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PERSPECTIVE

Cancer; an induced disease of twentieth 
century! Induction of tolerance, increased 
entropy and ‘Dark Energy’: loss of biorhythms 
(Anabolism v. Catabolism)
Mahin Khatami* 

Abstract 

Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/
cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We 
defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effec-
tive immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing 
diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical 
establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vac-
cines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) 
in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, 
modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2–3 generations are 
sicker than previous generations at same age. American health status ranks last among other developed nations while 
America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is 
an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge 
corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is 
only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang 
of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, 
wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccina-
tion with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. 
Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick 
society. Outcome failure rates of claimed ‘targeted’ drugs, ‘precision’ or ‘personalized’ medicine are 90% (± 5) for solid 
tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific 
vaccines and ingredients are ‘antigen overload’ for immune system, skewing the Yin and Yang response profiles and 
leading to induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders. Induction of decoy or pattern recognition 
receptors (e.g., PRRs), such as IRAK-M or IL-1dRs (‘designer’ molecules) and associated genomic instability and over-
expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to 
immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth 
requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells 
through epithelial–mesenchymal-transition and create “dual negative feedback loop” that influence tissue metabolism 
under hypoxic conditions. It is further hypothesized that induction of tolerance creates ‘dark energy’ and increased 
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Introduction

The world will not be destroyed by those who do evil, 
but by those who watch and do nothing. Albert Ein-
stein.

Maintenance of human health is the result of an amaz-
ingly harmonious, synchronized and autonomous neuro-
physiological status of body. Health of an adult depends 
on the reciprocal interactions of positive and negative 
biological feedback control mechanisms (biological 
clocks, circadian biorhythms) between and among the 
immune-vascular-metabolic-genomic-hormonal-neu-
ronal (sympathetic and parasympathetic) pathways that 
constitute effective immunity (biological laws) for pre-
venting diseases including cancer. As early as the nine-
teenth century, Paul Ehrlich using the newly invented 
microscope made fundamental observations that cancer 
cells are destroyed by immune/inflammatory cells [1]. 
Furthermore, over a century ago, Peyton Rous through 
a series of careful and pioneering studies demonstrated 
that filterable viruses induce cancer; thus the establish-
ment of the field of virology [2]. Later on in 1957, Sir 
McFarland Burnet conceptualized the important theory 
of immune surveillance, the protection of body against 
all unwanted elements including the control of cancer 
growth [3]. Burnet theory was based on evaluation and 
integration of a wide range of available data on cellular 
and molecular biology, embryology and pathology [3]. 
In 1986, Dvorak proposed that tumors are wounds that 
do not heal [4]. Furthermore, the analyses of accidental 
discoveries that Khatami et  al. established in 1980s on 
experimental models of ocular inflammatory diseases, 
are the only series of direct evidence for an association 

between inflammation and time-course kinetics of induc-
tion of identifiable altered phases of immune response 
profiles toward multistep tumorigenesis and angiogenesis 
(see below) [5].

These and related fundamental observations and dis-
coveries that stood the test of time have been practically 
ignored and minimized or rejected by the decision mak-
ers in cancer/medical establishment.1 In this perspective, 
the author attempted to analyze, integrate data and iden-
tify relevant knowledge gaps on diverse topics of cancer 
sciences toward a roadmap. The goal was to briefly pre-
sent evidence that cancer is an induced disease of the 
twentieth century, facilitated by medical/cancer estab-
lishment for huge corporate profits ever since the Ameri-
can public was allowed to consume virus-contaminated 
polio vaccines in 1955s/1960s. Weakened immunity of 
public has been reinforced by other pathogen-specific 
vaccines (e.g., Swine flu, hepatitis B or C, measles, 
anthrax, meningitis, HPV or even BCG) including vac-
cines ingredients/adjuvants (e.g., mercury, aluminum, 
l-histidine, recombinant DNA, embryonic serum), which 
are ‘antigen overload’ for the immune system to clear. In 
the last few decades, public has additionally been exposed 
to a wide range of environmental hazards [e.g., smoking, 

1  Cancer/Medical establishment is referred to the most powerful decision 
making group within the Government (NIH/NCI-FDA-CDC-DHHS), Big 
pharma, major organizations (AACR, ACS, ASCO, AMA), cancer research 
and treatment centers, major medical schools. Members of establishment 
(5–10 × 103) with carrier longevity of 35–65  years are decision makers 
in charge of research directions, publicity and funding. The temporary or 
permanent handlers of establishment (directors of institutes, divisions or 
departments, deputies and staff (30–100 × 103) and the world’s largest lob-
bying group (3–5 × 106) carry out the directions of members of establish-
ment. War on cancer has been made as an imaginary problem that cannot 
be solved for over six decades [5, 7, 16].

entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with 
increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are 
toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of com-
plex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity 
(biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling 
cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independ-
ent professionals and policy makers to take a closer look at cancer dilemma and stop the ‘scientific/medical ponzi 
schemes’ of a powerful group that control a drug-dependent sick society before all hopes for promoting public health 
evaporate.

Keywords:  Accidental discoveries, Aging, Autophagy, Biological circadian rhythms, Biorhythms, Cancer biology, 
Cancer establishment, Conjunctiva, Constituent receptors, Crabtree effect, Dark energy, Decoy receptors, Effective 
immunity, Entropy, Environment, Epithelial–mesenchymal, Fatigue, Fetus orderly growth, Gastrointestinal, Growth-
arrest, Growth-promote, Glycolysis, HPV vaccines, Hypoxia, Hypersensitivity, Immune intolerance, Immune-privileged, 
Immune-responsive, Immune suppression, Induced disease, Infection, Inflammation, PI3 Kinase, IRAK-M, Longevity, 
Mitochondria, Mitophagy, mTOR, Ocular tissues, Oxidative stress, Pasteur effect, P53, Personalized or precision medicine, 
Pyruvate metabolism, Pyruvate kinases, Pyruvate-shuttle, Phosphatases, Ribophagy, Ribosome, Targeted therapy, TNF-α, 
TNFRs, Viruses, Virus-like particles, Virus-contaminated polio vaccines, Yin and Yang of acute inflammation
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pesticides, genetically modified organisms (GMOs) and 
preserved foods, electronic gadgets, low level carcino-
gens] and other immune disruptors whose cumulative 
effects adversely influence immunity [5–25].2, 3, 4

Accidental discoveries in 1980s: time course 
kinetics of inflammation‑induced developmental 
phases of immune dysfunction toward multistep 
tumorigenesis and angiogenesis
In 1980s, we established experimental models of acute 
and chronic ocular inflammatory diseases using guinea 
pigs conjunctival-associated lymphoid tissues (CALTs). 
Systematic analyses of a series of reported data suggested 
the first and only evidence for direct association between 
inflammation and time course kinetics of developmen-
tal phases of immune dysfunction (acute, intermediate 
and chronic phases) in the direction of tumorigenesis 
and angiogenesis (‘accidental’ discoveries) [5–8, 26–41]. 
Briefly, in the acute phase (immediate hypersensitivity 
responses), early clinical and histopathological findings 
included strong or weak type 1 ocular reactions, tear-
ing, activation and degranulation of mast cells (MCs), 
vascular hyperpermeability reactions and tissue edema. 
The release of histamine and prostaglandins (PGF-1α) 
were reported as primary and secondary mediators of 
immune responses in acute phase reactions. Animals 
with strong acute ocular reactions also demonstrated 
wheezing suggestive of MCs sensitization and activation 
in lung airways [8, 26, 30, 31]. The intermediate phase 
(down-regulation phenomena) responses were associated 
with minimum clinical responses, increased degranu-
lated MCs, heavy infiltration of eosinophils in ocular 
secretions and goblet cells, induction of neovasculari-
zation and tissue atrophy [27, 31]. In the chronic phase 
responses, clinical appearance of tumor-like lesions in 
upper and lower bulbar conjunctiva, extensive angio-
genesis and massive hyperplastic tissues were reported. 
Histopathological studies demonstrated loss of capsular 
integrity in lymphoid tissue, increased presence of vari-
ous size lymphocytes (proliferation), lymphatic channels, 
necrosis and growth in epithelial tissues, activated MΦs 
and presence of histiocytes (activated DCs?). Antibody 
assays of hyperplastic tissues showed changes in local 
IgGs biosynthesis (IgG1/IgG2 ratios). New born guinea 

2  Health Impact News December 10, 2017—reported from World Mercury 
Project Team—Anthrax Vaccine: Safety Concerns-‘Pilots Would Rather 
Leave the Military than be Forced to get Anthrax Vaccine’.
3  US Senator Grassley Investigates Vaccine Corruption in Unsanctioned 
Experimental Herpes Vaccine: Human Research. Health Impact News, Jan-
uary 12, 2018.
4  Wagstaff A, Culyer AJ. Four decades of health economics through a bibli-
ometric lens. J Health Econ. 2012;31:406–39. https​://doi.org/10.1016/j.jheal​
eco.2012.03.002.

pigs from highly sensitized animals developed strong 
clinical reactions upon 1st or 2nd challenge with antigen 
suggesting antibody transfer and genetic predisposition 
in newly born animals [8, 28, 29, 31]. Mixing antigen with 
tumor-promoting agents shifted the induction of tumo-
rigenesis and angiogenesis to earlier time course, com-
pared with using antigen alone, suggesting involvement 
of growth promoting kinases. Presence of circulating 
IgE antibodies did not necessarily correlated with strong 
acute reactions, suggesting sensitization of local and dis-
tal MCs including the lung airways or the fetus tissues [8, 
26, 31]. In 2014, further analyses and integration of origi-
nal data led to the first report on interactions and syner-
gies between host/local immune and non-immune cells 
(e.g., mast cells, mucus-secreting goblet cells, epithelium, 
B/plasma cells) and the recruitment and infiltration of 
activated immune cells (e.g., eosinophils, tumor associ-
ated macrophages/TAM-M2) via activation of vascula-
ture toward tumorigenesis and angiogenesis at different 
stages of immune dysfunction [38].

These are the earliest and only series of systematic 
studies that produced evidence on the role of repeated 
exposures to immune disruptors (antigen) in the induc-
tion of multistep tumorigenesis and angiogenesis. These 
accidental discoveries on direct role of inflammation in 
alterations of immune dynamics toward tumorigenesis 
and angiogenesis deserve to be further studied, validated, 
confirmed and compared with other experimental mod-
els of inflammatory diseases, other tissues [e.g., lung-
associated lymphoid tissues (LALTs), gut-associated 
lymphoid tissues (GALTs)] or other tissues with different 
cell compositions (e.g., liver, breast, colorectal).

As detailed elsewhere ([5–7, 38, 39], Khatami, NCI/NIH 
records and legal documents since 1998), author’s chal-
lenging efforts to promote the important role of inflam-
mation in cancer research, diagnosis and therapy initially 
met with serious oppositions and denials by members of 
establishment who rejected the submitted concepts and 
comprehensive proposals that were extension of author’s 
original discoveries. However, in recent years, it seems 
that Khatami’s efforts awakened the entire cancer com-
munity within and outside NCI/NIH, on the important 
role of inflammation in cancer science. In the last 2 dec-
ades, professionals enjoy significant increased in funding 
on fragmented submitted ideas in the fields of OMICS 
(e.g., proteomics, genomics, metabolomics, lipidom-
ics, proteo-genomics) or immunotherapy, using highly 
expensive specific technologies and experimental models 
[e.g., genetically or chemically-induced (e.g., comination 
of azoxymethane (AOM) and dextran sodium sulfate)] of 
tumors and organizing networking and symposia, with 
no end in sight [5–7, 38–43]. However, the outcomes of 
reductionist approaches on identification of hundreds of 

https://doi.org/10.1016/j.jhealeco.2012.03.002
https://doi.org/10.1016/j.jhealeco.2012.03.002
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molecular entities that are used for drug development and 
claimed as ‘targeted’ therapy or ‘personalized’ or ‘preci-
sion’ medicine have been very disappointing, extremely 
costly and dangerous for patients and society. Majority of 
expensive projects in cancer research and therapy focus 
on identification of too many defective molecular species 
in the landscape of cancer molecular tsunami with little/
no efforts to understand what initiate altered immune 
response profiles that lead to multistep tumorigenesis. 
The initial immune response alterations were suggested to 
be correctable, reversible or drugable [5, 7, 16, 39–43].

Ongoing debates, controversies, misinformation and 
confusions regarding the role of inflammation, whether it 
is protective in preventing cancer or it is a cause of can-
cer are among serious factors in failing patients when 
clinical trials are decided [5–8].5

Categories of human diseases
To better understand the biology of cancer, we first define 
that, in general, all diseases are the outcomes of one or 
combination of interdependent biological defects that are 
medically/clinically categorized as the following:

1.	 Congenital.
2.	 Hereditary.
3.	 Neonatal.
4.	 Induced.

In the following sections, attempts were made to dem-
onstrate and suggest that cancer is a symptom of accu-
mulated violations of time-controlled biorhythms whose 
disorderly proliferation and mitosis are facilitated by 
altered mitochondrial bioenergetics, increased glucose 
utilization and entropy and generation of ‘dark energy’, 
conditions that are toxic to normal cells. Unlike the pop-
ularized notion that cancer is 100, 200 or 1000 diseases!, 
the author shows that cancer cells are body’s defective 
cells whose disorderly growth are the results of loss of 
natural biphasic properties of Yin (tumoricidal) and Yang 
(tumorigenic) of inflammation, associated with loss of 
differential bioenergetics (anabolic vs catabolic) in tis-
sues. Evidence is presented that over the last six decades, 
decision makers in cancer establishment has gradually 
weakened and manipulated the autonomic biological cir-
cadian rhythms, the Yin and Yang of effective immunity, 
by introducing the public to various pathogen-specific 
vaccines and ingredients, in addition to exposures to 
exposures to a wide range of environmental hazards and 

5  Khatami M (2016) Book review: Safety concerns for HPV vaccination of 
young generation, paid by Obamacare and V.P. Biden Moonshot initiative. 
Global Vaccines and Immunology, ISSN: 2397-575X, 2016 https​://oatex​
t.com/pdf/GVI-1-118.pdf.

low level carcinogens that made young and old in Amer-
ica sick and drug-dependent.

Analyses of related data suggest that nearly all diseases, 
to varying degrees, are the results of altered effective 
immunity or loss of biological circadian rhythms (on–off 
switches) that adversely influence tissue bioenergetics 
(mitochondria), the principal generator of energy and elec-
tricity (proton pumping) in organ systems [5, 7, 35–90].

It is also noteworthy that the special or shared bio-
logical/medical features of full-blown diseases that often 
determine the outcomes of nearly all age-associated 
chronic conditions fall into the following three major 
categories, as interdependent defects in immune surveil-
lance (biorhythms) associated with varying degrees of 
loss of bioenergetics in affected tissues [5, 39]:

(a)	 Vascular and lymphatic channels disorders.
(b)	 Tissue necrosis.
(c)	 Tissue growth.

Manifestations of organ-specific diseases that are 
known as distinct pathological and clinical complications 
such as polyps, pre-cancer, cancer metastasis and angio-
genesis, or neurodegenerative and autoimmune diseases, 
diabetes and cardiovascular complications, are generally 
the outcomes of cumulative damages in the immune-
responsive tissues (e.g., epithelial, endothelial, mucus 
secreting goblet cells, stroma) or immune-privileged tis-
sues (e.g., CNS, BBB, neuroretina, cornea, reproductive 
system) and/or insulin-dependent (e.g., muscle, adipose 
tissue, liver) and insulin-independent tissues (e.g., vascu-
lature, neuronal and endothelial cells, fibroblasts) for glu-
cose transport and metabolism [5–8].

Overview and integration of data on diverse experi-
mental models of chronic illnesses or cancer research 
and clinical studies suggest that all diseases share features 
of one or more defects in innate (intrinsic, constituent) 
and/or adoptive (extrinsic or induced) pathways includ-
ing cellular [e.g., genomic/chromosomal (DNA/RNA, 
epigenetic modifications), cell mediated or humoral 
immunity (CMI/HI), hormonal, metabolic, neuronal 
(sympathetic and parasympathetic)] activities that con-
tribute to the complex signal communications of altered 
immunity and manifest in different tissues as different 
diseases [5–8, 34–80]. We proposed that effective immu-
nity (synchronized biorhythms, sympathetic and para-
sympathetic, or Yin and Yang of acute inflammation) is 
responsible for protection of body against all intrinsic 
(e.g., defective cancerous cells, useless proteins/peptides/
lipids, accumulated oxidized materials, lymphocyte-
derived clonal complexes, abnormal repair mechanisms 
in chromosomal-histone proteins-genetics, DNA/RNA 
mutations, or hypo/hyper epigenetic modifications) or 

https://oatext.com/pdf/GVI-1-118.pdf
https://oatext.com/pdf/GVI-1-118.pdf
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extrinsic elements (e.g., pathogens/microbiomes, aller-
gen/antigens, low level carcinogens) that are perceived 
harmful to individual’s survival [5–8, 20, 35–39].

Bioenergetics of effective immunity: biological 
circadian rhythms via biphasic‑synchronized Yin 
and Yang of acute inflammation
As detailed elsewhere [5–8, 35–40], effective immunity fol-
lows complex and precise rules of molecular engagements 
and require development of differential bioenergetics for 
body’s defense and survival after birth. Effective immu-
nity was defined as a highly regulated signal transductions 
between 2 biologically opposing arms, termed Yin (tumori-
cidal) and Yang (tumorigenic) that intimately engage the 
activities of immune-metabolic–vasculature–hormonal–
neuronal (sympathetic and parasympathetic) systems.

In an acute inflammation, autonomic crosstalk between 
innate and adaptive immune cells and non-immune 
pathways has a 2-fold mission with differential energy 
requirements from mitochondria and cytosol as outlined 
below [5, 35–40].

A. Catabolic (Dressed to Kill!), Yin (tumoricidal arm): 
high energy consuming events utilizing oxidative 
phosphorylation from mitochondria
Yin events are involved in encountering/sensing (rec-
ognizing), processing or digesting and eliminating the 
intrinsic or extrinsic foreign elements (e.g., allergen, path-
ogens/microbiota, cancerous cells, oxidized metabolites, 
senescent cells or lymphocyte complexes) and the injured 
host tissue. Yin (apoptotic, pro-inflammatory) events 
require burst of energy (ATP hydrolysis) from mitochon-
drial oxidative phosphorylation (OxPhos) for activation of 
innate and adoptive immune cells [e.g., MCs degranula-
tion, MΦs (M1 phenotype), DCs, NKs or T and B/plasma 
cells], as well as activation of non-immune systems (vas-
culature, metabolism, neuronal, hormonal) for generation 
of required toxins, oxidants and apoptotic factors. Path-
ogen-specific induction of danger molecules and expres-
sion of specific pro-inflammatory mediators and receptor 
molecules (e.g., TLRs, vasoactive histamine, TNF, ILs, 
ROS, NO, complement cascades) as well as, secretory lys-
osomal activities, membrane fusion, exocytosis, ion fluxes 
and vascular hyperpermeability responses facilitate the 
destruction of foreign elements and injured host tissue. 
Yin events require genomic activation of specific tumori-
cidal factors (above examples) [5–8, 35–39].

B. Anabolic (revival of target tissue), Yang (tumorigenic 
arm): low energy consuming events‑utilizing glycolysis 
(Warburg effect)
Following the release of oxidants toxins and utiliza-
tion of high energy from mitochondrial OxPhos during 

destruction of foreign entity and the injured/infected 
target tissue, the activated cells simultaneously signal for 
polarization of immune cells (e.g., M2 or TAMs pheno-
types, degranulated MCs) that would automatically shut-
down mitochondria, allowing regeneration of TCA cycle 
intermediates (e.g., succinate–fumarate–oxaloacetate) 
and numerous other important mitochondrial activities 
[e.g., pyruvate-shuttle, pyruvate carrier proteins, synthe-
sis of enzymes (e.g., SODs, cytochromes), metabolism 
of branched amino acids (leucine, valine, isoleucine) 
and synthesis of structural proteins and maintenance of 
mDNA synthesis] that are required for mitochondrial 
function. Yang (tumorigenic, post-inflammatory) events 
involve polarization of immune cells and non-immune 
pathways for expression of growth promoting mediators 
and decoy receptors [e.g., VEGF, IL-dRs, cortisol, epi-
nephrine, superoxide dismutases (SODs), MMPs, PGE2, 
PI3 Kinases, mTOR, MAPK] to neutralize and remove 
the toxicities that are generated during Yin and to repair, 
reconstruct or remodel the target host tissue and termi-
nate inflammation. Switching from oxidative phospho-
rylation in mitochondria, under hypoxic conditions and 
low energy utilization from glycolytic pathways are fun-
damental events that require differential bioenergetics 
(high-low energy switches from mitochondria to cytosol) 
for maintenance of effective immunity. The Yang pro-
cesses are required not only for revival and repair mecha-
nisms of injured tissue, but for mitochondrial recovery 
and biosynthesis of TCA cycle intermediates to gener-
ate efficient energy. Therefore, Yang events are naturally 
anabolic (low energy) and possess regenerative (growth) 
features of effective immunity, and function under low 
oxygen tension (hypoxia) for wound healing purposes.

Simply described, in an acute inflammation, apoptotic 
arm or Yin responses are catabolic processes requiring 
high energy consumption from mitochondrial OxPhos 
to express death signals, oxidants, enzymes and recep-
tor molecules for destruction of both the enemy and the 
injured/infected host cells. In contrast, the wound heal-
ing or Yang responses are anabolic processes and require 
simultaneous polarization of immune and non-immune 
cells for generation of growth promoting factors to coun-
teract and neutralize the toxicity of injured tissue. Yang 
responses follow mitochondrial shutdown and switch to 
cytosolic low energy utilization from glycolysis (Warburg 
effect) to resolve inflammation.

The major outcomes of an acute inflammation are lym-
phocyte-derived clonal expansion, increased synthesis 
of pathogen-, or allergen-specific antibodies and plasma 
and memory T and B cells that would prepare the body to 
defend and unleash appropriate responses such as anti-
gen-specific antibody release when tissue is exposed to 
the same hazardous agents [5–7, 35–40].
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The author’s original definitions of biphasic roles 
of Yin (tumoricidal) and Yang (tumorigenic) of effec-
tive immunity [35] present much larger applications for 
understanding the synchronized biorhythms and neuro-
metabolic responses of sympathetic and parasympathetic 
systems that guard human health [5–7, 35–39].

Bird’s eye view on differential energy requirements 
throughout life: violations of biological rhythms 
(laws) and induction of immune tolerance 
in tumorigenesis and angiogenesis
The crosstalk in Yin and Yang of effective immunity 
occurs continuously and simultaneously between and 
among cells, tissues, organs and glands (e.g., skin, liver, 
kidney, eyes, lung, heart, thymus, lymphoid organs, vas-
culature, neuronal, and gastrointestinal tract) for mainte-
nance of health. In 2016, we proposed a working model 
for differential bioenergetics requirements of Yin and 
Yang pathways from fetus orderly growth, after birth and 
all the way to adulthood, aging process and development 
of chronic diseases and cancer [39]. The following sec-
tions briefly reflect further extension of the recently pro-
posed model on analyses and integration of a large body 
of valuable scattered data pertaining to basic and clini-
cal studies on developmental biology, immunity, aging, 
hormonal, metabolic and neuronal activities, to better 
appreciate induction of immune tolerance and cancer 
bioenergetics [5–7, 35–190]:

	 1.	 The body is a dynamic and energy consuming sys-
tem involving highly complex interactions between 
and among multi-organs whose function continually 
evolves, from conception, placentation, embryonic 
and fetal growth, after birth, puberty and adulthood 
and aging or disease processes. The anabolic (regen-
eration, tumorigenesis or Yang) and catabolic (apop-
tosis, tumoricidal or Yin) arms of effective immu-
nity follow highly organized biological circadian 
rhythms (biorhythms) requiring on–off switches of 
immune and non-immune responses that constitute 
the human health. Insufficient circadian rhythms 
(skewed biological clocks or loss of sympathetic or 
parasympathetic activities) are perhaps the result of 
one or more mutations or deficiencies in the circa-
dian clock genes that influence the amazingly syn-
chronized and interdependent features of biological 
oscillators in Yin–Yang or ‘effective acquisition time’ 
of immunity [5, 7, 39].

	 2.	 Growth requirements of embryo-fetus develop-
ment are orderly processes (basically a one-way 
growth) occurring under protected environment of 
placenta during embryonic development involving 
expression of constituent receptors, projected from 

trophoblasts that anchor embryo and during fetus 
growth under limited oxygen tension (hypoxic con-
dition). Angiogenesis and organogenesis, including 
development of lymphoid organs and generation of 
naïve pluriepotent stem cells or mesenchymal stem 
cells (MSC) require growth factors and metabolism, 
primarily using glycolysis for energy requirements. 
The energy production for growth involves constitu-
ent growth pathways such as expression of pyruvate 
kinases, aspartyl-asparginyl β-hydroxylases (ASPH 
or HAAH), mTOR/PI3Ks, insulin and insulin-like 
growth factor (IGF) [5, 39, 69–76]. The author pro-
posed that the protection of fetus growth must occur 
in the absence of fully functional mitochondria and 
limited Yin (tumoricidal, growth-arrest) pathways 
to avoid necrosis that is dangerous to fetus survival 
and could lead to abortion [5, 39]. Thus, fetus orderly 
growth is practically established by anabolic path-
ways (Fig.  1). The growth-promoting events (Yang) 
are also required after birth for wound healing path-
ways and establishment of effective immunity. The 
overall features of fetus orderly growth include.

a.	 The earliest features in fetus growth are vasculo-
genesis and organogenesis, events that are com-
pleted and functional after birth [5, 39]. In the 
process of fetus growth, naïve or undifferentiated 
immune T and B cells are transported from pla-
centa through fetus circulation to develop lym-
phoid organs. Being in the protective environ-
ment of placenta, fetus is not directly exposed to 
the atmospheric oxygen and is not challenged by 
the environmental hazards. The hypoxic condi-
tions of placenta provide fetus natural/constitu-
ent tolerance. Therefore, there is no need for an 
effective immune surveillance (Yin and Yang), 
nor for functional mitochondria.

b.	 Majority of the required fetus constituent 
growth factors, receptors and enzymes (e.g., 
pyruvate Kinases, mTORs, hormones) also share 
features of wound healing, tolerance or tumo-
rigenic (Yang) arm of effective immunity after 
birth.

c.	 Features of rapid aging and maturation in pre-
natal-embryonic tissues and postnatal develop-
ment of childhood cancers [e.g., neuroblastoma, 
B-lineage infant acute lymphoblastic leukemia 
(ALL), mixed lineage leukemia (MLL), myeloid 
leukemia-Downe syndrome-ML-DS or medul-
loblastoma] have been reported [5, 39, 73–76]. 
The rapid childhood aging are associated with 
increased and progressive genomic muta-
tions and instability and fusion, as evidenced 



Page 7 of 31Khatami ﻿Clin Trans Med  (2018) 7:20 

by embryonic hyperplastic cell growth patterns 
that favor abnormal proliferations of cell sur-
vival under hypoxic conditions. Over expression 
of several genetically identified mutated growth 
factors (e.g., MYC, PI3K, MAPK, erythropoietin 
receptor-B cell factor-1-EBCR1 or BCR, Notch1, 
Notch2, FBXW7 and polymerases) or perhaps 
low level histamine [e.g., independent from 
MCs activation (‘leaky’ MCs), or in the absence 
of functional MCs] that trigger oncogenesis in 
childhood cancers are characteristics of adult 
cancers [5, 39, 73–76, 89].

	 3.	 After birth and during infancy the most pronounced 
biological changes and reprogramming relate to 
newborn’s exposure and adaptation to atmospheric 
O2 and completion of organs development. It is pro-
posed that independent life of individual after birth 
requires the following major biological changes, 
adaptations and reprogramming (Figs. 1, 2).

a.	 Completion of mitochondria, the double mem-
brane-bound organelles, for establishing the 
many biological events for production of energy 
and maintenance of bioenergetics. Among major 
pathways in mitochondrial development are the 
establishment of pyruvate-shuttle between cyto-
sol-mitochondria, induction of pyruvate-carrier 
proteins, development of TCA cycle enzymes 
and generation of ROS that are byproducts 
of routine tissue metabolism (wear and tear), 
metabolism of essential branched amino acids 
(e.g., leu, isol, val) for biosynthesis of structural 
proteins and ribosomal recycling activities or 
perhaps chromatin remodeling-related events. 
It was proposed that biosynthesis of structural 
proteins after birth are required for maintaining 
architectural integrities and boundaries among 
and between cells and tissues (e.g., cell–cell-con-
tact inhibition, vascular tight junctions, inhibi-
tion of epithelial–mesenchymal transition). Fully 
functional mitochondria have the capability for 
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Fig. 1  Schematic representation of Yin and Yang of immunity that parallels differential bioenergetics at various stages of life. It depicts that fetal 
orderly growth primarily utilizes glycolysis and constituent growth factors (e.g., IGF, mTOR) under low O2 and in the absence of mitochondrial 
development. After birth and exposure to atmospheric oxygen, major adaptation and reprogramming of organ systems including development 
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growth of cancer cells (Yin <Yang). See text
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production of high energy (burst of ATPase 
hydrolysis) that are required by Yin events (e.g., 
activation of MCs, DCs, MΦs or T and B lym-
phocytes) at moment notice to combat foreign 
elements [5, 7, 39, 70–77, 82–119].

b.	 Exposure of newborn to outside environment 
and independent living demand establishment of 
fully functional biological circadian rhythms or 
the catabolic and anabolic responses in tissues. 
How the effective immunity and signal trans-
duction between and among immune and non-
immune pathways are completed after birth are 
among crucial knowledge gaps that deserve sys-
tematic, insightful and integrated understand-
ing. It is likely that completion of many organs 
(e.g., lungs, heart, brain or gastrointestinal 
tract) functionality and reprogramming of tis-
sues, cellular and subcellular components [e.g., 
mitochondria and TCA cycle, mucosal barriers 
(e.g., aryl hydrocarbon), transcriptional factors 
for numerous receptors and surface molecules, 

enzymes, epigenetic modifications, activation 
or protection of histone proteins and chromatin, 
recycling pathways in ribosomes, mucosal–flora 
interactions in gastrointestinal tract, matura-
tion of immune and non-immune systems (bio-
rhythms)] are not fully activated during orderly 
fetus growth. The molecular/cellular and sub-
cellular adaptation and reprogramming could 
occur simultaneously after birth and at the 
interface between host and environment. The 
fact that during the first few months after birth, 
newborn limited immunity depends on mother’s 
immunity supports the above suggestions.

c.	 After birth, the complex establishment of effec-
tive immunity (fully functional Yin and Yang) 
and mitochondrial-related cellular functions are 
likely to take a few months to be completed. It 
is possible that the majority of components that 
contribute to catabolic pathways are genetically 
(innately) present as constituent elements but 
they are not functional or not expressed until 
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Fig. 2  Schematic representation of ontology of fetal growth, showing vasculogenesis and organogenesis, under placenta’s limited oxygen tension. 
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After birth and exposure to atmospheric oxygen and environmental hazards, adaptation, reprogramming and completion of organ development, 
formation of lymphoid organs, immune cell maturation and migration in thymus and bone marrow are required, for functionality of mitochondria 
and effective immunity (Yin–Yang). As depicted, requirements for differential bioenergetics and effective immunity, cell mediated or humoral 
immunity (CMI, HI), to defend body against harmful elements throughout life occur after birth. See text
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after birth. Potential examples of such constitu-
ent pathways are structurally naïve immune and 
none immune cells, sympathetic and parasym-
pathetic neuronal systems, inactive/inhibited 
apoptotic factors and components of double 
membrane in mitochondria. Examples of con-
stituent components that are likely to be func-
tional after birth include immature or naïve lym-
phocytes, oxidases, pro-inflammatory cytokines, 
toxins, pyruvate-shuttle, pyruvate carrier pro-
teins, TCA cycle proteins/enzymes, metabolic 
pathways of essential amino acids (e.g., leu, ileu, 
val) and biosynthesis of structural proteins for 
cell–cell contact inhibition and vasculature tight 
junctions, components of epigenetic modifica-
tions, hypo- or hypermethylated genomic mate-
rials.

	 4.	 It is noteworthy that biological development and 
reprogramming and responding to environmental 
conditions continue through puberty for hormonal 
regulations and reproductive cycles and adulthood; 
many of which processes decline or change during 
aging process (senescence).

	 5.	 Continued proton pumping and generation of elec-
tricity across the membrane, are crucial for estab-
lishing pH gradients and differential acidity among 
extra-, and intra-cellular membrane components and 
cytoplasm for numerous routine biological activities 
[e.g., transport of solutes/osmolytes and nutrients, 
stimuli-induced expression of danger signals and 
activation of immune cells, degradation and growth-
arrest of defective cells (e.g., cancerous cells), inap-
propriate synthesis of proteins and mutated DNAs/
RNAs, detection and destruction of pathogen’s 
structural components, immune cell recognition and 
activation, proliferation, wound healing and growth, 
lysosomal activities for digestion and recycling of 
proteins and lipids] as well as, numerous biosyn-
thetic pathways in mitochondria. It is likely that the 
extent of proton pumping provided through vascu-
lar or cellular membrane by ATPases or exchang-
ers (e.g., Na+/H+ exchanger, Ca2+/ATPase) alter, to 
varying degrees, from the time of fetus growth, after 
birth, during reproductive period and adulthood, in 
aging or disease processes (e.g., neurodegenerative 
and autoimmune complications or carcinogenesis).

	 6.	 Intrinsic or extrinsic components that are recog-
nized as foreign agents (e.g., pathogens, allergen, 
cancerous and defective cells, useless proteins, lipids, 
low level carcinogens or pathogen-specific vaccines 
and ingredients/adjuvants), as well as, aging process, 
could temporarily or permanently disturb the effec-

tive membrane potential or pH gradient (proton 
pumping) across the extracellular or intracellular 
membranes that would skew signal transductions 
and auto-regulatory processes of cellular biorhythms 
[5, 7, 15, 20, 36–39, 45, 82, 83, 89, 140, 151, 179–185].

	 7.	 Innocuous substances and occasional exposures to 
a wide range of foreign elements are ordinarily and 
differentially ignored by tissues that are immune-
responsive or immune-privileged (natural immune 
tolerance). The immune-privileged tissues (e.g., 
CNS, BBB, avascular cornea, neuroretina, reproduc-
tive organs) are highly sensitive toward oxidative 
damage. These tissues possess special anatomical 
or molecular features to minimize response to oxi-
dative damage [5, 7, 36–40, 89]. These tissues pre-
sent higher levels of tolerance compared with the 
immune-response tissues (e.g., epithelium, endothe-
lium, mucus-secreting goblet cells). However, the 
levels of immune tolerance are limited in both types 
of tissues [5, 36, 37]. Persistent tissue stimulation 
and exposure to potent pathogens or treatment of 
patients with combination of radiation and chemo-
therapy that are claimed as ‘targeted’ therapy, ‘per-
sonalized’ or precision’ medicine, using potent apop-
totic factors, monoclonal antibodies against specific 
growth factors, are deemed hazardous (biological ter-
rorists) to the immunity. These conditions stimulate a 
wide range of immune responses causing ‘mild’, ‘mod-
erate’ or ‘severe’ acute or delayed hypersensitivity reac-
tions (immune disorders) that could lead to manifesta-
tion of different diseases, organ dysfunction, multiple 
organ failures (MOFs) or death [5, 7, 35–39, 43, 89].

	 8.	 Oxidative stress and alterations of Yin and Yang 
properties of effective immunity often differentially 
facilitate growth promotion (anabolism) or growth 
arrest (catabolism) in different tissues. The processes 
are natural/inherent properties of immunity (bio-
rhythms) to resolve inflammation. Potential adverse 
influence of extensive oxidative stress in immune-
responsive tissues includes epithelial–mesenchy-
mal transition (EMT), changes in extra- and intra-
cellular membrane matrix [e.g., MMPs, IV collagen 
biosynthesis, cellular transport activities, aqueous 
charges (altered H bonds)] further affecting cellular 
hydrophobicity or hydrophilicity, protein foldings 
and cellular function. Extensive oxidative stress is 
the results of exaggerated expression and co-expres-
sion of growth and apoptotic factors that result in 
immunological chaos (immune tsunami) that could 
damage the tissue integrity at multiple levels of bio-
logical, mechanical, physical and bioenergetics. Seri-
ous damages in immune-responsive tissues lead to 
changes in bioenergetics and metabolism and pro-
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ton pumping in the direction of initiation of tissue 
growth, neoplasia, precancer-polyps, invasive cancer 
growth and angiogenesis. In immune-privileged tis-
sues, exaggerated expression of tumoricidal media-
tors (catabolic or apoptotic factors) causes necrosis 
and local immune responsiveness in tissues in the 
direction of neurodegenerative and autoimmune dis-
eases (e.g., Alzheimers, Parkinson’s, multiple sclero-
sis, atherosclerosis).

	 9.	 Glucose toxicity-induced changes in immune 
response dynamics could additionally and adversely 
influence tissues that are insulin-dependent (e.g., 
muscle, liver, adipocytes) or insulin-independent 
(e.g., vasculature, BBB, retina, cornea, kidneys) for 
glucose transport, metabolism or growth as contrib-
uting factors in the induction of tolerance and initia-
tion of chronic diseases such as diabetes and cardio-
vascular complications, hypertension, stroke, as well 
as increased risk of carcinogenesis [5].

	10.	 Aging processes (immunosenescence) induce 
minor or major alterations in immune function 
[e.g., changes in age-induced cell death (AICD) and 
damage-induced cell death (DICD)] and enhance 
the vulnerability of host tissue toward loss of balance 
between apoptosis and wound healing processes, 
increased memory B or T cells, clonal expansion 
and increased hypersensitivity of humoral or cellular 
responses toward new or old stimuli (e.g., histamine 
intolerance, autoimmunity), additionally contribut-
ing to the mitochondrial and ribosomal dysfunction 
(mitophagy, autophagy) [5, 7, 35–39, 52, 53, 59–61, 
65–68, 83, 88, 89, 109]. Longevity and continuous 
exposures to microbiota or pathogen-specific vac-
cines and adjuvants/ingredients (e.g., mercury, alu-
minum phosphate, aluminum hydroxide, l-histidine, 
embryo serum) to varying degrees, could induce 
polarization of immune cells (e.g., MΦs, MCs, DCs, 
T or B cells) and direct expression of wound healing 
factors, decoy or pattern recognition receptors [e.g., 
IL-1dRs, IRAK-M), surface molecules (e.g., CD-11, 
CD-73), low level circulating histamine (independ-
ent from antigen-specific MCs IgE-fcεR aggregation 
and degranulation)] ([5, 7, 35–39], manuscript in 
preparation).

	11.	 As noted above, the growth promoting events often 
occur under hypoxic conditions and low energy con-
sumption from glycolysis. The conditions are char-
acteristics of Yang pathways during normal fetus 
growth or wound healing events and neovasculari-
zation as well as, cancer growth and angiogenesis. 
Therefore, induction of tolerance, while a feature of 
effective immunity (Yang, anabolic or growth-pro-
moting), under oxidative stress represents extended 

wound healing processes. Continued activities of 
Yang (tumorigenic) are associated with mitochon-
drial dysfunction (mitophagy) causing damages to 
tissue recycling processes and ribosomal activities 
(autophagy) that are features of skewed immune 
responses or immune suppression (Figs. 1, 2, 3).

	12.	 In immune-responsive tissues, enzymes or other fac-
tors that modulate senescence negatively regulate 
differentiation of tumor cells (mitosis) through epi-
thelial–mesenchymal-transition (EMT) often involv-
ing polarization, unscheduled or immature synthe-
sis and activation of immune cells, or expression of 
factors and receptors [e.g., TGFβ-R1, peroxidasin 
(PXDN), collagen IV], selective membrane catalysis of 
sulfimine or changes in H bonds with protein struc-
tures that create “dual negative feedback loop” and 
further influence tissue metabolism, fibrosis or cancer.

	13.	 During EMT, polarized immune cells are capable 
of expression of a panel of growth-promoting fac-
tors and decoy receptor molecules that are immune 
suppressive and signal for mitochondrial shutdown, 
inhibiting pro-inflammatory responses, leading to 
tolerance in favor of tumorigenesis and enhanced 
activities of cytosolic glycolysis.

	14.	 Stimuli-induced activation and polarization of 
immune cells are accompanied by activation of sev-
eral other metabolic pathways and expression of fac-
tors [e.g., carbonic anhydrase 2 (CA2), constituent or 
induced pyruvate kinases (PKM1, M2), phsospho-
enol pyruvate (PEP), PEP carboxy kinase (PEPCK)] 
with potential different bioenergetics requirements 
that could influence cellular function. For example, 
changes in PKM1 and PEP in red blood cells, whose 
principal energy source is from glycolysis could 
lead to altered hemoglobin metabolism, anemia, 
hemophilia, hemolysis, cardiovascular complica-
tions, jaundice (bilirubin) and blood-related diseases 
including cancers (e.g., hepatocellular carcinoma) 
or severity of Guillian–Barre syndrome ([5], manu-
script in preparation);

In summary, disturbance of the well orchestrated 
crosstalk in effective immunity by frequent exposures 
to immune disruptors and aging processes cause minor 
or major degrees of retardation in immune response 
dynamics that could increase the risks of initiation and 
progression of a wide range of ‘mild’, ‘moderate’ or ‘severe’ 
immune disorders in susceptible tissues. Low level cir-
culating histamine was proposed as a blueprint in the 
induction of tolerance leading to diverse immune disor-
ders and alterations of acid–base balance and tissue bio-
energetics [5, 39]. Cancer was hypothesized as a ‘severe’ 
accumulation of delayed hypersensitivity responses 
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in tissues. Oxidative stress-induced skewed biologi-
cal circadian rhythms and dysfunction of mitochondria 
(mitophagy), peculiarly provide opportunities for cancer-
ous cells to utilize enhanced activities of cytosolic glyco-
lysis pathways for consumption of energy from Crabtree 
or Pasteur Effects (induction of ’dark energy’), conditions 
that are toxic to normal cell survival, but facilitate can-
cer cells lawless proliferation and increased entropy (see 
below).

Differential mitochondrial bioenergetics 
requirements in Yin–Yang of immunity: oxidative 
stress‑induced chronic diseases and cancer
The principal free energy source that is required for all 
body’s biochemical pathways is the universally known 
molecule of ATP. In general, the normal function of 
organ system uses ATP as both an intracellular energy 
source and an extracellular messenger for energy requir-
ing transmission of signals in CNS or optic nerve or other 
immune and non-immune cells for exocytosis, formation 

of Golgi complex, delivery of vesicles, as well as active 
transport of solutes/osmolytes and nutrients (e.g., glu-
cose, Ca2+, ascorbate, myo-inositol), enzymatic processes 
(e.g., oxidases, kinases, lipases, hydrolases), protein bio-
synthesis and other physiological pathways, and physical, 
mechanical or locomotion and architectural integrity of 
cells/tissues/organs (Figs. 2, 3) [5, 7, 35–39, 78, 82, 83, 89, 
101, 139, 140, 142–150, 178–220].

Mitochondrial dysfunction (mitophagy) has been 
linked to a number of age-associated and chronic health 
problems, including migraine, cardiovascular and neuro-
degenerative diseases, sarcopenia, infertility, kidney and 
liver diseases, cancer, drug toxicities and other illnesses 
that often accompany fatigue syndrome [5, 7, 35–39, 
91, 142–150, 178–190]. Observations on the association 
between defects in energy metabolism of cancer cells 
and effective respiration (oxidative phosphorylation) and 
the abnormal rates of aerobic glycolysis for ATP synthe-
sis that was originally reported by Otto Warburg, led to 
mitochondrial injury/damage and concept of mitophagy 
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[5, 40, 53–55, 91, 184–190]. It is now well documented 
that cancer cells are capable of converting glucose into 
lactate and pyruvate. Synthesis and diffusion of lactate 
create acidic conditions in the extracellular matrix (e.g., 
MMPs) and change the integrity of membranes (e.g., 
IV collagen biosynthesis or receptor molecules) as con-
tributing factors that alter tissue metabolism and bio-
energetics during growth of cancer mass, invasion and 
metastasis. These and other important observations on 
the metabolism of cancer cells and the role that mito-
chondrial dysfunction play in cancer growth evolved in 
two hypotheses of survivability and adaption of cancer 
cells as ‘Crabtree Effect’ and ‘Pasteur Effect’, the glucose 
triggering mechanisms for cancer proliferation as out-
lined below [5, 39, 185–190].

a.	 Crabtree Effect Tumor cells and normal proliferating 
cells or pathogens (e.g., bacteria or yeast) have limited 
respiration in the presence of high glucose concentra-
tion. The phenomenon is known as Crabtree Effect. 
Under such conditions, cancer cells are able to trig-
ger the competitive inhibition of oxidative phospho-
rylation (respiration) for using phosphate groups (Pi, 
inorganic phosphate) and ADP, through glycolysis for 
their enhanced growth requirements, conditions that 
are toxic to normal cells. An excellent publication by 
Hammad et  al. [189] explains the Crabtree and War-
burg Effects and the roles that glucose and rate-limit-
ing steps in constituent kinases (e.g., pyruvate kinases, 
phosphofructokinase) play in regulation and uptake of 
substrates within and outside mitochondria for control 
of ATP production and mitochondrial intermediates. 
While detailed mechanisms of the effects are debatable, 
it seems that the abundant presence of glucose, perhaps 
including hyperglycemia of diabetes, impair mitochon-
drial normal function at several levels (e.g., inhibition 
of energy requiring steps in pyruvate-shuttle and sub-
sequent events in carrier proteins and enzymes that are 
needed for biosynthesis of TCA cycle intermediates) 
and energy production. The availability and activation 
of other factors (e.g., adenosine, histamine) or changes 
in acid–base homeostasis during production of lactate 
and dissipation of energy could be interdependent con-
tributing factors in slow-down of mitochondrial func-
tion. While enhanced glycolysis and glucose uptake 
by cancer cells favor promotion of lawless growth of 
cancer masses, the conditions could create differential 
entropy that adversely affect the surrounding tissues 
(see below) [5, 7, 38, 39, 184–189]. It is suggested that 
Crabtree Effects initially share some features of Yang 
arm of immunity during normal wound healing or dur-
ing orderly growth of fetus that occur under hypoxic 
conditions; when mitochondria are not fully functional. 

These and related metabolic pathways, if studied sys-
tematically, should provide unique opportunities and 
challenges to efficiently target and control the growth 
of cancer cells.

b.	 Pasteur Effect As originally described by Otto War-
gurg, the tumor cells are able of inducing glucose 
utilization and conversion to lactate in the presence 
of oxygen, a phenomenon called Pasteur Effect that 
diminishes glycolytic metabolism in yeast [5, 39, 55, 
92, 189]. The utilization of glucose oxidation and 
conversion to lactate perhaps play important roles 
in metastasis (diffusion to extracellular matrix and 
acidity) and enhanced proliferation. The above obser-
vations and concepts argue that cancer cells have 
higher rates of consumption for either or both oxy-
gen or glucose. That means when concentration of 
either nutrient is reduced in the microenvironment 
of cancerous tissue, cancer cells can thrive, while 
normal cells cannot. Factors that are toxic to normal 
cell survival but facilitate metabolic adaptability of 
cancer cells to microenvironment include the follow-
ings [5, 47, 48, 53–55, 90, 189]:

i.	 Increased mutations or damage in mitochondrial 
DNA and altered pyruvate-shuttle or pyruvate car-
rier proteins.

ii.	 Elevation of hexokinase (1,6 phosphofructo kinase) 
activities.

iii.	Lysis or loss of mitochondrial cristae structures and 
altered mitochondrial protein and lipid content.

iv.	 Increased acidity (lower pH) in extra-, or intracel-
lular environments (presence of lactate) and altered 
hydrophilic or hydrophobic properties of channels 
for transport of cationic or anionic molecules and 
proteins and aquaporins.

v.	 Potential utilization of mitochondrial cardiolipin as 
additional sources of energy.

vi.	Loss of cell–cell contact inhibition.
vii.	Induction of local entropy and higher temperature in 

cancer masses compared with surrounding tissue.

Detailed analyses of related data suggest that cancer 
oncogenes mutations and growth dysregulation, along 
with associated enhanced expression of PI3K/Akt and 
altered balance in c-MYC, HIF or p53 pathways, adversely 
influence transport and metabolism of glucose, amino 
acids, ions or water channels (aquaporins) of the sur-
rounding normal tissues that impair extra- and intracel-
lular components (e.g., mitochondria, ER, nucleus). For 
example, loss or leak of cardiolipin, a key mitochondrial 
lipid, located in the inner membrane of mitochondria has 
been demonstrated in damaged mitochondria in cancer 
environment [5–8, 39, 53–55, 60, 81–84, 102, 143, 144, 
152, 166, 174, 178–191]. Cardiolipin is among several 
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other necessary components that are needed for efficient 
cellular respiration and maintenance of chemiosmosis 
(aquaporin channel). While details of the role of mito-
chondria and inflammation in diseases of aging are not 
well understood, it is likely that acute inflammation ini-
tially causes a burst of energy (ATP hydrolysis) in mito-
chondria of activated immune cells to generate sufficient 
energy for induction of oxidants and toxins during apop-
tosis (Yin). In the process, cardiolipin molecules oscillate/
move from the inner to outer mitochondrial membrane 
and signal to facilitate termination of inflammation during 
wound healing (Yang) events and to preserve regeneration 
and function of mitochondrial TCA cycle intermediates.

Exocytosis, Ca2+ fluxes and recycling activities 
in lysosomes: anabolic and catabolic energy 
requiring events
Induction and completion of acute of acute inflamma-
tory responses always require participation of lysosomes 
and proper recycling of proteins and lipids of phagocyt-
ised materials, expression of lysosomal hydrolases and 
proteases during autophagy. Among numerous biological 
alterations that occur under oxidative stress and aging, 
the body’s ‘self-eating’ processes of lysosomes and asso-
ciated impaired activities in mitochondria or Golgi play 
crucial roles in homeostasis of immunity or immunose-
nescence, chronic diseases or cancer [5, 39, 88, 89, 126, 
184, 220]. For example, the early events in stimuli-induced 
activation of MCs via receptor (FcεR) aggregation and 
degranulation (pharmacological effects) require mem-
brane fusion for exocytosis of granules. The processes 
involve secretory lysosomal activities and expression of 
several protein receptor molecules, at different stages of 
membrane fusion and require ATP hydrolysis and mobi-
lization of Ca2+ from intracellular stores. Lysosomal exo-
cytic activities are triggered following an increase in free 
Ca2+ (cation) concentration, acidified by H+/ATPase 
hydrolysis for fusion and flux at the plasma membrane 
level [5, 39, 88, 89, 184, 220]. The complex pathways 
during degradation, clearance and recycling of proteins 
require energy-dependent biosynthesis of a number of 
acidic hydrolases or proteases and surface molecule, 
signaling within lysosomes, endoplasmic reticulum (ER), 
Golgi apparatus and mitochondria [5, 38, 39, 88, 89, 92, 
143, 144, 150, 152, 169, 171, 180–184, 192]. These inter-
dependent catabolic and anabolic activities are universal 
in living cells and influenced by aging and disease pro-
cesses. Data using inhibitors of MCs degranulation, anti-
histamine agents, oxidative phosphorylation or glycolytic 
pathways (e.g., glucose or pyruvate oxidation), under a 
wide range of immune dysfunction or carcinogenesis sug-
gest that MCs activation and release of histamine and 
other preformed or newly synthesized mediators, require 

activation of lysosomal exocytosis and Ca2+ flux from the 
stored-operated Ca2+ channels as part of effector function 
of MCs. Use of antihistamine or anti-allergic agents (e.g., 
oxatomide, astemizole, olopatadine) in the in vitro models 
of allergies or basophilic leukemia cells (RBL-2H3) seem 
to suppress one or a combination of interdependent MCs 
responses such as inhibition of AA pathways, cytokines 
(e.g., IL-4) or Ca2+ influx through receptor-operated 
channels (ROC), phosphorylation of P38 mitogen-acti-
vated protein kinase (MAPK) and c-Jun NH2-terminal 
kinase, pathways that are involved in IL-4 gene expression 
and tumorigenesis (anabolic pathways?).

Inflammatory conditions such as potent pathogen-
induced severe immune reactions (e.g., sepsis, meningi-
tis, pneumonia, anaphylaxis), major trauma as well as, the 
claimed cancer ‘targeted’ drugs, ‘personalized’ or ‘preci-
sion’ medicine (in combination with partial or total body 
radiation) that are potent apoptotic factors or monoclonal 
antibodies induce a vicious cycle of immune cell activation 
(immune tsunami or cytokine storm) [5–8, 39, 43]. Potent 
immune disruptors require high energy demands not only 
from local tissue mitochondria, but they also cause induc-
tion of systemic or intraperitoneal exaggerated expression 
of pro-inflammatory cytokines and toxins such as ROS, 
caspases, oxidases, damage-associated molecular pat-
tern (DAMP), increased C-reactive protein (CRP), altered 
muscle F-actin filaments and high-mobility group box  1 
(HMGB1). Drug-induced accumulation of inflammatory 
responses often cause serious damages to the function and 
integrity of tissues and multiple organ failures (MOFs) in 
muscle, liver, kidney, lung, brain and heart and patient’s 
death. Therefore, stimuli-induced frequent expression and 
co-expression of growth-arresting (Yin, tumoricidal) and 
growth promoting (Yang, tumorigenic) cytokines such as 
TNF-α, ROS, interleukins (e.g., IL-4, IL-6, IL-8, IL-10, IL-
12,IL-18), monocyte chemoattractant protein 1 (MCP-1), 
CXCR3, neutrophil extracellular traps (NETs), abnormal 
expression of vasculature components (e.g., P- and E-selec-
tins, ICAM-1, VCAM-1) damage mitochondrial oxidative 
metabolism and DNA [5–8, 35–43, 169–175, 178–194].

Definitions of constituent (Innate) and induced 
(‘Designer’) pattern recognition receptors (PRRs) 
in health and diseases
Pattern recognition receptors (PRRs) and surface mole-
cules play crucial roles in signal transduction mechanisms 
and contribute to all aspects of cells/tissues functions such 
as visual transduction, bone and lipid biosynthesis, bioen-
ergetics, cellular trafficking and infiltration, differentiation 
and growth, nuclear/chromosomal or chromatin activities, 
neuronal pathways, tissue necrosis or growth in immune 
and non-immune systems for maintenance of health or 
induction of diseases [5–8, 35–39, 191–202]. Discussion 
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on the time course kinetics and mechanisms of actions of 
receptor molecules presents a complex molecular universe 
with unique or shared features that is beyond the scope 
of this perspective. Suffice to note that defining only the 
roles that insulin receptors play in health or induction of 
major diseases such as diabetes and cardiovascular com-
plications or carcinogenesis is a huge topic and yet to be 
fully understood [5–8, 39, 89, 202–207]. Analyses of a 
wide range of receptors or pattern recognition molecules 
(‘biological signatures’) that were defined as constituent or 
designer receptor molecules [5] are outlined below to bet-
ter appreciate the crucial roles that these molecules play 
in maintenance of health or induction of tolerance in car-
cinogenesis: [5, 39, 126, 174, 202–208, 212–215].

Constituent: innate and adoptive receptors and surface 
molecules
Constituent receptors and surface molecules are essential 
(innate) members of the embryonic growth and devel-
opment. They are also synthesized and/or regenerated 
after birth for routine maintenance of enormous biologi-
cal activities and molecular schedules of organs/tissues 
functions throughout life. Constituent receptor molecules 
are involved in extracellular and intracellular signaling, 
actions of hormones, metabolites, cytoplasm or nuclear 
and genomic transporters/enzymes, mitochondrial mem-
brane trafficking, carrier proteins, neuronal transporters, 
or related surface molecules that routinely contribute 
to the physiology of immune or non-immune systems. 
Examples of such constituent pattern recognition recep-
tors are the various insulin receptors for glucose transport 
or metabolism in insulin-dependent (e.g., muscle, adipo-
cytes or liver) or insulin-independent tissues (e.g., vas-
culature, brain, neuronal tissues, retina, kidneys). These 
receptors are required during fetus growth and organ 
development and for maintenance of health throughout 
life [5, 7, 39, 125, 126, 130, 151, 157, 158, 171, 202–207].

After birth, each of the genetically-determined recep-
tor molecules are strongly influenced by the signals they 
receive from the environment and become adaptable or 
programmable to the quality of nutrition (initiated from 
mother’s milk or consumed baby formula) and exposures 
to a variety of bioactive agents, microorganisms, environ-
mental chemical and biological hazards. Modifications of 
constituent receptor molecules that occur after birth seem 
to parallel the development of mitochondria and Yin–Yang 
of effective immunity as infant becomes independent 
from the protective environment of placenta and requires 
adaptation and reprogramming to the atmospheric oxy-
gen (see above). Major changes in constituent receptors 
occur in the gastrointestinal and upper respiratory tracks, 
skin or perhaps ocular tissues. Therefore, constituent/
innate receptor molecules are capable of maturation or 

adaptation to gene-environment interactions and inter-
dependent shifts or synergies with induced receptor mol-
ecules for maintenance of health or induction of diseases.

Induced, ‘Designer’ or pattern recognition receptors (PRRs) 
and surface molecules
‘Designer’ or induced receptors often present transient 
functions when tissue is exposed to specific stimuli (e.g., 
allergen, pathogens, certain foods, carcinogens, bio-
logical, chemical or environmental hazards) [5, 39]. 
Stimuli-induced specific toll-like receptor molecules 
(TLRs-1-9) that signal for expression of specific cytokine 
and chemokine receptors or antibody bindings (e.g., IgE-
fcεR, IgGγRs, IgARs) and related surface molecules are 
examples of ‘designer’ or induced receptor or surface mol-
ecules during sensitization or activation of immune cells. 
Receptors with short half-lives may fit the profile of either 
or both constituents and induced. These receptors include 
a wide range of molecules for ion channels, including acti-
vation-induced enhanced Ca2+ permeability, expression 
of receptor potential channels such as transient receptor 
potential cation channel, subfamily 4 (TRPM4), TRPC 5, 
in combination with STIM1 and CRACM1 that contrib-
ute to FcεRI-induced Ca2+ influx during MCs degranula-
tion [5, 39, 99, 101, 151, 157, 158, 171, 182].

Pattern recognition receptors (PRRs) and induction 
of immune tolerance in multistep carcinogenesis
Initiation of immune responses in antigen presenting 
cells (APCs) toward microbials/pathogens or defective 
cancerous cells (foreign elements) is mediated through 
a number of pathogen recognition molecules or recep-
tors including specialized toll-like receptors-TLRs (e.g., 
TLR1-9). Stimuli-induced expression of TLRs contributes 
to the differential recognition of molecular structures or 
sub-structures of pathogens for specific sensitization and 
activation of APCs and appropriate response. The impor-
tant roles that TLRs, decoy (dRs) or pattern recognition 
receptor molecules (PRRs) play in defense of body for 
activation of innate or adaptive immune or non-immune 
pathways for generation of death factors, pro-, and anti-
inflammatory responses for human development or 
initiation or termination of acute or chronic inflamma-
tory processes, immune tolerance and cancer have been 
extensively studied [5, 7, 39, 67, 72, 79, 157–162, 191, 
194–207, 210–217].

Decoy receptor molecules are agonist-binding proteins 
that sequester inflammatory cytokines and signaling 
receptor components during termination of acute inflam-
mation (Yang). Structurally, decoy receptors are incapable 
of participating in signaling receptor complexes. Decoy 
receptors act as promoters or inhibitors of proliferation 
of immune and non-immune cells and contribute to host 
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immune homeostasis or induction of ‘tolerance’ or ‘intol-
erance’ in ‘mild’, ‘moderate’ or ‘severe’ immune disorders 
or multistep carcinogenesis [5, 39]. The cytokine receptor 
dual function (decoy behavior) was originally defined for 
IL-1 (IL-1dR) and IL-2 (IL-2dR) receptors. Briefly, decoy 
or specialized receptors and related surface molecules are 
involved in a wide range of biological activities such as 
binding to immunoglobulins/antibodies (e.g., MCs-IgE-
FcεR; MΦRs, IgM Rs or IgGRs, mucus-secreting IgARs), 
histamine (HRs) or surface molecules (e.g., CD 11, CD22, 
CD40,CD80, CD83, CD86), CD86, CAIX, integrin, TNF-
Rs, IL-1Rs, indolamine 2,3 dioxygenase, CAMs, ECM). 
Other receptor molecules that are able to sequester 
ligands and participate in termination of inflammation or 
proliferation of immune or non-immune cells or cancer 
growth and angiogenesis include receptor molecules for 
MCSF, iNO, PGE2 and/or low level histamine [5, 7, 39]. 
Some decoy receptors such as IL-1dRs have been iden-
tified for regulation of other cytokines such as IL-8, a 
member of the IL-1 family, and TNFR superfamily (e.g., 
osteoprotegerin) [5, 39, 79, 191–196, 209–217].

An extensively studied cytokine and decoy receptor 
function that is involved in inflammation and multistep 
carcinogenesis is tumor necrosis factor-alpha (TNF-α), a 
cysteine-rich cytokine and its receptor molecules (TNFR-
1, TNF-Rp55, TNF-Rp75). The TNFRs act as transponders 
of TNF by receiving and transmitting signals and are able 
to trigger several biologically different functions during Yin 
and Yang of acute inflammation (circadian biorhythms) for 
maintenance of tissue homeostasis and elimination of host 
cells with damaged DNA. A wide range of immune dis-
ruptors, extrinsic/exogenous or intrinsic/endogenous are 
able to induce synthesis and production of TNF-α and its 
receptor molecules in a variety of cell types [e.g., MΦs, T 
cells (Th1, Th2), DCs, MCs or keratinocytes]. TNFRs also 
have proliferative capabilities for growth of fibroblasts or 
thymocytes and induction of expression of mitochondrial 
or cytoplasmic superoxide dismutases (SODs) to termi-
nate acute inflammation (Yang) during wound healing [5, 
39, 126, 191, 194, 196, 209–211].

Toll-like receptors (e.g., TLR1 and TLR2) are known to 
recognize and bind to ligands of specific molecular pat-
terns of microbioms such as the tri-acyl lipopeptides, 
lipoarabinomannan or bacterial wall peptidoglycan 
(PGN) and lipoteichoic acid (LTA), and phospholipo-
mannan of the bacteria (e.g., mycobacterium tuberculo-
sis, Staphylococcus aureus). For example, LPS-induced 
expression of TLRs leads to activation of immature DCs 
and differentiation and migration of appropriate phe-
notypes from peripheral tissues to lymphoid organs to 
activate naïve T cells (T0) and upregulate expression of 

major histocompatibility complexes (MHC I and II) and 
co-stimulatory surface molecules. The actions are fol-
lowed by expression of other pro-inflammatory cytokines 
and chemokines for destruction of microbial (Yin, catab-
olism). The actions require high energy production from 
OxPhos in mitochondria. Stimuli-induced expression of 
TLRs is associated with induction of IL-1R that form a 
group of superfamily regulatory proteins with shared 
and special features for signaling to intracellular domains 
to induce expression of other cytokines at extra-, and 
intra-cellular levels and for recruiting adaptor molecule 
response such as myeloid differentiation (MY 88 gene) 
and formation of receptor-adaptor complex domains for 
proper immune responses [5, 35–39, 83, 201, 212–215].

Review of data on bacterial or viral infections on mod-
els of liver injury or influenza infection-induced lung 
tissue damage and lysis of epithelial cells shows exagger-
ated immune cell activation and increased expression 
of interleukin (IL) receptor-associated kinase M (IRAK-
M) to protect tissue damage [5, 35–39, 190–201]. These 
and related data suggest the limited immunopathology 
protection of IRAK-M in tissue without influencing or 
decreasing the viral clearance. Therefore, it seems that 
expression of IRAK-M protects, to some degrees, damag-
ing the lung, or perhaps other epithelial tissues, and pre-
venting complications of asthma. Expression of IRAK-M 
also limits neutrophil-induced damage to tissue while 
improve tissue remodeling. Data on TLR7-induced MΦs 
activation (Yin, M1 phenotype?) and tolerance (Yang, 
M2, TAM phenotype?) seem to accompany an elevated 
expression of IRAK-M, decreased expression of TNF-α, 
followed by expression of NF-κB, p38 and stress-acti-
vated protein kinase (SAPK) within the protein family of 
mitogen-activated protein kinases (MAPKs).

Induction of tolerance involves increased expression of 
IRAK-M and sulfhydryl domain-(SH2) containing protein-
tyrosine phosphatase (SHP-1) activities and 2 subgroup 
of MAPKs, c-Jun-NH(2) N-terminal kinase (JNK) and 
p38 MAPK pathways that signal for immune suppression. 
Depending on the extent of oxidative stress these events 
that signal for wound healing are potentially involved in 
temporary or permanent dysfunction of mitochondria 
to avoid oxidative damage to tissues [5, 39, 190–200]. 
Involvement of SH-containing proteins in IRAK-M activ-
ity, acting as anti-oxidants and scavengers of free radi-
cals (oxidants), supports mechanisms of termination of 
inflammation (Yang events) that we described for acute 
inflammation [5, 36–40]. Lagler et al. [198] demonstrated 
that activation of TREM-1 during the early Streptococcus 
pneumonia infection resulted in a decreased expression of 
lung IRAK-M and elevated pro-inflammatory cytokines, 
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suggesting that low expression of IRAK-M is mediated 
by TREM-1 to promote efficient early bacterial clearance. 
Therefore, ‘tolerization’ and the associated expression of 
IRAK-M may act to prevent liver cell death. LPS-induced 
expression of TNF-α was associated with a lack of IRAK-
M induction in liver cirrhotic lymphocytes [196].

Similar reports demonstrate that the mannose recep-
tors and C-type lectin-induced DCs’ specific intercellular 
adhesion molecule-3-grabbing non-integrin (DC-SIGN) 
binds to Mycobacterium tuberculosis cell wall com-
ponents called mannose-capped lipoarabinomannans 
(Man-LAMs) [213]. Furthermore, Man-LAMs inhibit 
LPS-induced IL-12 p40 production, NF-κB activation 
and IRAK-1-TRAF6 interactions.

The action is accompanied by increased IRAK-M 
expression [5, 79, 213].

The author suggested that the molecular complexes 
associated with immune suppression for induction of 
tolerance via IRAK-M, if not the same as decoy recep-
tors (e.g., ILdR) that are expressed during polarization of 
immune cells (Yang pathways), they operate on similar or 
complementary regulatory processes and follow similar 
biological principals for maintenance of health or initia-
tion of diseases [5].

Cancer; an induced disease of twentieth 
century facilitated by decision makers! Role 
of virus‑contaminated polio vaccines and sharp 
increased in cancer incidence and mortality 
and other diseases. Creation of a sick 
drug‑dependent society for corporate profit
In this section, it is important to first remember that the 
role of pathogens (viruses, parasites and bacteria) in the 
induction of acute or chronic inflammatory and infectious 
diseases or cancer has been documented for over a century 
[2, 5, 7, 10, 20–24, 39, 40, 56, 122, 123, 128, 155, 169, 216]. 
Secondly, while in the last century advances in develop-
ment of antibiotics, better hygiene and modern technolo-
gies improved longevity, the aging populations in America 
(current baby boomers) and the younger generations are 
not healthier compared with the previous generations at 
the same age [5, 7, 16, 20, 39, 175, 176, 219, 222–224]. In 
1900s, the estimated risk of cancer was one in every 20 
individuals (5%). The rate coincided with the normal low 
risk of cancer as a hereditary disease in the general popula-
tion. Furthermore, in 1940s (four decades later), before 
vaccinating the American public with virus-contaminated 
polio vaccines, 1/16 individuals (approximately 6%) devel-
oped cancer (1% increase in cancer incidence over 4 dec-
ades), according to available statistics. However, since 
1955s/1960s after public (current baby boomers) con-
sumed virus-contaminated polio vaccines (injection or 
‘sugar pills’), the cancer incidence and mortality and 

numerous other neurological and autoimmune diseases 
sharply increased [5, 7, 16, 39, 79, 89, 175, 176, 219, 222–
224]. In 2013 (six decades after initial consumption of con-
taminate vaccines), the American Association for Cancer 
Research (AACR) announced that 1/3 (33%) of all women 
and 1/2 (50%) of all men develop cancer in their life time; 
that is up to 10 folds increase in the deadly incidence of 
cancer in the last six decades! [5, 7, 16, 20]. In 1955, deci-
sion makers in medical/cancer established ignored the 
existing data that viruses cause cancer. They also down-
played the serious safety concerns and warnings of a com-
petent and devoted professional at NIH (Bernice Eddy, 
MD, microbiologist) who discovered that Sabin polio vac-
cines (prepared in monkeys’ kidneys) were contaminated 
with live viruses [e.g., simian virus (SV-40) and other filter-
able viruses]. This American tragedy significantly damaged 
the health of the last 3 generations in America and to lesser 
extent, health of other developed nations who consumed 
the contaminated vaccines [5, 7, 11, 13, 14, 16]. Since the 
1955s, the immunity of old and young have been further 
weakened by heavy publicity to inoculate the individuals 
with other pathogen-specific vaccines and their unhealthy 
ingredients and adjuvants (e.g., Swine flu, HPV, hepatitis B 
or C, measles, meningitis, EBOLA, herpes) or even BCG, 
whether or not the vaccines are contaminated with live 
pathogens. The younger generations who are also exposed 
to a wide range of biological and environmental hazards or 
low level carcinogens suffer from a wide range of immuno-
logical disorders (e.g., allergies, asthma, neurological and 
autoimmune diseases), conditions that are features of age-
associated chronic illnesses [5, 7, 11, 12, 15–25, 74, 78, 89, 
155, 202, 223–225, 246].6, 7, 8, 9 While the decision makers 
insist that cigarette smoking is the major factor in the 
increased risk of cancers, several studies suggest that not 
all smokers, even heavy smokers develop lung cancers. 
Reports on none-smokers or never smokers who develop 
lung cancer suggest that such data overlook other more 
important contributing factors, particularly infective 
agents or pathogen-specific vaccines in the development 
of asthma, tuberculosis, lung and other site-specific 

6  Tom Valentine: Polio vaccine spreads cancer. Dark Politricks. Part II, 
SHOAH, June 21, 2011.
7  Brian Shilhavy. The Truth About Vaccines: DocuSeries with 60 Top Health 
Experts Reveal What is Censored in Mainstream Media, Jan 13, 2018; U.S. 
Government continues to pay out millions to victims injured by the flu shot. 
Reflects report from Department of Justice (DOJ) on cases settled for vaccine 
injuries and death mandated by National Vaccine Injury Compensation Pro-
gram (NVICP), March 8, 2018.
8  Daily Mail-UK Media Publication.”HPV vaccine destroying the lives of 
‘Thousands’ of girls”, Accessed from Health Impact News, Sept. 28, 2017.
9  Gordon Duff. Is American medicine a war crime? Veterans Today, July 3, 
2012. http://www.veter​ansto​day.com/2012/07/03/is-ameri​can-medic​ine-a-
war-crime​/.

http://www.veteranstoday.com/2012/07/03/is-american-medicine-a-war-crime/
http://www.veteranstoday.com/2012/07/03/is-american-medicine-a-war-crime/
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cancers [5, 7].10 American health status ranks last among 
other healthy nations, despite the fact that USA invests the 
highest amount of resources for healthcare [7, 16, 20, 219, 
222].

In the last six decades significant increased in soft 
tissue B cell-derived lymphomas (e.g., aggressive or 
non-aggressive forms of acute leukemia, lymphocytic 
leukemia, Burkett’s’ lymphoma, myelocytic leukemia, 
EBV-positive large B cell lymphoma in elderly, germinal 
center lymphoma or Kaposi sarcoma-associated herpes 
virus-encoded proteins in lymphoma) as well as solid 
tumors (e.g., liver, lung, breast, prostate, thyroid, pan-
creas, colon, ovarian) have been reported [5, 7, 13, 16, 20, 
67, 72, 89, 101, 175, 223].

In describing cancer, every few years, cancer decision 
makers come up with some number and story and state 
that cancer is ‘too complex’; cancer is too many diseases 
(100 or 200 diseases). Recently, cancer was claimed to be 
1000 diseases to legitimize spending funding on data 
sharing and aggregates!11 It seems that finding too many 
pieces of broken molecules in the cancer immune tsu-
nami make decision makers to claim that cancer is 1000 
diseases! What and how data sharing would help solving 
cancer problems is another puzzule! All data that are 
worthy (or not worthy) are published in various formats. 
Computational biology and data aggregation have their 
limits to make sense of biological activities to solve can-
cer problem or think about the solution. This is just 
another game to further postpone solving the mystery of 
cancer that the cancer establishment created six decades 
ago for maintaining control of a sick and drug-dependent 
society. Cancer has been made as a myth (100 or 1000 
diseases) and money machine that cannot be solved. This 
reminds us of Phillip Zelikow “The creation and mainte-
nance of public myths exert a powerful influence” [7].12

The clinical features, morphologies and pathogenicities 
of site-specific cancers and how to treat them, are the 
topics of numerous highly expensive clinical trials and 
basic science investigations, using modern specific tech-
nologies and models of tumors [5, 7, 16, 20, 39, 76, 79, 80, 
81, 90, 92–100, 115, 116, 119–134, 182, 226–243]. How-
ever, the rates of failure in claimed ‘targeted’ drugs, ‘pre-
cision’ or ‘personalized’ medicine for solid tumors are 
90% (± 5) according to governmental or private 

10  Holtzman A: Dr. Leon Dmochowski and Dr. R. Lee Clark—Truth 
Tobacco Industry Documents.5-page Letter, to Paul D. Smith, VP and Gen-
eral Counsel, Philip Morris Inc., January 06, 1965. https​://indus​trydo​cumen​
ts.libra​ry.ucsf.edu/tobac​co/docs/[ID], Ness Motley Law Firm. https​://indus​
trydo​cumen​ts.libra​ry.ucsf.edu/tobac​co/docs/qymd0​040—Bates Number: 
10051001761005100180 [7].
11  The Cancer letter, “His six-month ‘listening tour’ almost over, Sharpless 
discusses his vision for NCI”, February 23, 2018.
12  Phillip Zelikow was one of the architects behind creation of war against 
powerless nations.

organizations [5, 7, 16, 39, 43, 79, 227–235, 237].13, 14. 15, 
16 Decision makers in cancer/medical community con-
tinue to fraudulently use wrong approaches (‘molecular 
false flags’, based on false foundations) in cancer research 
and clinical trials. Endless genetic mutations have been 
identified in the molecular tsunami of site specific can-
cers for drug development that at best postpone death-
sentence of patients for short durations [5, 7, 20, 45]. In 
such projects little regards are given to consider the seri-
ous compensatory immune mechanisms when such 
drugs (poisons) cause cancer relapse, cachexia, thrombo-
embolisms, metastasis and multiple organ failures that 
kill patients (Fig. 4) [5–7, 16, 38, 39, 43].

A great deal of taxpayers funding are directed on detailed 
mechanisms of structures and substructures or potencies 
of tens of thousands of evolving microorganisms (viruses, 
bacteria, parasites) or chemical and biological carcinogens 
and environmentally hazardous agents, as well as end-
less mutated genes of growth factors or enzymes in the 
molecular tsunami of cancer environment. However, little/
no efforts have been invested to understand what initiates 
pathogen-induced alterations of immune response dynam-
ics that lead to immune tolerance, loss of mitochondrial 
bioenergetics (biological rhythms) and multistep carcino-
genesis [5–8, 16, 39, 43, 79].

Unlike the stories that are made up by decision mak-
ers in cancer community that cancer is 100 or 1000 dis-
eases which drag solving cancer problem, our accidental 
discoveries on experimental models of acute and chronic 
inflammatory responses demonstrated systematic devel-
opmental phases of immune dysfunction that resulted in 
tumorigenesis and angiogenesis. Analyses of related data 
and extension of these fundamental studies demonstrate 
that cancer is only ONE disease. Cancer is induced as the 
results of loss of balance in tumoricidal (Yin) vs tumori-
genic (Yang) properties of effective immunity (immune 
tolerance) or loss of differential bioenergetics to destroy 
cancerous cells (Fig. 4) [5–7, 20, 39, 43].

Although recent attempts in immunotherapy seem 
more logical, the same reductionist views to target one 
or two pathways [e.g., promote dendritic cells program 

13  In February 2012, National Cancer Institute (NCI) Board meeting 
(NCAB) report on cancer therapy, it was admitted that success rate being 
15%; in March 2012, during Metabolon conference in Bethesda, Maryland, 
company professionals reported that 95% of cancer drugs that are developed 
fail [7].
14  June 1, 2012, E Berger (CNBC program) in an interview with then presi-
dent of MD Anderson, DePinho confirmed that 95% of cancer drugs for 
solid tumors fail—http://blog.chron​.com/scigu​y/2012/06/m-d-ander​son-
presi​dent-goes-on-cnbc-extol​s-his-own-compa​ny.
15  Brill S. (2013) Special Report, Bitter pill: Why medical bills are killing us. 
Time (USA edition) March 4, 2013, 16-55.
16  Beil L. (2012) How much would you pay for 3 more months of life? 
Newsweek, 9/3/2012. Vol. 160, Issue 10, 40-44.

https://industrydocuments.library.ucsf.edu/tobacco/docs/%5bID%5d
https://industrydocuments.library.ucsf.edu/tobacco/docs/%5bID%5d
https://industrydocuments.library.ucsf.edu/tobacco/docs/qymd0040
https://industrydocuments.library.ucsf.edu/tobacco/docs/qymd0040
http://blog.chron.com/sciguy/2012/06/m-d-anderson-president-goes-on-cnbc-extols-his-own-company
http://blog.chron.com/sciguy/2012/06/m-d-anderson-president-goes-on-cnbc-extols-his-own-company
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death ligand 1 (PDL-1) or T cell receptors] failed patients 
[5, 7, 20, 39, 43]. These expensive projects are not prop-
erly designed, validated or evaluated by competent and 
independent scientists.

Policy makers who appropriate funding for cancer 
research and therapy have no clue on how to assess wor-
thiness of the tremendously expensive projects that are 
highly promoted by members of the cancer establish-
ment. Such projects are considered ‘molecular false flags’, 
based on false foundations that destroy the precious lives 
of patients and drain resources to create huge corporate 
profits for the establishment (Fig. 4) [5, 7, 16, 20, 39, 40, 
79, 95, 96, 175, 176, 226–235, 237–241].

Milton Friedman best described the situation “If the 
government is put in charge of Sub Sahara, in 5  years 
there will be a shortage of sands”.17

17  Milton Friedman, Nobel Laureate in Economic Sciences (1976), for his 
achievements in the field of consumption analyses, monetary history and 
theory and demonstration of the complexity of stabilization policy. Source: 
The Nobel Foundation.

Decoy receptors‑IRAK‑M and cancer immune 
tolerance: loss of biorhythms in increased entropy 
and ‘Dark Energy’—toxicity to normal tissue
Recent data on computational biology or histobiologi-
cal experiments by West and colleagues [78] or Pitt [208] 
provide insightful information that cancer entropy and 
higher temperature are the results of perturbations in 
mitosis, cell plasticity and aneuploidity in site-specific 
tissues. As detailed above, dysfunction of mitochon-
drial bioenergetics parallels loss of effectiveness in Yin 
(tumoricidal) and Yang (tumorigenic) properties of acute 
inflammation leading to polarization of immune and non-
immune systems in favor of growth promotion pathways. 
The increased utilization of glucose by Crabtree and/
or Pasteur Effects promotes disorderly growth of cancer 
masses, conditions that are toxic to normal cell survival 
[5, 55, 79, 92, 139, 185, 188, 189]. Abnormal cell division/
proliferation (mitosis), aneuploidity and increased phe-
notype plasticity in cancer are associated with genomic 
instability, increased entropy and temperature, compared 
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stability, expression and co-expression of pro-, and anti-inflammatory factors (unresolved inflammation), alterations in mitochondrial and ribosomal 
functions and loss of acid–base balance in tissues that would increase risk of carcinogenesis. The complex scheme also depicts that development of 
cancer drugs that are based on identification of numerous mutated/defective genes or growth expression products, at late stages of cancer (within 
cancer molecular tsunami) are claimed as cancer ‘targeted’ therapy, ‘precision’ or ‘personalized’ medicine. Drug-induced life-threatening side effects 
that cause multiple organ failures (MOFs) and patients’ death are also depicted. See text
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with surrounding tissue [5, 39, 78, 79, 208]. It is suggested 
that disturbance in the synchronized biological circadian 
rhythms of tissues could increase entropy (chaos) and 
temperature and create ‘dark energy’ for enhanced growth 
of cancer masses. Induction of ‘dark energy’ and entropy 
in cancer masses could draw energy from surrounding 
normal cells (starvation), a potentially important factor 
in patients’ fatigue. The use of anti-inflammatory agents 
(e.g., aspirin) for correcting the cancer entropy or per-
haps influencing stability of chromosomal function [5, 
7, 35–40, 78, 79, 208] is intriguing. Whether expression 
of intrinsic factors [e.g., constituent or induced recep-
tors (PM1K, PM2K), mTOR/PI3K, IRAK-M, IL-1dRs, 
CAMs, PGE2, indolamine 2,3-dioxygenase, NFkB] that 
are anabolic during wound healing or induction of can-
cer growth act differently from those anti-inflammatory 
agents (e.g., aspirin) that are reported to improve or lower 
cancer entropy are among important knowledge gaps that 
deserve further study. The findings that NO donor mol-
ecule (S-nitrosoglutathione-GSNO) induces IRAK-M in 
LPS-activated monocytes in the presence of TNF-α are 
also interesting and support our definitions of tumoricidal 
and tumorigenic arms acute inflammation [5, 7, 35–40, 
79, 89, 92, 121, 175, 193–200, 209–211].

These and related reports demonstrate elevated levels 
of IRAK-M in blood monocytes of patients with chronic 
inflammatory bowel disease or myeloid leukemia and 
metastasis or models of influenza also support the wound 
healing effects of IRAK-M [5, 39, 79, 89, 175, 191–201]. 
The reports that monocytes co-cultured with tumor 
cells or supernatant of tumor cells demonstrated signifi-
cant decrease in expression of apoptotic factors such as 
TNF-α while increased expression of IRAK-M further 
support induction of immune suppression in carcino-
genesis. Tumor inoculation studies of IRAK-M deficient 
models showed resistant to melonoma and fibrosarcoma 
tumor growth suggesting enhanced anti-tumor function 
of effector lymphocytes in the absence of IRAK-M [5, 
196, 198, 213, 214]. Tumor-derived factors such as acidic 
gangliosides (sialic acid-containing glycosphingolipids), 
hyaluronan, glycosaminoglycan or C-type lectin that are 
generated in the extracellular matrix or plasma mem-
brane of different cell types (e.g., chondriocytes, MΦs or 
DCs) are capable of stimulating expression of IRAK-M 
that would inhibit danger signals (e.g., TLRs) in mono-
cytes leading to immune suppression.

The following further summarizes insights into the 
pathways that are involved in induction of tolerance and 
loss of bioenergetics in chronic diseases or cancer [5, 7, 
39, 79, 89, 125–133, 139–154, 168–170, 174, 178–201]:

Role of mTOR/PI3K, decoy receptors and IRAK‑M 
in induction of tolerance in carcinogenesis
The mammalian or mechanistic target of rapamycin 
(mTOR) is a serine/threonine kinase (also known as 
DRAK2) and member of the phosphoinositide 3-kinase 
(PI3K)-family of kinases (PIKK). The super-family of 
mTOR/PIKK pathways is directly and indirectly involved 
in regulation of a wide range of tissue activities; metab-
olism, proliferation, differentiation, membrane lipid 
biosynthesis, growth and development, autophagy and 
immune cell responses [5, 39, 79, 178, 201, 260–267]. The 
two major constitutive (innate, embryonic) and induced 
complexes of mTORC1 and mTORC2 seem to contrib-
ute to tissue function and longevity. Molecular defects 
or immature biosynthesis of any members of these com-
plex pathways have been involved in initiation of a wide 
range of metabolic disorders (e.g., diabetes and cardio-
vascular complications), infectious diseases (e.g., tuber-
culosis, COPD), neurological problems (e.g., autism, 
epilepsy, Alzheimer’s, Parkinson’s), site-specific cancers 
(e.g., breast, bladder, peritoneal metastasis) and other 
age-associated chronic illnesses. The pathways involv-
ing immune cell tolerance (immune suppression) are 
implicated in clinical trials such as allograft acceptance 
in transplanted host tissues in models of skin allograft, 
bone marrow or stem cell transplantation for chemother-
apy-treated soft tissue sarcoma [5, 39, 79–83, 89–100, 
116, 129–133, 245, 247–249]. However, mechanism of 
actions or usefulness of embryonic stem cell transfer for 
cancer therapy are debatable and yet to be understood or 
confirmed.

In general, growth hormones (GHs) modulate glucose 
uptake in insulin-dependent tissues (e.g., muscle, adipo-
cytes). The growth hormones promoting signals involve 
IGF-1-independent pathways and mTORC1 complex 
to activate Rag-GTPase family of enzymes and lipid 
metabolism. Low levels of plasma lipid were suggested to 
promote insulin sensitivity and signaling of PI3K/AKT/
mTOR [5, 7, 39, 40, 79, 193, 201–207]. Furthermore, lon-
gevity seems to be associated with altered activities of 
membrane-enzyme complex PI3k-AKT-mTOR pathways.

Integration of relevant data shows that PI3K/AKT 
is a common signaling pathway for activation of onco-
genes through hypoxia, a major stimulus for expres-
sion of VEGF. Several selective inhibitors of PI3Ks (e.g., 
LY294002, ZSTK474, idelalisib, rituximab, SAR405, 
VPS34-IN1) with different effects on genetic altera-
tions are being examined for control of inflammation 
in COPD, other respiratory diseases or autoimmune 
and neurodegenerative diseases, or for treating several 
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cancers (e.g., CLL, non-hodgkin’s lymphoma, follicular 
lymphoma, breast cancer, osteoclast survival) [5, 43, 217, 
218, 233, 241–245, 249]. The diverse roles of these inhibi-
tors have primarily been shown in HIF-1α and HIF-2α 
and endogenous VEGF response to hypoxia and suggest 
that the inhibitors of different classes of PI3Ks inhibit 
and induce synergistically the common oncogenes, while 
basal hypoxia-inducible VEGF was partially inhibited.

Tolerance in gastrointestinal (GI) tract
About 70% of body’s complex immune system is in the 
crucial position of digestive/gastrointestinal track. The 
immune composition in gut-associated lymphoid tis-
sues (GALTs) shares some features with other tissues that 
are responsible for confronting and combating external 
harmful agents. Examples of such tissues are the skin, 
respiratory lung-associated lymphoid tissues (LALTs) or 
conjunctival-associated lymphoid tissues (CALTs) that 
are targets for early sensitization and tolerance (induc-
tion of Th2 phenotypes) against perennial allergens (e.g., 
dust mites, cat epithelium or certain environmental com-
ponents) [5, 7, 8, 31, 36–41, 64, 69, 72, 79, 80, 83, 101, 
106, 137, 156]. The special features of immunity and tol-
erization in GALTs (e.g., increased numbers of plasma 
cells lining of the gut epithelium for production of IgA 
and IgE, TLRs, enzymes and hormones) are required for 
maintenance of homeostasis of gut microbiota (intrinsic 
foreign elements) and ingested foods. In the gastrointes-
tinal tract, tolerance against various GI bacteria (GI flora) 
is likely due to several regulatory/inhibitory complex 
molecules with IRAK-M and related immune suppres-
sive pathways (e.g., dILRs, TNFRs or surface molecules 
receptors) [5–8,  36–41, 64, 69, 72, 79, 142]. Interestingly, 
expression of regulatory receptor molecules (IRAK-M) 
in epithelial lung tissue of asthmatic patients suggests 
induction of immune suppression also involves expres-
sion of adenosine receptors (A2A) and surface molecules 
of CD4+ T lymphocytes that could signal for mitochon-
drial shutdown to prevent damage to the tissue [5, 79, 
142].

An overall review of numerous reports on mechanisms 
of tolerance or ‘intolerance’ (e.g., histamine intolerance) 
suggests that the initial immunity and tolerance occur 
during embryonic-fetus growth in lymphatic-vascular 
tissues, thymus, respiratory and gastrointestinal tracts 
under the low oxygen tension for protection of orderly 
growth. Fetus immunological system, studied in cord 
blood, has Th2 phenotypes; thus bases for protection of 
‘graft-versus-host’ reactions or ‘tolerization’ [5, 69–85, 
202]. After birth and during adulthood and aging pro-
cess, tolerance develops toward commensal microbiota 
and certain endotoxins (e.g., LPS) or infective agents. 
Review of related data suggests that oxidative stress and 

aging (senescence) lead to development of tolerance 
(e.g., expression of IRAK-M, IL-1dRs, TNFdRs, PGE2) 
and/or ‘intolerance’ (e.g., increased allergic responses to 
innocuous or self-components) as contributing factors 
in skewed response network of effective immunity and 
induction of autoimmune or neurodegenerative diseases 
or cancer [5, 7, 36–40, 67, 75, 157–166, 218]. Numerous 
defects in cellular and membrane functions, biological 
components and receptor molecules [e.g., histamine, hor-
mones (e.g., insulin-resistance, resistin), enzymes (e.g., 
kinases, diamine oxidase, HNMT), mutated genes, hypo-, 
or hypermethylated epigenetic modifications, polarized 
innate or adaptive immune cells and over-, or under-
expressed inflammatory factors (e.g., M-CSF, IL-1dR, 
TNF) myeloid-derived suppressor cells, cells, impaired 
DNA repair pathways, autophagy or mitophagy] may be 
considered factors for induction of tolerance or intoler-
ance in the development of ‘mild’, ‘moderate’ (intermedi-
ate) or ‘severe’ immune disorders including cancers [5, 
39, 58, 59, 69, 84, 88, 108, 109, 116, 126, 129, 153, 154, 
156–158, 164, 201–203, 215, 229, 231, 249, 250]. In the 
experimental models of acute and chronic ocular inflam-
matory diseases that we established in CALTs [5, 29, 31], 
whether the chronic stimulation of tissues that led to 
tumorigenesis and angiogenesis involved induction of 
tolerance by decoy receptors or IRAK-M during polari-
zation of immune cells (e.g., TAM) are among important 
knowledge gaps that remain to be studied.

Nearly all age-associated chronic diseases such as 
metabolic disorders [e.g., type 2 diabetes mellitus (adult 
onset, T2-DM), cardiovascular complications, stroke] or 
neurodegenerative and autoimmune diseases are features 
of altered immunity involving polarization of immune 
cells and skewed expression of pro-inflammatory media-
tors, receptors or surface molecules (e.g., IL-6, TNFRs, 
M-CSF, CD11, CD34). In the case of diabetes mellitus, 
insulin-insensitivity are reported to increase the risk of 
several cancers, while it reduces risks of other cancers 
[5–7, 36, 202–207]. Whether accessibility of specific tis-
sues to the released apoptotic factors cause reduced 
risk of specific cancers in diabetes are among questions 
that await future investigations. Related reports show 
that PI3K/AKT pathways are involved in glucose trans-
porter-1 (GLUT-1) activities [5, 53–55, 81, 127, 175, 
187–190]. Other kinases such as glycogen synthase 
kinases (GSK-3α, GSK-3β) play dual roles (activation and 
deactivation) in diverse biological activities, for growth-
promoting and differentiation or growth-arresting (apop-
tosis), metabolism and neuronal function, embryonic 
development or carcinogenesis. The mechanisms of 
action of GSK-3 are additional examples of biorhythms 
or Yin–Yang of immunity, playing as tumor suppressor or 
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tumor promoter and involving pathways of PI3K/PTEN/
Akt/mTOR, Ras/Raf/MEK/ERK [5, 39, 98–101, 127, 128].

Use of diabetes drugs such as sulfonylurea and met-
formin seems directly influence ATP-sensitive k+ chan-
nels for enhancing membrane depolarization of pancreatic 
beta cells and stimulating exocytosis of insulin granules [5, 
54, 89, 180, 202–207, 253]. The suggested mechanisms and 
clinical values or efficacy and safety of such agents in diabe-
tes are controversial. In general, these agents seem to sup-
port that cellular exocytosis is energy-dependent processes 
in immune and non-immune cells/tissues. Diabetes (hyper-
glycemia) and related metabolic disorders are considered 
immune disorders that initially influence the metabolic 
pathways for glucose transport and metabolism. Impaired 
glucose transport and utilization in these metabolic disor-
ders, are associated with induction of Il-6, T cell activation 
and generation of memory or regulatory cells (Treg), path-
ways that require additional sources of energy from fatty 
acid oxidation for glycolysis and glutaminolysis, as alterna-
tive or compensatory mechanisms for impaired mitochon-
drial oxidative phosphorylation. Under these conditions, 
cell surface ligation and activation of membrane phospho-
lipases (e.g., PLC) or perhaps metabolism of arachidonic 
acid (AA) and activation of cyclooxygenase/lipooxygenase 
pathways, as well as, release of low level histamine, would 
allow mobilization of intracellular Ca2+ under impaired ER 
and T cell-dependent plasma membrane influx of Ca+2 and 
other ion channels [e.g., calcium release-activated chan-
nels (CRAC), H+/Ca2+/K+ or Na+ exchangers] [5, 39, 47, 
81, 140–143, 179, 180, 184, 203, 239, 253]. Hyperglycemia 
of diabetes could differentially interfere with transport and 
metabolism of nutrients, amino acids or solutes/osmolytes, 
(e.g., vitamin C, pyridoxine/pyridoxal phosphate, myo-
inositol, leu, ala, gly) in tissues that are insulin-dependent 
or insulin-independent for glucose transport and metabo-
lism and could change extra-, intracellular structures (e.g., 
protein/lipid glycosylation, basement membrane collagen 
synthesis) [5, 7, 36, 39, 79, 203–207, 221, 250–260]. Related 
data on obesity show low-grade inflammation and impair-
ment of insulin receptor signaling and insulin resistance 
are mediated through the complex and interdependent 
stress kinases [e.g., p38, mitogen-activated protein kinase 
(MAPK), c-Jun NH2-terminal kinase (inhibitor of NF-kB 
kinase-β-IKKβ), AMP-activated protein kinase, protein 
kinase C, Rho-associated coiled-coil containing protein 
kinase, RNA-activated protein kinase] to phosphorylate the 
key regulators of glucose homeostasis in various tissues. 
The phosphorylation of serine residues of insulin recep-
tors (e.g., IRS-1) results in diminished enzymatic activity of 
PI3K/Akt pathway, important mechanisms that contribute 
to insulin resistance in type 2 diabetes mellitus or induc-
tion of cancer growth [5, 36, 52–54, 102, 178, 203–207, 
221]. Review of a number of reports also suggests that 

insulin-insensitivity and hyperglycemia (glucose toxicity 
and high circulating glucose levels) alter mTOR complexes 
(mTORC1, mTORC2) and mediate several interdepend-
ent pathways of metabolism, ribosomal biogenesis and 
autophagy. Whether caloric restriction (CR) and increased 
insulin sensitivity via decreased signaling in mTOR path-
ways, promotes endocrine factors and lifespan are subjects 
of recent debates [5, 72, 79, 202–207].

Therefore, it is logical to consider that PI3K/AKT/
mTOR activities play crucial and interdependent roles 
in contributing to the induction of tolerance, growth and 
metabolism of tissues that would influence innate/intrin-
sic pathways under hypoxic conditions and mitochon-
drial dysfunction.

Biology of IRAK‑M and soluble hormones in immune 
tolerance: violations of biological circadian rhythms 
in carcinogenesis
Effective immunity requires elaborate and precise com-
munication with a variety of hormones [e.g., estrogen, 
α-melanocyte-stimulating hormone (MSH), insulin, 
TSH, cortisol, adiponectin] that are induced or secreted 
from tissues and organs (e.g., thyroid, neuro-endocrine, 
liver, adrenal glands, adipocytes, breast, ovary, thymus) 
for routine maintenance of health throughout life [5, 7, 
36, 39, 40, 71, 72, 202–207]. These hormones have anti-
inflammatory properties and are often involved in wound 
healing (Yang) events. The actions of these hormones are 
regulated by a number of receptor molecules and inhibi-
tors and their role fluctuate at different stages of life [5, 
7, 39, 74, 75, 262]. For example, review of several elegant 
reports demonstrate that growth promoting factors such 
as adiponectin, insulin or anti-infective mediators that 
induce IRAK-M expression require activation of phos-
phatidyl inositol 3-kinase (PI3K), protein kinase B (AKT/
PKB/mTOR) or ERK pathways to induce macrophage 
endotoxin tolerance and signal for wound healing and 
immune suppression [5, 7, 36, 39, 178–182, 195–207].

Induction of ‘Dark Energy’ in cancer mitosis 
and proliferation: Fatigue syndrome, a working 
hypothesis
As noted above, continued proton pumping and gen-
eration of electricity are required for numerous routine 
cellular activities such as transport of ion/solute and 
metabolites, lysosomal digestion and protein recycling, 
degradation of pathogens’ structural proteins-lipids-
genes for immune recognition, activation and cellular 
proliferation. Proper functioning of mitochondria as 
energy power plant is crucial for proton pumping during 
routine metabolism or fighting against harmful elements 
(intrinsic and extrinsic). Mitochondrial function depends 
on presence and function of essential basic building 
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blocks (e.g., pyruvate-shuttle, pyruvate carrier proteins, 
TCA cycle mediators) to generate energy and main-
tain crosstalk between cytoplasm and mitochondria, at 
moment notice for production of high energy and oxi-
dants to fight pathogens (Yin) and also during downtime 
(Yang) for biosynthesis of intermediates of TCA cycle 
and preservation of energy.

Loss of synchronized network of Yin and Yang of effec-
tive immunity is intimately entangled with energy drain 
and electronic charges of important proteins for integ-
rity of intra-, extra-cellular membrane structures. It is 
suggested that the altered (increased) entropy or tem-
perature creates ‘dark energy’ around cancer masses 
and drain energy from neighboring normal tissues. The 
differential bioenergetics that are required for mainte-
nance of circadian rhythms in health could be shifted/
switched under oxidative stress, during the induction of 
tolerance and mitochondrial shutdown in exchange for 
increased glycolysis, enhanced growth of cancer cells 
and associated increase in entropy and temperature. 
The shifts in energy distribution and enhanced entropy 
around cancerous cells (‘dark energy’) could alter energy 
requiring events of protein electrical charges (e.g., nega-
tive charges, H-bonds, hydrophobic/hydrophilic ratios) 
for proper cellular functions. It is further suggested that 
impaired electrical charges could adversely influence pro-
tein folding that would alter a number of cellular activi-
ties (e.g., water, nutrient and ions channels, transporters, 
structural proteins). Cumulatively, altered energy-requir-
ing biological activities could limit energy utilization in 
normal neighboring cells, a potential factor in symptom 
of fatigue observed in cancer patients. Enhanced ‘dark 
energy’ and entropy create asymmetry that could force 
the normal cells from oscillating at required energy (loss 
of biorhythms) for cell survival (Fig.  5) (manuscript in 
preparation). The extent of progressive complex interac-
tions between growth of tumor cells and host environ-
ment could dictate and direct clinical response outcomes. 
Potential influence of oxidative stress in shifting the ratios 
of innate/adaptive production of mTORC1/mTORC2 
during induction of tolerance and activation of Crabtree 
and/or Pasteur Effects in creating differential entropy and 
‘dark energy’ and disorderly growth of cancer masses are 
important topics that require systematic studies for effec-
tive control of cancer cell growth.

Summary and future directions

While falsely-based science will not hide the scien-
tific truth at the end, it creates confusion and chaos 
that benefit those who gain control of public health 
at high cost to society.

In this comprehensive article, the author presented 
sufficient evidence to suggest that cancer is an induced 
disease of Twentieth century, facilitated by the decision 
makers in cancer/medical establishment when the public 
was immunized by virus-contaminated polio vaccines in 
1955s, despite extensive evidence that viruses cause can-
cer. It was demonstrated that pathogen-specific vaccines 
and ingredients weaken/retard immunity, not promote it. 
Cancer was shown to be the symptom of the loss of dif-
ferential bioenergetics of effective immunity (Yin–Yang) 
that is responsible for fighting and destroying cancerous 
cells or any other intrinsic and extrinsic hazardous mate-
rials. Under immune suppression cancerous cells slowly 
or aggressively take over the machinery of host for its 
enhanced and lawless growth, under hypoxic conditions 
and mitochondrial dysfunction. The energy for abnormal 
growth of cancerous cells is supplied by increased glu-
cose uptake and altered tissue metabolism via glycolysis 
and Crabtree and Pasteur Effects that create ‘dark energy’ 
and entropy, conditions that are toxic to normal cells. 
Induction of ‘dark energy’ is characteristics of disorderly 
growth and proliferation of cancer cells that drain the 
energy of neighboring normal cells, potentially contribut-
ing to the observed fatigues in patients.

It was hypothesized that mitochondria and Yin and 
Yang of effective immunity and biological reprogram-
ming develop after birth when newborn is exposed to 
atmospheric pressure and environmental conditions. 
Longevity and unresolved inflammation were defined 
as alterations in immune and non-immune response 
dynamics. Tardiness of immunity (loss of balance in 
Yin and Yang) leads to induction of ‘mild’, ‘moderate’ or 
‘severe’ immune disorders, conditions that are associated 
with altered mitochondrial function. Insufficient circa-
dian rhythms (skewed biological clocks) were suggested 
to be the results of one or more mutations or deficiencies 
in the circadian clock genes that influence the synchro-
nized communications among biological oscillators (pos-
itive and negative rhythms) or ‘effective acquisition time’ 
of immunity. Lawless growth of cancer cells is peculiarly 
comparable to the orderly (one way) growth of fetus that 
involve activation of trophoblasts factors and constitu-
ent receptors that are required for fetus orderly growth 
under hypoxic conditions (Fig. 5).

The current reductionist approaches to cancer science 
and therapy are conducting numerous out-of-focus and 
fuzzy projects projects on identification of one or com-
bination of mutated genes or expression products using 
expensive and specific technologies as bases for drug 
development. The outcome failure rates of such reduc-
tionist, fraud and chaotic projects are 90% (± 5) that 
destroyed the precious lives of millions, but generated 
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huge corporate profits for the cancer/medical establish-
ment (e.g., government, Big pharma, organizations and 
largest lobbying group and ‘philanthropists’/business-
men who support medical education programs) [5, 7, 
20, 39, 43]. Again, targeting young and old population to 
be vaccinated by pathogen-specific vaccines (e.g., HPV, 
flu, measles, meningitis) weaken (not promote) immu-
nity. The pathogen-specific vaccines and ingredients are 
viewed as ‘antigen overload’ overwhelming or skewing 
immunity to clear and resolve immune/inflammatory 
responses. Tardiness of immune responses is the bases 
for induction of a wide range of health problems such as 
asthma, autoimmune and neurodegenerative diseases or 
cancers in old and young populations.

After investing several trillions of dollars of taxpayers’ 
and private organizations funding for cancer research 
and treatment, the decision makers have yet to seriously 
consider the need for understanding the following scien-
tific common senses and logics:

(a)	 What are the early changes in complex network of 
immune responses that lead to genetic instability, 
loss of biorhythms, mitochondrial dysfunction and 
altered metabolism that lead to immune tolerance 
toward multistep carcinogenesis and angiogenesis.

(b)	 How to develop universal vaccines and prophylac-
tic agents that promote body’s natural immunity for 
maintaining the autonomous, sympathetic and para-
sympathetic or Yin and Yang, biological circadian 
rhythms that are required for improving public health 
and preventing majority of chronic diseases or cancer.

Future research directions require focusing on system-
atic and logical studies that are outlined in the following 
overall topics [5, 7, 20, 39, 72, 175]:

i.	 Time-course kinetics of immune response dynamics 
are fundamental and essential first steps in under-
standing details of host interactions with stimuli 
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Fig. 5  Schematic representation of loss of biorhythms, expression of constituent receptors and induction of tolerance for epithelial–mesenchymal 
transition (EMT) during cancer proliferation and growth. The scheme represents activation of trophoblasts growth factors that are required for pla-
centation during embryonic and orderly fetus growth (constituent) and receptors including pyruvate kinases receptors and hormones. Induction of 
anabolic factors increase lawless growth of cancer cells and increase metabolism through glycolysis under mitochondrial dysfunction and hypoxia, 
features resembling/mimicking aspects of orderly growth of fetus. Expression of embryonic growth factors facilitate increased glucose metabolism 
through glycolysis, Pasteur and Crabtree effects and induction of immune tolerance creating ‘dark energy’ that enhance entropy, mitosis and prolif-
eration of cancer masses, conditions that are toxic for normal cell survival. See text



Page 24 of 31Khatami ﻿Clin Trans Med  (2018) 7:20 

(infective agents, environmental and biological haz-
ards). The extent of damage that specific immune 
disruptors impose on bioenergetics and architec-
tural integrity and function of affected tissues during 
developmental phases of multistep disease processes 
are among important topics that deserve detailed 
studies. Identification of shared or special features of 
early events during host–pathogen interactions that 
alter immune response profiles are among important 
knowledge gaps that require detailed studies.

ii.	 Potential reversibility of early stages of inflammation-
induced immune dysfunction including alterations 
in cellular chromosomal/genetic material that would 
lead to cellular growth promotion and genesis of 
hyperplasia, neoplasia/pre-cancer or cancer-malig-
nancy deserve detailed studies.

iii.	The quality (nature) and quantity of initial acute 
immune responses (strong or weak) and the genera-
tion of histamine and other pro-, or post-inflamma-
tory mediators could influence subsequent responses 
such as the extent of rejection or penetration of anti-
gen in subepithelial tissue, vascular hyperpermeabil-
ity and tissue integrity during Yin and Yang activities 
and clearance of antigen.

iv.	 It is important to understand the influence of mito-
chondrial dysfunction and energy shifts during 
increased glycolytic pathways that result in adaptation 
of cancer cell growth and immune tolerance. Induction 
of tolerance could change mitochondrial-dependent 
activities of cMyc, Alt/PTEN or p53 and related path-
ways and alter apoptosis (Yin) events leading to prolif-
eration and entropy or ‘dark energy’ in cancer mass.

v.	 Understanding the thermodynamics and biological 
communications of high energy-consuming and volt-
age-dependent pathways in apoptosis (Yin, tumori-
cidal) that are involved in destroying defective cancer 
cells are important topics that are not fully under-
stood.

vi.	Stimuli-induced redox-sensitive mitochondrial tran-
sition pore (MTP) that opens to the cytoplasm, fol-
lowed by depolarization, electron flux in the electron 
transport chain (ETC) during production of electron 
donors (NADH and FADH2) that would increase the 
level of reactive oxygen species (ROS) are crucial top-
ics that require better systematic studies.

Minor or major heterogeneities in intrinsic biology and 
genetic makeup of individuals often lead to heterogenei-
ties in response profiles toward different biological insults 
(immune disruptors). These confounding factors present 
unique challenges and opportunities to overcome in 
future research. However, the outcomes are expected to 
be rewarding as the truth in science has always advanced 

us to extraordinary achievements in many biomedical 
fields. Solving cancer problem is not an exception if the 
business of cancer did not overwhelm the search for sci-
entific facts and logics.

Concluding remarks
For over six decades the reductionist approaches of deci-
sion makers in cancer science popularized the notion that 
cancer is too many diseases (100, 200 or 1000); cancer is 
too complex to solve; that they have made ‘extraordinary 
advances’ and need more money to further progress on 
the war against cancer. The decision makers now make up 
other stories that they need to aggregate and share data 
and require more resources and time to solve cancer mys-
tery. The truth about claims of ‘targeted’ therapy based 
on identification of endless defective molecular entities is 
that such mindless and chaotic approaches failed patients 
at the rate of 90% (±5), costing the loss of millions of pre-
cious lives and financial toxicity to the society. All relevant 
data are available in various medical and basic science 
disciplines. Integration of quality data on how cancer is 
initiated has been practically ignored and its systematic 
investigations are not allowed when competent profes-
sionals propose more logical and cost-effective studies 
to help understand cancer biology and how to prevent 
or treat it. As author presented in the last couple of dec-
ades, analyses of data from her accidental discoveries on 
experimental models of ocular inflammatory diseases and 
extension of relevant data on multidisciplinary fields of 
medical and immunological sciences suggest that cancer 
is only one disease. Disorderly growth of cancer cells is 
the results of loss of autonomic and synchronized balance 
in tumoricidal (Yin) and tumorigenic (Yang) properties of 
immunity to arrest cancer cells. Loss of differential bioen-
ergetics in Yin (high energy, tumoricidal) and Yang (low 
energy, tumorigenic) pathways often leads to ‘mild’, ‘mod-
erate’ or ‘severe’ immune disorders or cancer.

The goal of this comprehensive perspective was to 
extend the design of a roadmap as comprehensive as 
possible, by analyzing relevant data on major biological 
features at different stages of life. In the process of inte-
grating and connecting the informational dots, important 
knowledge gaps that are worthy of future investigation 
were revealed. Integrating and disseminating relevant 
information are important for broadening the scope of 
intellectual understanding on the complex dynamics of 
effective immunity that lead to effective promotion and 
maintenance of health.

After all ‘we may be intelligent, but if not able to 
think and love well being of others, we use the intel-
ligence against humanity’ [?].
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