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to single-agent checkpoint blockade
Jun Gong1, Andrew Hendifar1, Richard Tuli2, Jeremy Chuang3, May Cho4, Vincent Chung5, Daneng Li5 
and Ravi Salgia6* 

Abstract 

Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety 
profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer 
has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death 
ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence 
to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. 
Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based 
combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains 
several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination 
strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further 
development of biomarkers is also important in the advancement of combination systemic therapies incorporating 
checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials 
are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancre-
atic cancer.
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Introduction
Monoclonal antibodies targeting the programmed cell 
death protein 1 receptor (PD-1) and programmed death 
ligand 1 (PD-L1) are approved as cancer immunotherapy 
for a number of solid tumors and hematologic malignan-
cies [1]. Early studies demonstrated expression of PD-L1 
in human pancreatic cancer tissues associated with poor 
prognosis and evidence of antitumor activity with PD-1/
PD-L1 blockade in pancreatic cancer mouse models 
in vivo [2–5]. However, pancreatic cancer has been fairly 

resistant to single-agent checkpoint blockade in the clini-
cal setting as initial phase I trials enrolling advanced pan-
creatic cancer patients produced overall response rates 
(ORRs) of 0% with anti-PD-1 and anti-PD-L1 therapy 
[6–8]. Similarly, no objective responses were seen in 
locally advanced or metastatic pancreatic cancer patients 
treated with cytotoxic T-lymphocyte associated protein 
4 (CTLA-4) inhibitor monotherapy [9]. These negative 
but important clinical studies underscored the primary 
or innate resistance of pancreatic cancer to checkpoint 
inhibitors rather than acquired resistance, which would 
otherwise be seen in those that initially respond but 
eventually develop resistance to these agents [10].

There is increasing evidence to suggest that both tumor 
cell-intrinsic and tumor cell-extrinsic factors contribute 
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to the primary resistance of pancreatic cancer to check-
point blockade. Immune active tumors that are sensitive 
to checkpoint inhibitors such as melanoma, lung squa-
mous cell carcinoma, or lung adenocarcinoma are char-
acterized by an abundance of CD8+ tumor-infiltrating 
lymphocytes (TILs), while pancreatic cancer (except 
those with defects in mismatch repair) represents an 
immune quiescent tumor characterized by lack of infiltra-
tion by effector T-cells that is otherwise critical in driving 
the antitumor response to checkpoint blockade [11]. This 
property of pancreatic adenocarcinoma (PDAC) has been 
attributed, in part, to the prominent PDAC desmoplas-
tic stroma that may impede access to the tumor by TILs 
[12]. Additionally, PDAC is intrinsically a low mutational 
burden or low neoantigen-expressing tumor, which is 
important given that higher mutational load correlates to 
higher levels of neoantigens capable of inducing antitu-
mor responses to immune checkpoint blockade [12].

Other tumor cell-intrinsic and tumor cell-extrinsic 
mechanisms of resistance to immune checkpoint inhibi-
tors in pancreatic cancer include (1) the ability of pan-
creatic cancer cells to evade the host antitumor immune 
response (immunoediting) through expression of 
immune checkpoints such as PD-L1 and indoleamine-
2,3-dioxygenase (IDO), secretion of granulocyte–mac-
rophage colony-stimulating factor (GM-CSF) resulting 
in a myeloid cell-inflamed phenotype, and upregulation 
of regulatory T-cells (Tregs) and (2) induction of immune 
tolerance by direct interaction between cancer cells 
and tumor antigen-specific T-cells (immune privilege) 
through downregulation of antigen presenting major his-
tocompatibility complex (MHC) molecules, expression 
of Fas ligand and decreased Fas receptor signaling, and 
expression of Foxp3 [13, 14].

Evidence is emerging to support combination systemic 
therapies on a backbone of immune checkpoint inhibi-
tion to overcome resistance to single-agent PD-1/PD-L1/
CTLA-4 blockade in pancreatic cancer. PD-1/PD-L1 
inhibitors, in particular, have shown broad single-agent 
activity across a spectrum of cancers with safety and tol-
erability profiles that render them attractive agents for 
combination with other anticancer therapies [1]. In this 
review, we highlight the current developmental land-
scape of combination regimens incorporating systemic 
therapies and checkpoint blockade in pancreatic cancer. 
In particular, we review the preclinical evidence support-
ing the rational combination and transition to prospec-
tive clinical trials that have thus far reported on the safety 
and efficacy of combination systemic therapies with 
checkpoint inhibitors in pancreatic cancer. We end with a 
discussion on future considerations that are important to 
optimizing the antitumor efficacy of these combinations 
in this lethal malignancy.

Search criteria
A literature search up to April 17, 2018 using the key-
words “pancreatic cancer,” “PD-1,” “PD-L1,” “checkpoint,” 
and “immunotherapy” was conducted in MEDLINE and 
generated a total of 1836 hits. Preclinical or prospec-
tive clinical studies investigating combination regimens 
involving PD-1, PD-L1, or CTLA-4 inhibitors and ≥ 1 
systemic therapies in the treatment of pancreatic can-
cer were included. An additional manual search was 
performed to include preliminary results from relevant 
abstracts investigating combination therapies. Only stud-
ies published in English language were included. Using 
these criteria, the list of studies was narrowed to a total of 
30 preclinical studies (22 fully published and 8 abstracts) 
and 14 prospective clinical studies (5 fully published and 
9 abstracts) that were included in this review.

Preclinical evidence
Chemotherapy
Among the earliest preclinical studies demonstrating 
synergistic antitumor effects with combination check-
point inhibition and chemotherapy in pancreatic cancer 
involved the administration of anti-PD-L1 therapy and 
gemcitabine in mice models in vivo without overt toxic-
ity (Table 1). Gemcitabine with delayed anti-PD-L1 ther-
apy (≥ 14  days after gemcitabine) and gemcitabine with 
simultaneous PD-L1 blockade showed enhanced tumor 
suppression compared to either modality alone; however, 
only simultaneous combination therapy resulted in com-
plete responses (CRs) in treated mice [4]. In a transgenic 
mouse model of resectable PDAC, neoadjuvant PD-1 
inhibition and gemcitabine significantly reduced local 
recurrence and improved survival compared to either 
modality alone, while promotion of natural killer (NK) 
cell activation with the addition of anti-CD96 antibody to 
adjuvant gemcitabine enhanced control of distant metas-
tases [15]. This preclinical model therefore highlighted 
the potential of combination strategies with PD-1 block-
ade to target acquired resistance (preventing recurrence) 
in addition to the more commonly investigated goal of 
enhancing response to PD-1 inhibition (targeting pri-
mary resistance). Administration of cisplatin using nano-
particle carriers along with anti-PD-L1 therapy produced 
preliminary evidence of enhanced tumor suppression in 
an orthotopic mouse model of pancreatic cancer [16].

Targeted therapies
Preclinical work has demonstrated that tumor-associated 
macrophages (TAMs) and monocytic and granulocytic 
myeloid-derived suppressor cells (MDSCs) contribute 
to the immunosuppressive tumor microenvironment 
(TME) of pancreatic cancer [17]. In PDAC mouse mod-
els, inhibition of colony-stimulating factor 1 (CSF1) or 
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colony-stimulating factor 1 receptor (CSF1R) decreased 
TAMs and reprogrammed TAMs to promote antigen 
presentation and antitumor T cell activity, increased 
CD3+CD8+ cytotoxic T-lymphocytes (CTLs) and 
CD3+CD4+ effector T-cells, decreased CD4+Foxp3+ 
Tregs, improved the effector T-cell/Treg ratio, and upreg-
ulated PD-L1 and CTLA-4 on PDAC cells. Combination 
CSF1/CSF1R and PD-1 or CTLA-4 blockade synergisti-
cally restrained tumor progression, compared to controls.

Hyperactivity of focal adhesion kinase (FAK) has been 
shown to promote tumor protective fibrosis and an 
immunosuppressive TME in PDAC. Addition of a FAK 
inhibitor reversed resistance to chemotherapy (gemcit-
abine) and checkpoint inhibition in PDAC-bearing mice 
models (Table  1). Enhanced sensitivity to PD-1 inhibi-
tion occurred when given in combination with low-dose 
gemcitabine 25 mg/kg and was associated with increased 
CD8+ CTLs that penetrated into the stroma in close 
proximity with target CK19+ PDAC cells, decreased 
CD4+Foxp3+ Tregs, and improved T-effector/Treg 
ratios in the tumors, when compared to controls [18].

Targeting of either the H3K4 methylation-specific 
histone methyltransferase, mixed-lineage leukemia 1 
(MLL1), with the epigenetic agent verticillin A, JAK/
STAT pathway with ruxolitinib, mitogen-activated pro-
tein kinase (MAPK) pathway with a MAPK kinase (MEK 
inhibitor, cholecystokinin (CCK) receptor, DNA meth-
yltransferase with decitabine, or Bcl-2 in combination 
with checkpoint blockade significantly enhanced tumor 
growth suppression, when compared to controls, in pan-
creatic cancer-carrying mouse models [19–24]. MLL1 
normally catalyzes the trimethylation of H3K4 to acti-
vate immune inhibitory PD-L1 transcription in tumor 
cells [19]. The JAK/STAT pathway putatively upregulates 
PD-L1 expression and immunosuppressive cytokine pro-
duction by tumor cells that altogether decrease effec-
tor T-cell function [21]. Myeloid cells have been shown 
to support immune evasion in PDAC by upregulating 
PD-L1 expression in a MAPK-dependent manner [22]. 
CCK has been implicated in increasing fibrosis and 
reducing the influx of TILs in pancreatic cancer [23]. 
Decitabine, a DNA hypomethylating agent, was shown 
to increase the amount of CD8+ TILs as monotherapy. 
This prompted the addition of PD-1 antibody following 
decitabine treatment that showed greater suppression of 
tumor growth compared to either agent alone in PDAC 
mice [24]. Lastly, blocking of Bcl-2-Associated athano-
Gene 3 (BAG3) has been shown to decrease the number 
of immunosuppressive TAMs in PDAC [20].

Tumor microenvironment
Preclinical evidence posits that the acidic pH of the 
TME has immunosuppressive effects by inhibiting T-cell 

activation and abrogating interferon-γ (IFN-γ) and tumor 
necrosis factor alpha (TNF-α) secretion [25]. Buffer 
therapy with sodium bicarbonate in drinking water and 
anti-PD-1 therapy significantly diminished tumor growth 
in a PDAC mouse model compared to either therapy 
alone (Table 1). Given the concerns for translating such 
high doses of sodium bicarbonate in the clinical setting, 
the same group has preliminarily demonstrated the abil-
ity to increase sensitivity to anti-PD-1 monotherapy by 
combining the carbonic anhydrase IX (CAIX) inhibitor 
DH348 or lactate dehydrogenase A inhibitor FX11 with 
anti-PD-1 therapy in PDAC-carrying mice [26].

Hyaluronan has been shown to contribute to tumor 
promotion and depletion by PEGylated recombinant 
human hyaluronidase PH20 (PEGPH20) 24  h prior to 
anti-PD-1 or anti-PD-L1 therapy significantly suppressed 
tumor growth, when compared to either modality 
alone, in high hyaluronan-expressing pancreatic tumor 
mice models [27]. Gene expression of immunosuppres-
sive markers such as interleukin 10 (IL-10) and Foxp3 
was higher in hyaluronan-high tumors and suggested 
a relationship between hyaluronan level and immune 
suppression.

Vaccines
Combining cyclophosphamide and a GM-CSF cell-based 
vaccine (GVAX) with anti-PD-1 or anti-PD-L1 antibod-
ies in mouse models of pancreatic cancer showed sig-
nificantly increased survival compared to anti-PD-1 
monotherapy (Table  1) [28]. Notably, combination sys-
temic therapy was associated with significantly increased 
IFNγ-producing CD8+ TILs in the metastatic PDAC 
TME, decreased Tregs, and decreased CTLA-4 expres-
sion on CD4+ and CD8+ T-cells when compared to 
controls. The same group later demonstrated prelimi-
nary antitumor efficacy with the combination of Annexin 
A2-specific Listeria monocytogenes vaccine and anti-
PD-1 therapy in a PDAC mouse model [29]. The pairing 
of checkpoint blockade to local radiation therapy (RT) 
and a SIY antigen vaccine enhanced tumor regression in 
otherwise immune quiescent pancreatic cancer mouse 
models (Table 1) [30].

Cytokines and chemokines
Production of chemokines such as CCL2, CXCL12, and 
CXCR4 contribute to the immunosuppressive PDAC 
TME by facilitating T-cell trapping in the stroma and 
effector T-cell exclusion [31]. Regulation of cytokines 
such as interferons and TNF-α also contribute to the 
immunosuppressive PDAC TME through upregulation 
of PD-L1 [31]. Targeting the chemokine (C-X-C motif ) 
ligand 12 (CXCL12) through the chemokine (C-X-C 
motif ) receptor 4 (CXCR4) inhibitor, AMD3100, in 
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PDAC-bearing mice with anti-PD-L1 therapy signifi-
cantly reduced tumor volume by 48 h, when compared to 
controls, with no further decreases in tumor volume over 
the following 4 days [32]. Interestingly, CTLA-4 blockade 
did not augment the antitumor effect of AMD3100. A 
subsequent study established the efficacy of a bispecific 
PD-L1 and CXCL12 fusion protein or trap with > 1000× 
higher affinity for mouse PD-L1 than that between 
endogenous PD-1 and PD-L1 [33].

In preclinical PDAC mouse models, combined target-
ing of PD-L1 and IL-6 correlated with increased intratu-
moral effector T-cells and increased T-cells with a Th1 
phenotype, while inhibiting pancreatic cancer growth 
compared to either modality alone [34]. Targeting of 
IL-18, CCR2, or CXCR2 in combination with PD-1/
PD-L1 blockade has shown preclinical anticancer effi-
cacy as well (Table 1) [35–37]. Delivery of an antitumor 
cytokine payload demonstrated feasibility in PDAC mice 
treated with single-domain antibodies against PD-L1 
fused with IFNγ or IL-2 in vivo; reduced tumor burden 
seen from targeting IFNγ was associated with decreased 
numbers of  CD11b+ cells and transition of intratumoral 
macrophages towards an M1-like phenotype [38].

Adoptive T-cell therapy
In initial investigations of fusion receptor constructs 
comprised of PD-1 and the costimulatory protein CD28 
transduced into transgenic murine CD8+ T-cells spe-
cific for ovalbumin (OT-1), complete tumor regressions 
in PDAC-carrying mice were observed with 300-fold 
increases in IL-2 and IFN-γ production and increased 
T-cell proliferation [39]. Reimplanted tumors were 
rejected in 9/11 treated mice vs. 0/6 naïve mice, which 
was indicative of a memory response. The same group 
has recently presented preliminary findings of synergis-
tic T-cell-induced tumor cell cytotoxicity in mouse pan-
creatic cancer cell lines cocultured with OVA-specific 
CD4+ and CD8+ T-cells transduced with a PD-1-CD28 
fusion receptor [40].

Immune costimulatory proteins and immunostimulants
In studies demonstrating resistance to single-agent 
checkpoint blockade in PDAC-bearing mice, addition 
of CD40 (antigen presenting cell costimulatory pro-
tein) agonistic antibody and/or chemotherapy reversed 
refractoriness to checkpoint blockade by priming T-cell 
responses (Table 1) [41, 42]. Combination therapy signifi-
cantly improved survival (targeting primary resistance) 
and conferred immunologic memory as demonstrated 
by curative protection from multiple tumor rechallenges, 
when compared to controls (targeting acquired resist-
ance). Triple therapy with mAb-AR20.5 (anti-MUC1), 
anti-PD-L1 therapy, and PolyICLC (immunostimulant) 

cured 50% of mice subcutaneously injected with PDAC 
cells by 70  days and retained immunologic memory as 
evidenced by tumor antigen-specific rejection of tumors 
reimplanted in treated mice but not in control mice [43]. 
Preliminary antitumor efficacy has also been shown with 
triple therapy involving the immunomodulatory antifun-
gal ciclopirox olamine, anti-PD-1, and anti-CTLA-4 ther-
apy in PDAC-carrying mice [44].

Prospective clinical trials
Vaccines
In an open-label phase Ib trial, patients with previously 
gemcitabine-treated, advanced PDAC were randomized 
to receive ipilimumab (arm 1) or ipilimumab with GVAX 
(arm 2) and demonstrated grade 3–4 immune-related 
adverse events (AEs) in 20% of patients in both arms 
(colitis, Guillain-Barre syndrome (GBS), and nephritis in 
arm 1 and colitis, rash, and pneumonitis in arm 2) that 
resolved to grade 1 with steroids (except for the cases of 
nephritis and GBS) [45]. There was a trend towards sig-
nificant improvement in overall survival (OS) in favor of 
the combination arm despite the small sample size of 30 
in this study (Table 2).

A German group isolated antigen-primed monocyte 
derived dendritic cells (DCs) from 44 patients with stage 
IV pancreatic cancer who failed first-line chemotherapy 
and demonstrated a median OS of 8  months with DC 
vaccine alone; however combination DC vaccine and 
PD-L1 blockade was able to induce secondary stabiliza-
tion of disease of 4–8 months in 5/10 patients who failed 
to respond to previous DC therapy [46]. Preliminary 
results including 2 partial responses (PRs) were observed 
from a pilot study by the same group investigating lower 
dose nivolumab in combination with DC vaccine therapy 
in 7 patients with stage IV pancreatic cancer (Table  2) 
[47].

Chemotherapy
The CTLA-4 inhibitor tremelimumab in combination 
with weekly gemcitabine demonstrated preliminary effi-
cacy and tolerability with the most common grade 3–4 
toxicities being asthenia (11.8%) and nausea (8.8%) in a 
phase Ib trial enrolling treatment-naïve metastatic pan-
creatic cancer patients [48]. A dose-finding, multi-arm 
phase Ib trial enrolled patients with advanced solid 
tumors to 6 different treatment arms; in the metastatic 
PDAC cohort, a final 17 patients with treatment-naïve 
or previously-treated disease received combination 
pembrolizumab, gemcitabine, and nab-paclitaxel with 
responses observed only in those who were previously 
untreated (Table  2) [49, 50]. Notably, gemcitabine and 
nab-paclitaxel were reduced to 800 mg/m2 and 100 mg/
m2 in the pretreated cohort, which was ultimately closed 
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due to futility [50]. Immune-related AEs (all grades) were 
seen in 47.1%. The most common grade 3–4 AEs were 
neutropenia (46.7%) and thrombocytopenia (20%) in the 
treatment-naïve cohort. The combination of ipilimumab 
and gemcitabine was well-tolerated but produced an 
ORR of 12.5% and lower than that of gemcitabine alone, 
historically [51].

Alternatively, the feasibility and preliminary effi-
cacy of nivolumab + nab-paclitaxel (arm A) and 
nivolumab + gemcitabine + nab-paclitaxel (arm B) has 
been demonstrated in locally advanced or metastatic 
PDAC where the most common grade 3–4 AEs in arm 
A were pulmonary embolism, neutropenia, and anemia 
in 2/11 patients (18%) and anemia in 2/6 (33%) in arm 
B [52]. Neoadjuvant pembrolizumab with concurrent 
capecitabine and RT was relatively tolerated in resectable 
or borderline resectable PDAC with no grade 4 toxicities 
reported and no major surgical complications reported 
within 30 days post-surgery (Table 2) [53].

Most recently, preliminary results from a phase II 
trial highlighted the most promising efficacy findings to 
date with combination chemotherapy and checkpoint 
blockade in pancreatic cancer (Table  2) [54]. As part of 
a safety run-in for this trial, 11 treatment-naïve meta-
static pancreatic cancer patients received combination 
gemcitabine + nab-paclitaxel + durvalumab + tremeli-
mumab with the most common grade ≥ 3 AEs being 
hypoalbuminemia (45%), abnormal lipase (45%), anemia 
(36%), fatigue (27%), abnormal white blood cells (27%), 
and hyponatremia (27%). There was 1 patient (9.1%) who 
experienced grade 3 colitis.

Targeted therapies
Preliminary findings from a phase Ib dose-finding trial 
of a PD-1 inhibitor plus PARP inhibitor in patients with 
treatment-refractory advanced solid tumors and demon-
strated the feasibility of this pairing (Table  2) [55]. Fur-
thermore, a PR and prolonged stable disease (SD) of up 
to 281 days were observed in pancreatic cancer patients 
treated with this combination.

Other immune checkpoint inhibitors
Preliminary results from a phase I Japanese trial investi-
gating the oral IDO inhibitor epacadostat and pembroli-
zumab showed a PR thus far in1 pancreatic cancer patient 
out of 15 patients with treatment-refractory advanced 
solid tumors (Table  2) [56]. In the overall cohort, there 
was 1 dose-limiting toxicity (DLT) of grade 4 rhabdomy-
olysis in the epacadostat 100  mg + pembrolizumab arm 
and 12 patients experienced all-grade AEs (80.0%) while 
2 patients (13.3%) had grade 3 liver disorder and grade 4 
rhabdomyolysis (1 each) with the combination.

A recent phase II trial reported preliminary findings 
of modest efficacy with durvalumab and tremelimumab 
in the second-line treatment of metastatic pancreatic 
cancer (Table  2) [57]. There were more grade ≥ 3 treat-
ment-related AEs with combination durvalumab and 
tremelimumab (22%) than single-agent durvalumab 
(6%). Grade ≥ 3 treatment-related AEs seen in the com-
bination arm included diarrhea (9.4%) and fatigue (6.3%), 
while ascites (3.1%), hepatitis (3.1%), and increased lipase 
(3.1%) were among those observed in the monotherapy 
arm. Discontinuation of therapy occurred in 9.4% and 
3.1% of patients in the combination and monotherapy 
arms, respectively.

Fusion proteins
A pilot phase I study demonstrated a PR in 1 patient with 
mismatch repair (MMR) deficiency out of 5 patients with 
pretreated advanced pancreatic cancer using a bifunc-
tional fusion protein of anti-PD-L1 antibody fused to the 
extracellular domain of TGFβ receptor II (TGFβ trap) 
[58]. A maximum-tolerated dose (MTD) was not reached 
at the highest dose level of 20  mg/kg every 2  weeks 
(Table 2).

Discussion
Mechanisms of immune resistance and rational 
combination strategies
The mechanisms underlying the resistance of pancreatic 
cancer to the antitumor immune response have been 
extensively reviewed and are largely attributed to per-
turbations in immune surveillance, the process of immu-
noediting, and immune privilege [13, 59–61]. Although 
pancreatic cancer has been relatively resistant to single-
agent checkpoint blockade when compared to more 
immune sensitive tumors, strategies for overcoming pri-
mary resistance to immunotherapy in pancreatic cancer 
are readily available from investigations in other solid 
tumor types focused on improving the antitumor effi-
cacy of checkpoint blockade through combining various 
therapeutic modalities on a checkpoint inhibitor back-
bone [62–64]. Attractive agents to combine with check-
point inhibitors should, in principle, directly stimulate 
CTLs, inhibit tumor-induced immunosuppressive fac-
tors, inhibit Tregs, and/or activate NK cell activity ideally 
through nonredundant pathways [63]. Here, for exam-
ple, immunochemotherapy has been widely established 
across several tumor types where: (1) gemcitabine can 
increase class I human leukocyte antigen (HLA) expres-
sion, tumor antigen cross-presentation, and selectively 
eliminate MDSCs, (2) docetaxel can decrease immuno-
suppressive MDSCs, (3) paclitaxel can stimulate antigen-
presenting cells and improve cancer cell permeability 
to granzyme B, (4) irinotecan can decrease Tregs and 
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MDSCs, and (5) doxorubicin can promote immunogenic 
cell death, increase cancer cell permeability to granzyme 
B, and enhance antigen presentation by dendritic cells 
[49]. It has been shown, however, that vinorelbine may 
result in a bystander effect or the inadvertent death of 
neighboring immune cells that may interfere with the 
ability to mount an antitumor immune response [65].

Targeting the TME to attenuate immunosuppression, 
induce immunogenic tumor cell death, enhance antigen 
presentation, and/or prolong survival of immune-effector 
cells represents another approach to boost the anticancer 
immune response given the well-established immuno-
suppressive features of the PDAC TME [66]. Vitamin D 
priming may also serve as a potential adjunct to PDAC 
therapy given that the vitamin D receptor is expressed in 
the stroma of human pancreatic tumors and is involved 
in stromal remodeling and increased intratumoral drug 
delivery that may result in tumor volume reduction in 

combination strategies [67]. Furthermore, although 
checkpoint blockade alone is effective in removing 
immune suppression, it potentially does not provide a 
sustaining means for immune activation; strategies on 
priming antitumor immune-effector cells or rescuing 
dysfunctional immune-effector cells are also becoming 
increasingly recognized concepts to further improve the 
efficacy of checkpoint inhibitors in pancreatic cancer [11, 
62, 68].

Indeed, a growing body of preclinical evidence sup-
ports the incorporation of checkpoint inhibitors in com-
bination strategies with systemic therapies that address 
several pathways contributing to the immune resistance 
of pancreatic cancer (Fig.  1). For example, combination 
regimens incorporating checkpoint blockade have been 
shown to: (1) decrease TAMs and reprogram TAMs to 
promote antigen presentation and antitumor T-cell activ-
ity, (2) increase CD8+ TILs, decrease CD4+Foxp3+ 

MHC

TCR

PDAC cell
PD-L1
CTLA-4

PD-1
B7

T-cells

MDSCs

APCs
MHC

TCR

↑IFN-γ
↑IL-2
↑TNF-α

TAMs
↓TAMs
↓CD11b+ cells 
↑Reprogram TAMs 
to increase antigen 
presentation

Tregs

↓CD4+Foxp3+ Tregs
↑effector T-cell/Treg ratio

↑CD8+ TILs
↑Th1 cells

↓MDSCs
↓fibrosis

↓H3K4 trimethylation
↓JAK/STAT signaling
↓MAPK signaling

Fig. 1 Mechanisms of immune resistance to checkpoint blockade in pancreatic cancer. Preclinical evidence supports that combinatorial strategies 
incorporating checkpoint inhibitors can attenuate primary and acquired resistance to checkpoint blockade through multiple tumor cell-intrinsic 
and tumor cell-extrinsic mechanisms. For example, targeting of H3K4 trimethylation, JAK/STAT signaling, and mitogen-activated protein kinase 
(MAPK) signaling mitigates tumor cell-intrinsic upregulation of PD-L1 expression. Combination regimens with checkpoint blockade can also 
target tumor cell-extrinsic mechanisms of immune resistance by decreasing tumor-associated macrophages (TAMs) or reprogramming TAMs 
to increase antigen presentation and antitumor T-cell activity. MDSCs myeloid-derived suppressor cells, APCs antigen-presenting cells, MHC 
major histocompatibility complex, TCR  T-cell antigen receptor, PD-1 programmed cell death protein 1 receptor, B7 B7 family of ligands, TILs 
tumor-infiltrating lymphocytes, PD-L1 programmed death ligand 1, CTLA-4 cytotoxic T-lymphocyte associated protein 4, IFNγ interferon-γ, IL-2 
interleukin 2, TNF-α tumor necrosis factor alpha, Tregs regulatory T-cells
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Tregs, and improve effector T-cell/Treg ratios in tumors 
often associated with increased IL-2 and IFN-γ produc-
tion and a Th1 phenotype, (3) upregulate PD-L1 and 
CTLA-4 on PDAC cells, (4) decrease numbers of  CD11b+ 
cells with transition of intratumoral macrophages 
towards an M1-like phenotype, and (5) overcome the 
fibrotic and immunosuppressive TME of PDAC, while 
altogether producing enhanced antitumor activity when 
compared to controls [17, 18, 28, 34, 38, 39]. Notably, 
these studies fall into the same category as the over-
whelming number of preclinical and clinical studies to 
date that have investigated the ability of combination 
regimens incorporating to PD-1/PD-L1/CTLA-4 inhibi-
tors to target primary resistance or improve response to 
checkpoint blockade in pancreatic cancer (Tables  1 and 
2). There is a small but relevant number of studies that 
have highlighted the potential for combination strate-
gies with checkpoint inhibitors to target acquired resist-
ance or prevent recurrence through the ability to induce 
immunologic memory to subsequent tumor rechallenge 
and reverse resistance to single-agent checkpoint block-
ade across several preclinical PDAC mouse models [39, 
41–43].

Candidates for combinations with immune checkpoint 
inhibitors
Based on the above rationale, a roadmap for partnering 
of therapeutic modalities with PD-1, PD-L1, and CTLA-4 
inhibitors can be broadly conceptualized to strategies 
that can: (1) convert non-T-cell inflamed or immuno-
logically “cold” tumors to T-cell inflamed or immunologi-
cally “hot” tumors and (2) enhance or rescue responses 
achieved with single-agent checkpoint blockade [69]. For 
the first approach that is essentially targeting primary 
resistance, evidence exists for vaccines, oncolytic viruses, 
immune cell co-stimulatory agonists (CD137 (4-1BB), 
CD134 (OX40), glucocorticoid-induced TNF receptor 
(GITR), and CD40), adoptive T-cell therapies and chi-
meric antigen receptor (CAR) T-cells, chemotherapy, 
RT, and targeted therapies as candidate agents for com-
bination in this category [69]. The combination of RT 
and checkpoint blockade, in particular, is being explored 
extensively in clinical trials across numerous tumor 
types given the ability of RT to prime antitumor T-cell 
responses; the development of this combination as can-
cer therapy has been extensively reviewed elsewhere [70]. 
For the second approach that can target acquired resist-
ance, inhibitors of other immunosuppressive molecules 
or immune checkpoints such as IDO, TGFβ inhibitors, 
angiogenesis inhibitors, and Treg depletion represent 
potential candidates for combination with anti-PD-1/
PD-L1/CTLA-4 antibodies [69].

Translation into clinical settings: dosing, timing, toxicities, 
and treatment setting
To date, only phase I-II trials have reported out with vari-
ous combination regimens incorporating PD-1, PD-L1, 
and CTLA-4 inhibitors in PDAC patients and overall, 
they have shown modest efficacy that certainly repre-
sent improvements over the dismal response rates seen 
in clinical trials of single-agent checkpoint blockade in 
advanced PDAC (Table  2) [6–9]. However, combination 
therapies with checkpoint inhibitors in pancreatic can-
cer are still in early phases of clinical development and 
there are no large, randomized phase III trials for com-
parison to current treatment standards. Nevertheless, 
there are several points to consider from current clini-
cal trials investigating combination regimens integrating 
checkpoint blockade in pancreatic cancer that will likely 
inform future studies in this area.

In an early phase I trial investigating the combination 
of first-line tremelimumab and gemcitabine in metastatic 
pancreatic cancer, the pharmacokinetics (PKs) of gemcit-
abine was similar in the absence or presence of tremeli-
mumab at the highest dose level of 15  mg/kg [48]. The 
MTD was full-dose gemcitabine 1000 mg/m2 (weekly for 
3 weeks with 1 week off) and tremelimumab 15 mg/kg on 
day 1 every 84-day cycles. The most common grade 3–4 
treatment-related AE at the MTD was neutropenia (18%) 
and toxicity associated with combination therapy was 
essentially similar to that of tremelimumab monotherapy. 
Several phase I-II trials have since demonstrated the fea-
sibility of adding standard-dose checkpoint inhibitors to 
full-dose gemcitabine and/or nab-paclitaxel in the first- 
and second-line treatment settings in advanced pancre-
atic cancer (Table  2) [49–52, 54]. Immune-related AEs 
have ranged from 5.9% to 47.1% (all grades) with com-
bination chemotherapy and anti-PD-1 or anti-CTLA-4 
therapy [48, 50]. Premedication with intravenous dexa-
methasone 12  mg on the day of chemotherapy infu-
sion was shown to decrease grade 3–4 AEs (2.2 events/
patient) compared to those without premedication (1.1 
events/patient) [50].

Efficacy to combination chemotherapy and checkpoint 
blockade appears to be better in the treatment-naïve set-
ting compared to the second-line setting in advanced 
PDAC, which posits that combination regimens with 
checkpoint inhibitors may be better served when intro-
duced earlier in the treatment sequencing of metastatic 
PDAC regimens [50, 52]. There appears to be increased 
toxicities with greater numbers of agents or thera-
peutic modalities included with checkpoint inhibition 
[52–54]. Recently, the most promising efficacy seen to 
date occurred in a phase II trial investigating the quad-
ruplet regimen of gemcitabine + nab-paclitaxel + dur-
valumab + tremelimumab in treatment-naïve metastatic 
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PDAC with the most common grade ≥ 3 AEs being 
hypoalbuminemia (45%), abnormal lipase (45%), anemia 
(36%), fatigue (27%), abnormal white blood cells (27%), 
and hyponatremia (27%) [54]. In phase I-II trials to date, 
combination chemotherapy with PD-1/PD-L1/CTLA-4 
inhibitors have employed concurrent administration of 
chemotherapy and checkpoint blockade [48–52, 54]. 
In the neoadjuvant treatment of borderline resectable 
PDAC, chemoradiation was also initiated concurrently 
with pembrolizumab in a phase Ib/II trial [53]. There is 
preclinical data to support simultaneous administration 
given that concurrent chemotherapy and PD-L1 blockade 
resulted in CRs that were not seen with delayed anti-PD-
L1 therapy (≥ 14 days after gemcitabine) [4]. Notably, in 
a phase I dose-escalation trial of first-line gemcitabine 
and tremelimumab in metastatic pancreatic cancer, addi-
tion of tremelimumab 1 month after initiation with gem-
citabine showed 0 grade 3–4 AEs of diarrhea compared 
to 2 grade 3–4 AEs of diarrhea in the concurrent ther-
apy group though there was no significant difference in 
events of diarrhea over all cycles between arms (45% vs. 
27%, respectively, p = 0.505) [48].

Phase I-II trials of dual checkpoint blockade or com-
bination immunotherapy with checkpoint blockade 
in previously-treated advanced PDAC have similarly 
shown toxicity profiles typical of the respective agents 
[45, 57]. Specifically, the safety profile of combination 
GVAX + ipilimumab in PDAC patients was similar to 
that of ipilimumab alone in melanoma patients [45]. 
Combination durvalumab and tremelimumab, however, 
had higher grade ≥ 3 AEs (22%) than durvalumab alone 
(6%) leading to more treatment discontinuations (9.4% 
vs. 3.1%) [57]. Although limited by a small sample size 
of 5 patients with pretreated advanced pancreatic can-
cer, treatment with a bifunctional anti-PD-L1 and TGFβ 
receptor II fusion protein was efficacious and well-toler-
ated with a MTD not reached at the highest dose, alto-
gether highlighting the feasibility of multitargeted fusion 
constructs involving checkpoint blockade [58].

A phase Ib investigating ipilimumab vs. ipili-
mumab + GVAX vaccine in gemcitabine-treated locally 
advanced or metastatic PDAC was among the first to 
demonstrate an interesting immuno-oncology concept 
in pancreatic cancer: only in the combination immuno-
therapy arm were delayed SD and radiographic responses 
associated with declines in tumor markers seen, and 2 of 
such cases had localized disease while 1 patient had lung-
only metastases [45]. Furthermore, most patients demon-
strating a response required ≥ 12  weeks of therapy. The 
authors proposed that immunotherapy should be initi-
ated earlier in the treatment course, i.e., locally advanced 
or resected disease, to allow more time to induce immune 
responses as well as produce less immune tolerance given 

a smaller disease burden. Selecting PDAC patients in this 
manner will also allow patients who have better reserve 
more time to recover from immune-related AEs and be 
eligible for retreatment. Indeed, this concept of earlier 
integration of checkpoint blockade and immunotherapy 
in patients with likely lower disease burden has shown 
promising efficacy in the neoadjuvant, consolidative 
(after definitive therapy), and adjuvant settings in other 
tumor types [71–75]. There are several ongoing clini-
cal trials investigating combination systemic therapies 
with checkpoint blockade in the perioperative treatment 
of pancreatic cancer to see if such an immuno-oncol-
ogy approach is beneficial in the non-metastatic setting 
(Table 3).

Biomarkers
Regardless of the treatment setting in the pancreatic can-
cer, biomarkers to guide the optimal selection of candi-
dates for immune checkpoint blockade-based therapies 
are desperately needed for this malignancy. Several meta-
analyses have corroborated the prognostic value of PD-L1 
expression in PDAC patients, however, its utility as a pre-
dictive biomarker for checkpoint inhibitors has yet to 
be as validated as it has been in other tumor types [76, 
77]. Tumors with mismatch repair deficiency (dMMR)/
microsatellite instability (MSI) or high tumor mutation 
burden (TMB) have been shown to respond to check-
point inhibitors though dMMR is relatively rare in PDAC 
(frequency of 0.8%) and pancreatic cancer has among the 
lowest TMB across tumor subtypes [78, 79]. However, 
investigations are ongoing and greater efforts are being 
undertaken to identify novel immuno-oncology bio-
markers in pancreatic cancer. Recent correlation of cyto-
lytic immune activity with mutational, structural, and 
neoepitope features in human PDAC samples has identi-
fied potential genomic signatures predictive of low cytol-
ytic T-cell activity and expression signatures for multiple 
immune checkpoints other than PD-1/PD-L1 predictive 
of high immune cytolytic activity that altogether provide 
impetus for further investigation into therapeutic strat-
egies that target multiple other immune checkpoints in 
pancreatic cancer [80]. An abundant microbiome within 
the pancreatic tumor that is distinct from that of the gut 
has interestingly been shown to promote immunosup-
pression that is characteristic of PDAC; targeting of this 
microbiome reverses tumor immune tolerance and ena-
bles efficacy for checkpoint inhibition-based therapy [81]. 
Continued advances in immuno-oncology biomarker 
development will ideally allow for selection of PDAC 
patients most likely to benefit from checkpoint block-
ade-based therapies based on a comprehensive immune 
profile—an individualized approach that remains a cor-
nerstone to achieving precision immuno-oncology [82].
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Table 3 Ongoing clinical trials investigating combination regimens incorporating systemic therapies and  immune 
checkpoint inhibitors in pancreatic cancer

Study/phase n 
(patients 
needed)

Setting Regimen Primary outcome

NCT02648282/phase II 54 Locally advanced CY + GVAX + PD-1 + SBRT Distant metastasis free survival

NCT02451982/phase I/II 50 Neoadjuvant/adjuvant CY/GVAX vs. CY/GVAX + nivolumab Median IL17A expression

NCT03190265/phase II 63 Metastatic Nivolumab/ipilimumab/CRS-
207 + CY/GVAX vs. Nivolumab/
ipilimumab/CRS-207

ORR

NCT03168139/phase I/II 20 Metastatic Olaptesed pegol + pembrolizumab Pharmacodynamics + safety

NCT03161379/phase II 50 Neoadjuvant CY/GVAX + nivolumab + SBRT Pathologic complete response

NCT03006302/phase II 70 Metastatic Epacadostat/pembrolizumab/CRS-
207 + CY/GVAX vs. Epacadostat/
pembrolizumab/CRS-207

Recommended Dose of Epaca-
dostat + 6 Month Survival

NCT03481920/phase I 24 Locally advanced/metastatic Pegylated Hyaluronidase + avelumab ORR + safety

NCT02734160/phase I 37 Metastatic Galunisertib + durvalumab DLT

NCT02983578/phase II 75 Locally advanced/metastatic AZD9150 (antisense STAT3) + dur-
valumab

Disease Control Rate

NCT03451773/phase Ib/II 41 Locally advanced/metastatic M7824 (TGF-beta + PD-L1 inhibi-
tor) + gemcitabine

Safety and tolerability

NCT02403271/phase Ib/II 124 Locally advanced/metastatic Ibrutinib + durvalumab ORR + safety and tolerability

NCT01896869/phase II 92 Metastatic Ipilimumab + vaccine vs. FOLFIRINOX OS

NCT02451982/phase I/II 50 Neoadjuvant/adjuvant CY (day 0) + GVAX (day 1 and 
6–10 days after surgery ×4 + adju-
vant CRT vs. CY (day 0) + GVAX (day 
1 and 6–10 weeks after surgery 
×4 + nivolumab (day 0 and 
6–10 weeks after surgery)

Median IL17A expression

NCT02548169/phase I 20 Neoadjuvant Arm A: Dendritic cell vaccine + stand-
ard of care chemotherapy

Arm B: Dendritic cell vaccine + stand-
ard of care chemotherapy in 
metastatic disease

Safety and feasibility

NCT02243371/phase II 96 Metastatic Arm A: CRS-207 + GVAX + nivolumab
Arm B: CRS-207 + GVAX

OS

NCT02268825/phase I 39 Locally advanced/metastatic Pembrolizumab + FOLFOX Safety

NCT02303990/phase I 70 Locally advanced/metastatic Pembrolizumab + RT Adverse events

NCT02930902/phase Ib 30 Neoadjuvant Pembrolizumab + paricalcitol vs. 
pembrolizumab + paricalcitol & 
standard chemo

Toxicity profile, Number of Tumor 
Infiltrating Lymphocytes

NCT03264404/phase II 31 Locally advanced/metastatic Pembrolizumab + azacitadine PFS

NCT02907099/phase II 15 Metastatic BL-8040 + pembrolizumab ORR

NCT02648282/phase II 54 Locally advanced CY + GVAX + pembrolizumab + SBRT Distant Metastasis Free Survival

NCT02546531/phase I 50 Locally advanced Dose escalation and expan-
sion: defactinib + pembroli-
zumab + gemcitabine

Recommended phase II dose

NCT02758587Phase I/II 59 Locally advanced Defactinib + pembrolizumab Adverse events

NCT03519308/phase I 20 Perioperative nivolumab + nab-paclitaxel + gemcit-
abine + paricalcitol vs. nivolumab 
vs. nab-paclitaxel vs. gemcitabine

Adverse events

NCT03336216/phase II 160 Locally advanced/metastatic Arm A: Gemcitabine/nab-paclitaxel or 
5-fluorouracil/leucovorin/irinotecan

Arm B: Cabiralizumab and nivolumab
Arm C: cabiralizumab/

nivolumab + gemcitabine/abraxane
Arm D: cabiralizumab/

nivolumab + oxaliplatin/5- fluoro-
uracil/leucovorin

PFS
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Conclusion
Despite the dismal activity of single-agent check-
point blockade in pancreatic cancer, PD-1, PD-L1, and 
CTLA-4 inhibitors have shown broad antitumor activ-
ity as single agents in other tumor types and a relatively 
tolerable toxicity profile rendering them attractive 
agents to combine with systemic therapy. Indeed, there 
is a growing body of early clinical evidence to suggest 
the feasibility and efficacy in combining checkpoint 
blockade with other forms of systemic therapy in pan-
creatic cancer. Although phase I-II data support the 

concurrent administration of standard-dose checkpoint 
blockade with full-dose systemic therapies includ-
ing chemotherapy, there remains several questions 
on dosing, timing, toxicity, and patient selection for 
checkpoint inhibitor-based combination therapies in 
pancreatic cancer that warrant further prospective vali-
dation. Results from ongoing clinical trials investigat-
ing combination strategies with checkpoint blockade in 
pancreatic cancer are eagerly awaited and will hopefully 
provide answers to many looming questions in this 
arena (Table 3).

Table 3 (continued)

Study/phase n 
(patients 
needed)

Setting Regimen Primary outcome

NCT03104439/phase II 80 MSI/MSS Nivolumab + ipilimumab + RT Disease control rate

NCT03214250/phase Ib/II 105 Metastatic Arm A: Gemcitabine + nab-pacli-
taxel + nivolumab

Arm B: Gemcitabine + nab-pacli-
taxel + APX005M (CD40 agonistic 
monoclonal antibody)

Arm C: Gemcitabine + nab-pacli-
taxel + nivolumab + APX005 M

Adverse events, OS

NCT03404960/phase 1b/II 84 Locally advanced/metastatic Niraparib + nivolumab PFS

NCT03184870/phase I/II 260 Metastatic Arm A: BMS-813160 + 5-fluorouracil 
(5-FU) + leucovorin + irinotecan

Arm B: BMS-813160 + nab/pacli-
taxel + gemcitabine

Arm C: BMS-813160 + nivolumab
Arm D: BMS-813160

Adverse events, death, ORR, PFS

NCT03250273/phase II 54 Metastatic Entinostat + nivolumab ORR

NCT02754726/phase II 10 Metastatic Nivolumab + paclitaxel + paricalci-
tol + cisplatin + gemcitabine

Complete response rate

NCT03373188/phase I 32 Neoadjuvant Arm A: surgery only
Arm B: VX15/2503 (anti-SEMA4D 

monoclonal antibody) + surgery
Arm C: VX15/2503 + ipili-

mumab + surgery
Arm D: VX15/2503 + nivolumab + sur-

gery

Tumor CD8 + T cell infiltration between 
treatment groups

NCT03098550/phase I/II 120 Locally advanced/metastatic Nivolumab + daratumumab Tolerability

NCT02777710/phase I 58 Locally advanced/metastatic Pexidartinib + durvalumab Dose limiting toxicities, ORR

NCT02866383/phase II 80 Metastatic Arm A: Nivolumab + RT
Arm B: Nivolumab + ipilimumab + RT

Clinical benefit rate

NCT03098160/phase I 69 Locally advanced/metastatic Evofosfamide + Ipilimumab Recommended phase II dose

NCT02879318/phase II 180 Metastatic Arm A: Gemcitabine + nab-paclitaxel
Arm B: Gemcitabine + nab-pacli-

taxel + durvalumab + tremeli-
mumab

OS

NCT02658214/phase Ib 42 Locally advanced/metastatic Durvalumab + tremelimumab + nab-
paclitaxel + gemcitabine

Adverse events, tumor assessment, 
laboratory findings

PD-1 programmed cell death protein 1 receptor, PD-L1 programmed death ligand 1, CTLA-4 cytotoxic T-lymphocyte associated protein 4, CY cyclophosphamide, 
ORR objective response rate, DLT dose-limiting toxicities, FOLFIRINOX folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin, OS overall survival, GVAX GVAX, 
allogeneic pancreatic tumor cells transfected with granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, SBRT stereotactic body radiation therapy, TGF 
transforming growth factor, FOLFOX 5-fluorouracil, folinic acid, and oxaliplatin, PFS progression-free survival, MSI/MSS microsatellite instability/microsatellite stable, RT 
radiotherapy
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lymphocytes; TMB: tumor mutation burden; TME: tumor microenvironment; 
TNF: tumor necrosis factor alpha; Tregs: regulatory T-cells.

Authors’ contributions
Conception and design: JG. Data collection and interpretation: All authors. 
Writing and editing: All authors. Approval of final manuscript: All authors. All 
authors read and approved the final manuscript.

Author details
1 Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 
8700 Beverly Blvd, AC 1042C, Los Angeles, CA 90048, USA. 2 Department 
of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 
1023, Los Angeles, CA 90048, USA. 3 Department of Internal Medicine, Harbor-
UCLA Medical Center, 1000 W Carson St, Box 400, Torrance, CA 90509, USA. 
4 Department of Internal Medicine, Division of Hematology and Oncology, UC 
Davis Comprehensive Cancer Center, 4501 X Street, Ste 3016, Sacramento, CA 
95817, USA. 5 Department of Medical Oncology, City of Hope National Medical 
Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA 91010, USA. 6 Medical Oncology 
and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 
Building 51, Room 101, 1500 E Duarte St, Duarte, CA 91010, USA. 

Acknowledgements
None.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 August 2018   Accepted: 24 September 2018

References
 1. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 

and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehen-
sive review of registration trials and future considerations. J Immunother 
Cancer 6:8

 2. Geng L, Huang D, Liu J, Qian Y, Deng J, Li D et al (2008) B7-H1 up-regu-
lated expression in human pancreatic carcinoma tissue associates with 
tumor progression. J Cancer Res Clin Oncol 134:1021–1027

 3. Loos M, Giese NA, Kleeff J, Giese T, Gaida MM, Bergmann F et al (2008) 
Clinical significance and regulation of the costimulatory molecule B7-H1 
in pancreatic cancer. Cancer Lett 268:98–109

 4. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clin-
ical significance and therapeutic potential of the programmed death-1 
ligand/programmed death-1 pathway in human pancreatic cancer. Clin 
Cancer Res 13:2151–2157

 5. Okudaira K, Hokari R, Tsuzuki Y, Okada Y, Komoto S, Watanabe C et al 
(2009) Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a 
mouse pancreatic cancer model. Int J Oncol 35:741–749

 6. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) 
Safety and activity of anti-PD-L1 antibody in patients with advanced 
cancer. N Engl J Med 366:2455–2465

 7. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al 
(2014) Predictive correlates of response to the anti-PD-L1 antibody 
MPDL3280A in cancer patients. Nature 515:563–567

 8. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram 
M et al (2015) Phase I study of pembrolizumab (MK-3475; anti-PD-1 
monoclonal antibody) in patients with advanced solid tumors. Clin 
Cancer Res 21:4286–4293

 9. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al 
(2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally 
advanced or metastatic pancreatic adenocarcinoma. J Immunother 
33:828–833

 10. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to 
immune checkpoint inhibitors. Br J Cancer 118:9–16

 11. Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunother-
apy for pancreatic cancer. Cancer Lett 381:244–251

 12. Knudsen ES, Vail P, Balaji U, Ngo H, Botros IW, Makarov V et al (2017) Strati-
fication of pancreatic ductal adenocarcinoma: combinatorial genetic, 
stromal, and immunologic markers. Clin Cancer Res 23:4429–4440

 13. Sahin IH, Askan G, Hu ZI, O’Reilly EM (2017) Immunotherapy in pancreatic 
ductal adenocarcinoma: an emerging entity? Ann Oncol 28:2950–2961

 14. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and 
acquired resistance to cancer immunotherapy. Cell 168:707–723

 15. Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters 
K et al (2018) Perioperative, spatiotemporally coordinated activation 
of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 
78:475–488

 16. Bozeman EN, Gao N, Qian W, Wang A, Yang L (2015) Synergistic effect 
of targeted chemotherapy delivery using theranostic nanoparticles 
and PD-L1 blockade in an orthotopic mouse pancreatic cancer model 
[abstract]. Cancer Immunol Res 3:Abstr nr A60

 17. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J et al (2014) 
CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and 
improves response to T-cell checkpoint immunotherapy in pancreatic 
cancer models. Cancer Res 74:5057–5069

 18. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) 
Targeting focal adhesion kinase renders pancreatic cancers responsive to 
checkpoint immunotherapy. Nat Med 22:851–860

 19. Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME et al (2017) The 
MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer 
immune evasion. J Natl Cancer Inst. https ://doi.org/10.1093/jnci/djw12 83

 20. Iorio V, Rosati A, D’Auria R, De Marco M, Marzullo L, Basile A et al (2018) 
Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage 
infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer. 
Gut 67:780–782

 21. Lu C, Talukder A, Savage NM, Singh N, Liu K (2017) JAK-STAT-mediated 
chronic inflammation impairs cytotoxic T lymphocyte activation to 
decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Onco-
immunology 6:e1291106

 22. Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K et al 
(2017) Myeloid cells are required for PD-1/PD-L1 checkpoint activation 

https://doi.org/10.1093/jnci/djw1283


Page 15 of 16Gong et al. Clin Trans Med  (2018) 7:32 

and the establishment of an immunosuppressive environment in pancre-
atic cancer. Gut 66:124–136

 23. Smith JP, Wang S, Nadella S, Jablonski SA, Weiner LM (2018) Cholecys-
tokinin receptor antagonist alters pancreatic cancer microenvironment 
and increases efficacy of immune checkpoint antibody therapy in mice. 
Cancer Immunol Immunother 67:195–207

 24. Gonda TA, Tycko B, Salas MC, Do C, Fang J, Olive KP (2017) Combination 
therapy with a hypomethylating drug (decitabine) plus an immune 
checkpoint inhibitor (anti-PD-1H) in the KPC mouse model of pancreatic 
cancer [abstract]. Gastroenterology 152:Abstr nr 149

 25. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, 
Luddy K et al (2016) Neutralization of tumor acidity improves antitumor 
responses to immunotherapy. Cancer Res 76:1381–1390

 26. Ibrahim-Hashim AA, Abrahams D, Xu L, Centeno B, Sunassee E, Abd-
delgader R et al (2017) Targeting tumor acidity with the LDHA inhibitor 
(FX11) and CAIX inhibitor (DH348) overcomes resistance to PD-1 
blockade and inhibits metastasis in a pancreatic cancer model [abstract]. 
Cancer Res 77:Abstr nr 5932

 27. Rosengren S, Clift R, Zimmerman SJ, Souratha J, Thompson BJ, Blouw 
B et al (2016) PEGylated recombinant hyaluronidase PH20 (PEGPH20) 
enhances checkpoint inhibitor efficacy in syngeneic mouse models of 
cancer [abstract]. Cancer Res 76:Abstr nr 4886

 28. Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y et al (2015) PD-1/
PD-L1 blockade together with vaccine therapy facilitates effector T-cell 
infiltration into pancreatic tumors. J Immunother 38:1–11

 29. Kim V, Foley K, Soares K, Rucki A, Lauer P, Brockstedt D et al (2016) 
Sequential treatment with a listeria-based vaccine and PD-1 blockade 
antibody improves survival in a murine model of pancreatic ductal 
adenocarcinoma [abstract]. HPB 18:Abstr nr FP13-06

 30. Zheng W, Skowron KB, Namm JP, Burnette B, Fernandez C, Arina A et al 
(2016) Combination of radiotherapy and vaccination overcomes check-
point blockade resistance. Oncotarget 7:43039–43051

 31. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the 
tumor microenvironment. Science 348:74–80

 32. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al (2013) 
Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts 
synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc 
Natl Acad Sci U S A 110:20212–20217

 33. Miao L, Li J, Liu Q, Feng R, Das M, Lin CM et al (2017) Transient and local 
expression of chemokine and immune checkpoint traps to treat pancre-
atic cancer. ACS Nano 11:8690–8706

 34. Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S 
et al (2018) IL-6 and PD-L1 antibody blockade combination therapy 
reduces tumour progression in murine models of pancreatic cancer. Gut 
67:320–332

 35. Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al (2017) Regulatory B 
cells induced by pancreatic cancer cell-derived interleukin-18 pro-
mote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 
9:14803–14814

 36. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L et al 
(2016) CXCR2 inhibition profoundly suppresses metastases and aug-
ments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 
29:832–845

 37. Janson C, Jung H, Ertl L, Liu S, Dang T, Zeng Y et al (2017) Inhibition of 
CCR2 potentiates checkpoint inhibitor immunotherapy in murine model 
of pancreatic cancer [abstract]. Cancer Res 77:Abstr nr 5655

 38. Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L et al (2018) 
Targeting cytokine therapy to the pancreatic tumor microenvironment 
using PD-L1-specific VHHs. Cancer Immunol Res 6:389–401

 39. Kobold S, Grassmann S, Chaloupka M, Lampert C, Wenk S, Kraus F et al 
(2015) Impact of a new fusion receptor on PD-1-mediated immuno-
suppression in adoptive T cell therapy. J Natl Cancer Inst. https ://doi.
org/10.1093/jnci/djv11 46

 40. Rataj F, Kraus F, Grassmann S, Chaloupka M, Ogonek J, Zhang J et al (2018) 
Preclinical characterization of a PD-1-CD28 fusion receptor in CD4+ 
T cells for T cell-based immunotherapy of pancreatic cancer and Non-
Hodgkin Lymphoma [abstract]. Eur J Cancer 92:Abstr nr A7

 41. Luheshi NM, Coates-Ulrichsen J, Harper J, Mullins S, Sulikowski MG, 
Martin P et al (2016) Transformation of the tumour microenvironment by 
a CD40 agonist antibody correlates with improved responses to PD-L1 

blockade in a mouse orthotopic pancreatic tumour model. Oncotarget 
7:18508–18520

 42. Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL et al 
(2015) Induction of T-cell immunity overcomes complete resistance to 
PD-1 and CTLA-4 blockade and improves survival in pancreatic carci-
noma. Cancer Immunol Res 3:399–411

 43. Mehla K, Tremayne J, Grunkemeyer JA, O’Connell KA, Steele MM, Caffrey 
TC et al (2018) Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC 
inhibits tumor progression and prolongs survival of MUC1.Tg mice 
challenged with pancreatic tumors. Cancer Immunol Immunother 
67:445–457

 44. Mihailidou C, Papakotoulas P, Schizas D, Papalampros A, Vailas M, Felek-
ouras E et al (2017) Effect of ciclopirox olamine in immunotherapy effect 
by stimulating immunogenic cell death in pancreatic cancer [abstract]. 
Ann Oncol 28:Abstr nr 74P

 45. Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S et al (2013) Evaluation 
of ipilimumab in combination with allogeneic pancreatic tumor cells 
transfected with a GM-CSF gene in previously treated pancreatic cancer. J 
Immunother 36:382–389

 46. Nesselhut J, Marx D, Cillien N, Lange H, Regalo G, Herrmann M et al (2015) 
Dendritic cells generated with PDL-1 checkpoint blockade for treatment 
of advanced pancreatic cancer [abstract]. J Clin Oncol 33:Abstr nr 4128

 47. Nesselhut J, Marx D, Lange H, Regalo G, Cillien N, Chang RY et al (2016) 
Systemic treatment with anti-PD-1 antibody nivolumab in combination 
with vaccine therapy in advanced pancreatic cancer [abstract]. J Clin 
Oncol 34:Abstr nr 3092

 48. Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalà C et al 
(2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in 
combination with gemcitabine in chemotherapy-naive patients with 
metastatic pancreatic cancer. Ann Oncol 25:1750–1755

 49. Weiss GJ, Waypa J, Blaydorn L, Coats J, McGahey K, Sangal A et al (2017) 
A phase Ib study of pembrolizumab plus chemotherapy in patients with 
advanced cancer (PembroPlus). Br J Cancer 117:33–40

 50. Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E 
et al (2018) Phase Ib/II study of gemcitabine, nab-paclitaxel, and pem-
brolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs 
36:96–102

 51. Kalyan A, Kircher SM, Mohindra NA, Nimeiri HS, Maurer V, Rademaker A 
et al (2016) Ipilimumab and gemcitabine for advanced pancreas cancer: a 
phase Ib study [abstract]. J Clin Oncol 34:Abstr nr e15747

 52. Wainberg ZA, Hochster HS, George B, Gutierrez M, Johns ME, Chiorean EG 
et al (2017) Phase I study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± 
gemcitabine (Gem) in solid tumors: Interim results from the pancreatic 
cancer (PC) cohorts [abstract]. J Clin Oncol 35:Abstr nr 412

 53. Katz MHG, Varadhachary GR, Bauer TW, Acquavella N, Merchant NB, Le 
TM et al (2017) Preliminary safety data from a randomized multicenter 
phase Ib/II study of neoadjuvant chemoradiation therapy (CRT) alone 
or in combination with pembrolizumab in patients with resectable or 
borderline resectable pancreatic cancer [abstract]. J Clin Oncol 35:Abstr 
nr 4125

 54. Renouf DJ, Dhani NC, Kavan P, Jonker DJ, Chia-chi Wei A, Hsu T et al (2018) 
The Canadian Cancer Trials Group PA.7 trial: results from the safety run in 
of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel 
(Nab-P) versus GEM, nab-P, durvalumab (D), and tremelimumab (T) 
as first-line therapy in metastatic pancreatic ductal adenocarcinoma 
(mPDAC) [abstract]. J Clin Oncol 36:Abstr nr 349

 55. Friedlander M, Meniawy T, Markman B, Mileshkin LR, Harnett PR, Millward 
M et al (2017) A phase 1b study of the anti-PD-1 monoclonal antibody 
BGB-A317 (A317) in combination with the PARP inhibitor BGB-290 (290) 
in advanced solid tumors [abstract]. J Clin Oncol 35:Abstr nr 3013

 56. Fujiwara Y, Shitara K, Shimizu T, Yonemori K, Matsubara N, Ohno I et al 
(2018) INCB024360 (Epacadostat) monotherapy and in combination with 
pembrolizumab in patients with advanced solid tumors: primary results 
from first-in-Japanese phase I study (KEYNOTE-434) [abstract]. Mol Cancer 
Ther 17:Abstr nr A204

 57. O’Reilly EM, Oh D, Dhani N, Renouf DJ, Lee MA, Sun W et al (2018) A 
randomized phase 2 study of durvalumab monotherapy and in combina-
tion with tremelimumab in patients with metastatic pancreatic ductal 
adenocarcinoma (mPDAC): ALPS study [abstract]. J Clin Oncol 36:Abstr nr 
217

https://doi.org/10.1093/jnci/djv1146
https://doi.org/10.1093/jnci/djv1146


Page 16 of 16Gong et al. Clin Trans Med  (2018) 7:32 

 58. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z et al (2018) Phase 
I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting 
PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res 24:1287–1295

 59. Banerjee K, Kumar S, Ross KA, Gautam S, Poelaert B, Nasser MW et al 
(2018) Emerging trends in the immunotherapy of pancreatic cancer. 
Cancer Lett 417:35–46

 60. Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B et al (2018) Immu-
notherapy for pancreatic cancer: a long and hopeful journey. Cancer Lett 
425:143–151

 61. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X et al (2017) PD-1/PD-L1 
and immunotherapy for pancreatic cancer. Cancer Lett 407:57–65

 62. Chowdhury PS, Chamoto K, Honjo T (2018) Combination therapy strate-
gies for improving PD-1 blockade efficacy: a new era in cancer immuno-
therapy. J Intern Med 283:110–120

 63. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immu-
notherapy and new immunomodulatory targets. Nat Rev Drug Discov 
14:561–584

 64. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer 
therapy: toward combination strategies with curative potential. Cell 
161:205–214

 65. Thomas-Schoemann A, Lemare F, Mongaret C, Bermudez E, Chéreau 
C, Nicco C et al (2011) Bystander effect of vinorelbine alters antitumor 
immune response. Int J Cancer 129:1511–1518

 66. Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer 
immunotherapies tailored to the tumour microenvironment. Nat Rev Clin 
Oncol 13:143–158

 67. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H et al (2014) 
Vitamin D receptor-mediated stromal reprogramming suppresses pan-
creatitis and enhances pancreatic cancer therapy. Cell 159:80–93

 68. Vonderheide RH (2018) The immune revolution: a case for priming, not 
checkpoint. Cancer Cell 33:563–569

 69. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combina-
tion immunotherapy: a road map. J Immunother Cancer 5:16

 70. Gong J, Le TQ, Massarelli E, Hendifar AE, Tuli R (2018) Radiation therapy 
and PD-1/PD-L1 blockade: the clinical development of an evolving 
anticancer combination. J Immunother Cancer. https ://doi.org/10.1186/
s4042 5-40018 -40361 -40427 

 71. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) 
Durvalumab after chemoradiotherapy in stage III non-small-cell lung 
cancer. N Engl J Med 377:1919–1929

 72. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD 
et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl 
J Med 378:1976–1986

 73. Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL et al 
(2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV 
melanoma. N Engl J Med 377:1824–1835

 74. Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, 
Schmidt H et al (2015) Adjuvant ipilimumab versus placebo after 
complete resection of high-risk stage III melanoma (EORTC 18071): a 
randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530

 75. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S 
et al (2018) Adjuvant pembrolizumab versus placebo in resected stage III 
melanoma. N Engl J Med 378:1789–1801

 76. Gao HL, Liu L, Qi ZH, Xu HX, Wang WQ, Wu CT et al (2018) The clinico-
pathological and prognostic significance of PD-L1 expression in pancre-
atic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int 17:95–100

 77. Zhuan-Sun Y, Huang F, Feng M, Zhao X, Chen W, Zhu Z et al (2017) 
Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence 
from a meta-analysis. Onco Targets Ther 10:5005–5012

 78. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R et al 
(2017) Comprehensive analysis of hypermutation in human cancer. Cell 
171:1042–1056

 79. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E et al 
(2018) Evaluating mismatch repair deficiency in pancreatic adenocarci-
noma: challenges and recommendations. Clin Cancer Res 24:1326–1336

 80. Balli D, Rech AJ, Stanger BZ, Vonderheide RH (2017) Immune cytolytic 
activity stratifies molecular subsets of human pancreatic cancer. Clin 
Cancer Res 23:3129–3138

 81. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A et al 
(2018) The pancreatic cancer microbiome promotes oncogenesis by 
induction of innate and adaptive immune suppression. Cancer Discov 
8:403–416

 82. Zhang J, Wolfgang CL, Zheng L (2018) Precision immuno-oncology: pros-
pects of individualized immunotherapy for pancreatic cancer. Cancers 
(Basel). https ://doi.org/10.3390/cance rs100 20039 

https://doi.org/10.1186/s40425-40018-40361-40427
https://doi.org/10.1186/s40425-40018-40361-40427
https://doi.org/10.3390/cancers10020039

	Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade
	Abstract 
	Introduction
	Search criteria
	Preclinical evidence
	Chemotherapy
	Targeted therapies
	Tumor microenvironment
	Vaccines
	Cytokines and chemokines
	Adoptive T-cell therapy
	Immune costimulatory proteins and immunostimulants

	Prospective clinical trials
	Vaccines
	Chemotherapy
	Targeted therapies
	Other immune checkpoint inhibitors
	Fusion proteins

	Discussion
	Mechanisms of immune resistance and rational combination strategies
	Candidates for combinations with immune checkpoint inhibitors
	Translation into clinical settings: dosing, timing, toxicities, and treatment setting
	Biomarkers

	Conclusion
	Authors’ contributions
	References




