Ras 
mutations, the natural tropism of reovirus for these 
tumors makes it a versatile backbone for oncolytic vec-
tor design [80].

Reolysin (Pelareorep)
Reolysin is a live, replication competent reovirus that is 
an isolate of the human Reovirus Type 3 strain [81] and 
mediates oncolysis through modulation of the Ras signal-
ing pathway [79].

Recent preclinical data supports the use of the com-
bination of reovirus and anti-PD-1 antibodies. In 
subcutaneous melanoma tumors established in immu-
nocompetent mice, the combination of intratumoral 
reovirus and intravenous anti-PD-1 antibody (delivered 
7 days after first viral dose) resulted in statistically signifi-
cant prolonged survival compared to either monotherapy 
treatment [82]. The authors also showed that PD-1 block-
ade enhanced the CD8+ T cell Th1 antitumor response 
(primed by the reovirus injection) and also augmented 
NK-cell recognition of reovirus-infected cells [82]. Simi-
lar findings were obtained with intravenous reovirus 
injection in patients with intracranial glioblastomas. In 
a phase Ib trial, patients who were undergoing debulk-
ing neurosurgery underwent a reovirus infusion prior 
to resection. When compared to control cases, these 
patients demonstrated a marked increase in tumor-infil-
trating cytotoxic T cells (CD8+) on immunohistochemi-
cal staining of the resected specimens [42]. A clinical trial 
(NCT 02620423) investigating the use of pelareorep in 
combination with pembrolizumab and chemotherapy in 
patients with relapsed metastatic pancreatic adenocarci-
noma is ongoing. A recent abstract reported the prelimi-
nary data for 11 patients treated with pembrolizumab, 
pelareorep, and gemcitabine. The authors note manage-
able toxicities and 3 out of 5 patients who were eligible 
for efficacy evaluation demonstrated a partial response or 
stable disease [83].
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Coxsackie viruses
These viruses are members of the Picornaviridae fam-
ily and are non-enveloped with a single-stranded RNA 
genome [84]. They are small viruses that are approxi-
mately 30  nm in size and have an icosahedral capsid 
structure [16]. There are two subgroups of Coxsacki-
eviruses which are categorized based on their effects in 
murine models and consist of twenty-three unique sero-
types in Group A and six serotypes in Group B [16, 85].

CVA 21 (Cavatak)
This coxsackie vector is the twenty-first serotype from 
Group A and has not been modified with any deletions 
or transgene insertions [85]. Its binding to cancer cells 
is mediated through intercellular adhesion molecule 
1 (ICAM-1) and decay-accelerating factor (DAF) [86]. 
Since melanoma cells are known to overexpress ICAM-1, 
metastatic melanoma was one of the first targets for this 
oncolytic vector [87, 88]. Additionally, other serotypes of 
coxsackieviruses including CVA 13, CVA15, and CVA 18 
are currently being explored for their potential as onco-
lytic vectors [89].

Additional pre-clinical studies have demonstrated an 
immune component to the anti-tumor response rep-
resented by increases in IL-8 and gamma-interferon in 
melanoma patients [90]. In addition, the vector was quite 
effective when combined with anti-PD-1 or anti-CTLA-4 
antibodies [91]. Results of an extension study to the 
CALM clinical trial (NCT 01636882) showed increased 
immune cell infiltrates and expression of checkpoint 
molecules in patients receiving intratumoral injections of 
the CVA 21 virus [92]. These observations  and the strong 
cytocidal effects have led to multiple clinical trials, many 
of which have combined CVA 21 with immune check-
point inhibitors [93–95]. For example, in the CAPRA 
clinical trial (single arm, multi-institutional, phase Ib, 
NCT 02565992) where patients received multiple intra-
tumoral injections of CVA21 as well as multiple doses of 
pembrolizumab, there was an objective response rate of 
73% [95].

Summary and conclusions
The last decade has ushered in a new age of cancer care 
due to the mainstream adoption of immunotherapies. 
Checkpoint inhibitors have revolutionized the treat-
ment of patients with melanoma and other malignan-
cies. Similarly, with the FDA approval of T-Vec, oncolytic 
virotherapy gained a major victory. As researchers have 
learned more about the mechanism of action of viral onc-
olysis, it has become clear that the immune component is 
equally important (if not more so) than direct lysis. Con-
sequently, the combinations of viral vectors with agents 

that influence the tumor immune microenvironment and 
help to augment T cell responses have incredible poten-
tial. Multiple vector systems are currently being tested 
in clinical trials in combination with anti-PD-1 or anti-
CTLA-4 antibodies, and thus far the results have been 
encouraging. Additionally, many research groups are 
exploring similar treatment schemes with other vectors 
systems in preclinical settings, some of which include 
measles virus [96, 97], vesicular stomatitis virus (VSV) 
[98, 99], newcastle disease virus (NDV) [100, 101], sem-
licki forest virus (SFV) [102], and parvovirus [103]. With 
time, it is expected that additional oncolytic vectors with 
be tested with checkpoint inhibitors in clinical trials.

As these types of combination therapies progress in 
development, important points will need to be addressed. 
Will it be more beneficial to have the vector express a 
transgene which encodes for an anti-PD-1/CTLA-4 anti-
body or will concurrent IV delivery of such an antibody 
be best? If the latter is to be pursued, what will be the 
optimal timing of the antibody delivery?

Oncolytic vectors have the ability to lyse target cells as 
part of the replication cycle, but they also have power-
ful immunomodulatory effects. They have been shown 
to induce both innate and adaptive tumor responses as 
well as prime cancer cells for treatments with additional 
agents. To this end, multiple mechanisms (innate, adap-
tive, and acquired) of resistance to immunotherapy have 
been identified and oncolytic vectors are suited to be part 
of the solution to these hurdles in treatment [39, 104]. 
Multiple groups have demonstrated that local oncolytic 
virus injection can modulate tumor-specific CD8+ T-cell 
responses to make distant tumors increasingly suscepti-
ble to immune checkpoint inhibitor therapy [100, 105]. 
Results of ongoing clinical trials in patients who have 
progressed after immune checkpoint inhibition (e.g. 
NCT 03003676) will shed additional light on oncolytic 
virotherapy’s role in helping to overcome resistance to 
immunotherapy. By harnessing the potential of the com-
bination of viral vectors and checkpoint inhibitors, great 
strides can be made in further developing treatment 
regimens employing these novel therapeutics to improve 
patient outcomes.
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