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Single‑cell RNA‑sequencing of the brain
Raquel Cuevas‑Diaz Duran1,2†, Haichao Wei1,2† and Jia Qian Wu1,2*

Abstract 

Single-cell RNA-sequencing (scRNA-seq) is revolutionizing our understanding of the genomic, transcriptomic and 
epigenomic landscapes of cells within organs. The mammalian brain is composed of a complex network of millions 
to billions of diverse cells with either highly specialized functions or support functions. With scRNA-seq it is possible 
to comprehensively dissect the cellular heterogeneity of brain cells, and elucidate their specific functions and state. 
In this review, we describe the current experimental methods used for scRNA-seq. We also review bioinformatic tools 
and algorithms for data analyses and discuss critical challenges. Additionally, we summarized recent mouse brain 
scRNA-seq studies and systematically compared their main experimental approaches, computational tools imple‑
mented, and important findings. scRNA-seq has allowed researchers to identify diverse cell subpopulations within 
many brain regions, pinpointing gene signatures and novel cell markers, as well as addressing functional differences. 
Due to the complexity of the brain, a great deal of work remains to be accomplished. Defining specific brain cell types 
and functions is critical for understanding brain function as a whole in development, health, and diseases.
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Introduction
Single-cells are the fundamental units of unicellular and 
multicellular organisms. Every single-cell in an organ-
ism is unique in its transcriptome, epigenome, and its 
local microenvironment. Even genetically identical 
cells display stochastic gene expression due to random 
fluctuations in the mechanisms driving and regulating 
transcription and translation [1, 2]. The underlying heter-
ogeneity within cells is a fundamental property of cellular 
systems for homeostasis and development [3]. Different 
cell types specialize in the execution of specific tasks [4].

Next-generation sequencing technologies, such as 
RNA-sequencing, have become a standard for querying 
gene expression [5, 6]. However, gene expression levels 
obtained through such ensemble-based approaches yield 
expression values averaged across large populations of 
input cells, masking cellular heterogeneity. Recent experi-
mental advances have allowed the isolation of single-cells 

and the generation of cDNA libraries from low amounts 
of RNA. Through scRNA-seq researchers are able to 
determine expression profiles in single-cell resolution. 
Since the introduction of scRNA-seq [7], the number of 
single-cell experiments has greatly increased. scRNA-seq 
has demonstrated to be a powerful tool to identify and 
classify cell subpopulations [8], characterize rare or small 
subpopulations [9], and trace cells along dynamic cellular 
stages, such as during differentiation [10].

The mammalian brain is a complex tissue that con-
tains a large number of specialized cells with differences 
in morphology, connectivity, and functions [11–13]. 
Brain cells have been classified by location, morphology, 
electrophysiological characteristics, target specificity, 
molecular markers and gene expression patterns [14–17]. 
Single-cell analysis is critical for studying the brain since 
small differences in a seemingly homogeneous popula-
tion may explain issues relating cells to learning, memory, 
and other cognitive functions [18]. scRNA-seq makes it 
possible to understand the heterogeneity and the regu-
latory networks within brain cells at the transcriptome 
level.

The general framework of a scRNA-seq experiment 
consists of: single-cell isolation, cell lysis, mRNA cap-
turing, mRNA reverse transcription into cDNA, cDNA 
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amplification, library preparation, and sequencing [19]. 
Herein, we will review recent research in brain cells with 
scRNA-seq. In the first two sections, we will discuss the 
advances and limitations of the methods for single-cell 
isolation and library generation. Section three will sum-
marize the analysis methods of scRNA-seq data. Sub-
sequently, we will discuss recent and relevant findings 
derived from scRNA-seq of brain cells. Finally, we will 
highlight future applications and challenges of scRNA-
seq in brain.

Single‑cell isolation protocols
The first important step in scRNA-seq is to isolate sin-
gle-cells from tissues keeping their expression patterns 
as accurate as possible. Several technologies have been 
used, such as: FACS (Fluorescence-activated cell sorting), 
MACS (Magnetic-activated cell sorting), LCM (Laser 
capture microdissection), manual cell picking and micro-
fluidics. Depending on the nature of samples, different 
methods may be more suitable for single-cell isolation 
in distinct samples. In this section, we will discuss some 
methods used for isolating brain cells.

Fluorescence-activated cell sorting and MACS are 
widely used methods to isolate single-cells. FACS can 
purify single-cells based on cell size, granularity and fluo-
rescence. Surface markers are different in individual cells, 
so FACS can isolate specific cells stained with differ-
ent fluorescently-tagged monoclonal antibodies [20]. In 
brain cell research, cells have been labelled with different 
markers. For example, Tasic et al. [21] used combinations 
of Snap25, Slc17a7, and Gad1 to find subpopulations in 
the primary visual cortex as listed in Table 1 and depicted 
in Fig.  1. Similarly, Llorens-Bobadilla et  al. [22] labelled 
cells with GLAST/Prom1 and PSA-NCAM to dissect 
populations in the subventricular zone. Although FACS 
is a highly efficient method to isolate single-cells, it has 
its limitations: not all cell types have their own specific 
gene markers [23], and the binding of fluorescently-
tagged monoclonal antibodies to cells might alter their 
function [24]. One major disadvantage of FACS is its 
low cell throughput rate. Even high-speed sorters will 
yield a few thousand cells per second [25]. Since many 
experiments require large number of cells, sorting runs 
may take long times posing quality issues to sorted cells. 
MACS is another method used to isolate single-cells [26]. 
The cells are isolated by biodegradable iro based nanobe-
ads bound with specific cell surface antibodies. Although 
MACS can produce high yield single-cells and is widely 
used, one of its main limitations is that antibody-coated 
magnetic beads are specific only for cell surface markers. 

Laser capture microdissection is a useful method 
to isolate cells using a laser pulse [27]. Microscopy is 
used to verify the position of cells of interest, and then 

a thermoplastic polymer coating is placed on the tissue 
over a glass slide. The polymer is melted and then the 
polymer-cell composition is removed from the tissue. 
Although specific cells in a tissue are captured, there are 
some limitations. Contrary to FACS and MACS, LCM is 
a low-throughput technology. Additionally, LCM relies 
heavily on cell identification. LCM needs an expert 
pathologist or cytologist, limiting its extensive applica-
tion. However, the main advantages of LCM are that it 
allows researchers to study single-cells within their niche 
or microenvironment and preserves their spatial loca-
tion. A cell’s niche is relevant when studying cells with 
functional diversity linked to spatial location such as 
brain cells.

cDNA amplification and sequencing library 
construction
A single-cell can only supply very limited starting mate-
rial (about 0.1  pg of mRNA in each cell), so amplifica-
tion methods are needed to produce high fidelity, high 
coverage and reliable data [28]. Some of the common 
reverse transcription and amplification methods used 
include: SMART-seq/SMART-seq2 (switching mecha-
nism at the 5′ end of the RNA transcript) [9, 29], STRT-
seq (single-cell tagged reverse transcription sequencing) 
[30], CEL-seq (cell expression by linear amplification 
and sequencing) [31], PMA (Phi29 DNA polymerase-
based mRNA transcriptome amplification) [32], SMA 
(semi-random primed PCR-based mRNA transcrip-
tome amplification procedure) [32], and Quartz-seq 
[33]. Researchers studying brain scRNA-seq typically use 
SMART-seq, SMART-seq2, and STRT-seq as outlined in 
Table 1.

SMART-seq is a reverse transcription and amplifica-
tion method based on template-switching [9]. First strand 
cDNAs are created by an oligo(dT)-containing primer, 
and a few untemplated poly(C) nucleotides are added 
as overhang at the end of cDNA molecules. The second 
strand is synthesized by an oligonucleotide primer which 
can hybridize to the poly(C) overhang, generating full 
length cDNA products. The purified PCR products can 
then be used for constructing cDNA libraries. SMART-
seq2 is an updated version of SMART-seq [29]. It can 
significantly improve cDNA yield. In SMART-seq2 pro-
tocol, similar to SMART-seq, the first strand is synthe-
sized with 2–5 untemplated nucleotides added at the end 
of cDNA molecules. Then TSO (template-switching oli-
gonucleotides) with two riboguanosines and a modified 
guanosine are added to the end of cDNAs. Compared 
with SMART-seq, SMART-seq2 can produce twofold 
cDNA products for constructing cDNA libraries.

STRT-seq is also based on templated-switching meth-
ods. In this protocol, single-cells are collected and 
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distributed into 96-well PCR plates [30]. Then the cells 
are lysed by lysis buffer. The first strand is synthesized 
using oligo(dT) primer and 3–6 cytosines are added to 
the end of cDNAs. The secondary strand is created using 
a primer with a cell specific barcode corresponding to 
each well. After cDNA synthesis, all the products are 
pooled and then, cDNAs are amplified by a single-primer 
PCR.

Although reverse transcription and amplification 
methods can supply sufficient material, they have dif-
ferent levels of amplification bias which are either over-
representing or under-representing certain regions of 
cDNA [28]. For example, SMART-seq, which can pro-
vide full-length coverage of cDNAs, has 3′-end bias; but 
in SMART-seq2, the bias is decreased [9, 34]. STRT-
seq has high 5′-end bias [28, 30]. In order to reduce the 
amplification bias of STRT-seq, UMI (unique molecular 
identifiers) are integrated in the sequencing primer used 
for reverse transcription or template switching [35–37]. 
UMIs are tens of thousands of short, random DNA 

molecules which are used to label mRNA molecules dur-
ing reverse transcription prior to amplification. They 
allow for absolute molecule quantification.

After the cDNA amplification, the cDNA library is con-
structed. cDNA libraries must be compatible with the 
sequencing platform. Nextera XT is a widely used library 
preparation kit. Libraries are generally sequenced by Illu-
mina platforms, such as HiSeq, MiSeq and NextSeq.

Single‑cell RNA‑sequencing data analysis
Two important questions which need to be addressed in 
scRNA-seq assays are the minimum number of cells to be 
sequenced and the sequencing depth at which the major-
ity of transcripts in a cell can be detected. The answers 
depend on the experiment’s aims and the nature of the 
isolated cells. In general, deeper sequencing is required 
to classify distinct cell types within a homogeneous 
population of cells [38]. In a sufficiently heterogeneous 
population, Pollen et  al. [39] were able to classify 301 
neural cells from the human neural cortex in different 

Fig. 1  Selected relevant scRNA-seq studies revealing brain heterogeneity. Recent high throughput brain scRNA-seq studies indicate that mouse 
brain is composed of a large diversity of specialized cell subpopulations. Arrows indicate the sample collection region and the number of isolated 
cells. The numbers to the left represent the quantity of cells belonging to each global cell type. The numbers to the right represent the quantity of sub‑
populations found within each global cell type. Asterisks indicate cells were enriched for oligodendrocyte-lineage. Brain model schematic obtained 
from GENSAT (Gene Expression Nervous System Atlas) [120, 125]
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developmental stages with as few as 50,000 reads. With 
numerous experiments with microliter and nanoliter vol-
umes, Wu et al. [40] concluded that beyond one million 
reads, the number of detected genes per cell varies less 
than 5%. However, the main variable which will define 
sequencing depth is the population’s heterogeneity.

Quality control
As with bulk RNA-seq, the first step in data analysis is 
quality control. Quality control is generally performed 
before and after sequencing. Before sequencing, the 
quality of single-cells is addressed through visual inspec-
tion or automated imaging and viability dyes. In con-
trast with bulk RNA-seq, scRNA-seq protocols result in 
cells isolated in microwell plates, droplets, or chambers 
in microfluidic devices. Using microfluidics of drop-
let technologies, hundreds to thousands of cells can be 
sequenced in a single run [41, 42]. Due to massive and 
parallel processing, capture sites may be empty or con-
tain either single or multiple cells. Furthermore, captured 
cells may be healthy, stressed, broken, or even damaged 
due to handling. Low quality sites and cells need to be 
excluded from the experiment since their data may be 
misleading. Several approaches have been proposed for 
filtering low quality sites and cells [29, 35, 43–46]. They 
may be classified into microscopic imaging of individual 
cells and staining cells with viability dyes.

Microscopic cell imaging has proven to identify a high 
proportion of low quality cells, however this approach is 
not compatible with all platforms, it is time-consuming, 
and its automation is challenging. Automated imaging 
systems rely on visual inspection derived metrics, such 
as morphology, pixel intensity and frequency. As with 
other imaging systems, their automation requires a train-
ing set of images and machine-learning algorithms, such 
as Support Vector Machines to discriminate between 
low and high quality cells. Figure  2 shows representa-
tive wide field images captured with an automated imag-
ing device. Staining of dead or viable cells is an effective 
and relatively fast method, however it can modify a cell’s 

transcriptional state and alter the experiment’s outcome. 
After staining cells, an imaging system can determine the 
cell’s viability by determining pixel intensities as depicted 
in Fig. 2a.

After sequencing, quality control is performed on raw 
reads, aligned reads, and across the collection of cells to 
identify low quality cells. Relevant quality control met-
rics, similar to those used for bulk RNA-seq, include: per 
base sequence quality, sequence duplication levels, over-
represented sequences, sequence length distribution, 
and GC content, among others. Quality control metrics 
should be calculated for raw reads, as well as for aligned 
reads. Popular tools for assessing these metrics are 
FastQC, Kraken [47], and RNA-SeQC [44]. Additionally, 
parameters such as depth of coverage and library com-
plexity should be addressed. Comparing quality control 
metrics across all cells is helpful in identifying outliers.

Filtering thresholds are also commonly used for iden-
tifying low quality cells after sequencing. Thresholds are 
typically based on the number of mapped reads and/
or on the proportion of detected genes. A comprehen-
sive analysis on low quality cells was published by Ilic 
et  al. [48]. The authors obtained a set of technical and 
biological measures useful for discriminating low qual-
ity cells. Researchers demonstrated that broken cells 
have a downregulation of genes enriched in gene ontol-
ogy terms “cytoplasm”, “metabolism”, and “membrane” 
and an upregulation of genes related to “mitochondrially 
encoded genes” and “mitochondrially localized proteins”. 
Due to a compromised cell membrane, broken cells have 
most likely lost cytoplasmic mRNA while maintaining 
mRNA enclosed in the mitochondrial membrane, thus 
resulting in the upregulation of mitochondrially encoded 
genes. Ilic et al. also proved that empty capture sites and 
broken cells display lower number of total reads yield-
ing a decreased number of detected genes. Similarly, 
they concluded that the proportion of duplicated reads 
is higher in multiple captured cells than in single-cells. 
Their work was implemented in R and Python libraries 
available in GitHub repositories. Islam et al. [35] used the 

Fig. 2  Single-cell widefield representative images acquired by an automated device (C1 Fluidigm chip). a Cell stained with ethidium homodimer-1 
(EthD-1, red) labeling unhealthy or dead cells. b Single GFP+ cell. c Single GFP− cell. d Capture site containing three cells. e Empty capture site 
(Figure adapted from [126])
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total number of detected genes greater than 5000 and at 
least 85% of cytoplasmic genes (non-mitochondrial and 
non-ribosomal RNA) as criteria for selecting high quality 

cells. Figure 3 outlines the various processes involved in 
scRNA-seq quality control assessment required for dis-
criminating between high and low quality cells. Another 

Fig. 3  scRNA-seq quality control and expression estimation flow chart
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useful approach for discriminating low-quality cells is 
to apply principal component analysis (PCA) to gene 
expression. The underlying premise of this is that good-
quality cells will cluster together and low-quality cells will 
appear as outliers.

Gene expression estimation
To quantify gene expression, sequencing reads from 
high quality cells are aligned to a reference genome and 
gene counts are computed. If UMIs were used, transcript 
molecules may be counted directly since the number of 
UMIs linked to each gene accounts for the number of 
cDNA molecules associated with it. For non-UMI data, 
expression may be obtained as counts using tools such as 
HTSeq [49], RSEM [50], WemIQ [51], and featureCounts 
[52], among others. Expression is also addressed as rela-
tive expression with metrics including transcripts per 
million mapped reads (TPM), counts per million mapped 
reads (CPM), reads per kilobase per million mapped 
reads (RPKM) or fragments per kilobase per million 
mapped reads (FPKM). Popular tools for assessing rela-
tive expression include Cufflinks [53–55], and STAR [56].

Normalization of scRNA-seq counts is a critical step 
which allows for expression values to be comparable 
among cells [57]. Variability between cells may be due 
to differences in sequencing depth, RNA concentration, 
GC content, and amplification biases, among others. 
Normalization methods differ depending on the incor-
poration of quantitative standards used during library 
preparation. One approach commonly used in scRNA-
seq experiments is adding extrinsic spike-in molecules. 
Spike-ins are RNA molecules which are either artificially 
synthesized or obtained from a distant species. Their 
sequences are known and they are added in a constant 
concentration to individual cell lysates making them ideal 
to serve as internal controls. Since the number of spike-in 
molecules is theoretically the same across all single-cell 

libraries, they can be used to calculate scaling factors to 
normalize for differences in RNA concentration between 
individual cells. The most commonly used artificial spike-
in is the External RNA Controls Consortium (ERCC), 
a set of 96 synthetic RNA molecules based on bacterial 
sequences [58]. If the ratio between reads mapped to the 
genome and the number of reads mapped to spike-ins is 
low, then that cell must be filtered out since this is indica-
tive of low RNA concentration and will bias the results. 
Normalization approaches are outlined in Fig. 4.

Normalization in the absence of spike-ins or UMIs is 
generally performed using bulk RNA-seq methods. Sev-
eral scRNA-seq studies have normalized for sequencing 
depth by calculating TPM [39, 59] and FPKM/RPKM 
[60–62]. More sophisticated between-cell normaliza-
tion approaches include methods where scaling factors 
are computed, such as in DESeq [63], and edgeR [64]. 
Median-based normalization methods [43, 65–68] are 
also widely used. They calculate global scaling factors 
based on the identification of stable house-keeping genes. 
Their main premise is that variations in house-keeping 
gene expression are due to technical sources, however, 
this is not always valid due to variations in RNA content. 
The amount of RNA contained in each cell varies intrin-
sically due to cell-cycle, cell size, and transcriptional gene 
dynamics [69]. If spike-ins are available, they can be used 
to estimate individual cell’s RNA content and normalize 
expression estimates more accurately.

Low amounts of RNA in single-cells are one of the 
main challenges in scRNA-seq data analysis. There is a 
negative correlation between the RNA concentration 
and the number of genes affected by technical noise [43]. 
Technical noise is generally addressed with the coef-
ficient of variation (CV) in gene expression across con-
trol samples, including spike-ins. Technical noise must 
be accounted for since it may be confounded with bio-
logical noise. Determining technical noise is challenging 

Fig. 4  Normalization approaches commonly used in scRNA-seq data analyses
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because even housekeeping genes from genetically iden-
tical cells may have noisy gene expression [70]. Techni-
cal noise may be modeled with a log-normal function to 
adjust gene expression estimates. Low amounts of RNA 
present in a single-cell also yield numerous genes with 
zero or near-zero values. The high frequency of genes 
with zero counts may affect normalization methods. To 
overcome this problem, a recent approach, specific for 
scRNA-seq normalization without spike-ins, proposed a 
deconvolution method based on pooled counts of genes 
across multiple cells [71].

In summary, including synthetic spike-ins or unique 
molecular identifiers with known concentrations (UMIs) 

has advantages in normalization and expression estimation, 
however their use still needs to be standardized.

Downstream analysis
The most common applications for scRNA-seq experi-
ments are: identification of cell types, pseudo-temporal 
ordering, and network inference. The normalized gene 
expression count matrix is used for these downstream 
analyses. A good review on bioinformatics tools use-
ful for single-cell data analysis was published by Poirion 
et  al. [72]. Typical downstream analyses are depicted in 
Fig. 5. Algorithms used in recent brain scRNA-seq stud-
ies are listed in Table 2.

Fig. 5  Overview of scRNA-seq downstream analyses

Table 2  Data analysis methods used in recent brain scRNA-seq studies

RPKM reads per kilobase of million mapped reads, CPM counts per million mapped reads, TPM transcripts per million mapped reads, PCA principal component 
analysis, WGCNA weighted gene coexpression network analysis, t-SNE t-distributed stochastic neighbor embedding, rPCA robust principal component analysis

Brain region Expression measure Clustering Refs.

Primary visual cortex (L1, 2/3, 4, 5, 6) RPKM and counts PCA, WGCNA, random forests [21]

Somatosensory cortex and hippocampal CA1 CPM BackSPIN [8]

Hippocampal dentate gyrus TPM Hierarchical clustering, PCA, Waterfall [73]

Striatum CPM 2D-tSNE, rPCA [74]

Somatosensory cortex, striatum, dentate gyrus, hippocampus CA1, corpus cal‑
losum, amygdala, hypothalamus, zona incerta, SN-VTA, dorsal horn

CPM BackSPINv2 [75]
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Subpopulation identification
Mapping cells individually, rather than in aggregated 
components as in bulk RNA-seq, makes it feasible to 
assess the uniqueness of cell subpopulations. Therefore, 
some of the most popular applications of scRNA-seq is 
the identification of subpopulations, novel cell subtypes, 
and rare cell species in a tissue or biological condition 
[76]. Clustering algorithms are used for grouping cells 
which have similar gene expression. Cells in each group 
or cluster are believed to belong to a specific cell subpop-
ulation or cell state. De novo identification of cell-types 
may be modeled as an unsupervised clustering problem 
since prior information regarding the number of clusters 
or marker genes is unknown. Unsupervised clustering 
methods extensively used to identify cell subpopulations 
from scRNA-seq samples include PCA and its variants 
(e.g. Kernel PCA, rPCA) [21, 73, 74], k-means, and other 
distance-based algorithms, such as hierarchical cluster-
ing [73]. Common similarity metrics used for distance-
based methods are Euclidean distance, Pearson, and 
Spearman correlation coefficients [39, 77]. A recently 
developed and frequently used hierarchical clustering 
method is BackSPIN [8], which allows for biclustering of 
both genes and cells. The non-linear unsupervised clus-
tering method, t-SNE [78], has also been widely used 
in scRNA-seq samples [42, 74]. Clustering methods are 
generally applied to highly variable genes [41, 42], dif-
ferentially expressed genes (DE) [59, 79], or to highly 
expressed genes [80]. More sophisticated machine learn-
ing methods have been used to overcome the limita-
tions in conventional methods due to the frequency of 
genes with zero counts. An interesting example is the 
zero inflated factor analysis (ZIFA), which implements a 
dimension-reduction approach and uses a latent variable 
factor model to accommodate zeros [81].

The majority of computational methods for subpopu-
lation identification only address abundant cell types. 
Therefore, rare cell type identification is a challenging 
application. Grün et al. [76] developed RaceID, an algo-
rithm for the identification of rare and abundant cell 
types based on transcript counts obtained with UMIs. 
RaceID first identifies large clusters defined through 
k-means clustering of the expression correlation matrix 
of genes. Next, rare cell types are identified within each 
cluster by detecting cells whose transcript counts do not 
display cluster specific expression.

Pseudotemporal ordering
scRNA-seq data may be useful for understanding 
dynamic cellular processes, such as development, repro-
gramming, differentiation, and disease progression. The 
underlying premise is that a collection of single-cells 
will most likely contain cells at different stages during 

a dynamic process (e.g. differentiation) and profiling 
their gene expression will allow for the reconstruction 
of cascades of gene expression changes placing cells 
in a pseudotemporal order. Pseudotemporal ordering 
applies machine learning methods to scRNA-seq data to 
reconstruct cells’ trajectories as they undergo a dynamic 
biological process. Different algorithms have been imple-
mented for inferring pseudotemporal ordering of single-
cells. The first step performed by most temporal ordering 
algorithms is a dimension reduction such as PCA. For 
scRNA-seq data, as for bulk RNA-seq, the number of 
variables or dimensions corresponds to the number 
of genes. After dimension reduction, if there is prior 
knowledge of the key maker genes driving the transition 
between states, methods such as Wanderlust [82] will 
use graph-based trajectory detection algorithms to order 
cells along a path. The key marker genes selected for 
defining a path’s distance may be previously known genes 
(e.g. genes known to be involved in a differentiation pro-
cess) or differentially expressed genes. Single-cells may be 
clustered into subpopulations before temporal ordering.

Several methods which do not require prior knowledge 
of marker genes have been developed [61, 83, 84]. These 
methods reconstruct trajectory paths in reduced spaces 
using several algorithms such as minimum spanning 
trees (MST), and principal curves. Monocle, developed 
by Trapnell et al. [61] uses independent component anal-
ysis (ICA) for dimension reduction and then constructs 
an MST to find the paths based on Euclidean distance. 
Authors achieved a more robust temporal cell order-
ing when using differentially expressed genes. Monocle2 
[85] was recently implemented to overcome the accuracy 
challenges in trajectory reconstruction. Monocle2 applies 
reversed graph embedding (RGE) [86] to reconstruct 
complex single-cell trajectories.

Another popular method for pseudotemporal order-
ing is Waterfall [73]. Waterfall uses k-means and PCA to 
cluster cells before constructing an MST for ordering cell 
subpopulations.

Finding regulatory networks
Important applications of gene expression profiling have 
been the identification of co-regulated groups of genes 
and inferring gene regulatory network dynamics. In co-
expression analysis, pairs of genes with similar expres-
sion profiles are assumed to be co-regulated and may 
be part of a signaling cascade. Computational methods 
have been developed to identify correlated genes or mod-
ules [87]. Weighted gene co-expression network analysis 
(WGCNA) has been a popular network reconstruction 
tool used for bulk RNA-seq [88]. Xue et al. [89] applied 
WGCNA to scRNA-seq data obtained from single-cells 
derived from human and mouse embryos. The authors 
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found functional modules of co-expressed genes for each 
developmental stage indicating sequential order of tran-
scriptional changes in relevant pathways.

Several mathematical methods such as ordinary dif-
ferential equations (ODE)-based models and stochas-
tic models have been developed for understanding the 
dynamics of gene regulation. However, such methods 
require time-series gene expression profiling, which, for 
scRNA-seq is unlikely due to sequencing costs. To over-
come the lack of temporal data, Ocone et  al. [90] pro-
posed a framework which allows the reconstruction of 
regulatory network dynamics through the combination 
of dimensionality reduction using diffusion maps [91], 
pseudo-time single-cell ordering implementing Wander-
lust [82], and the generation of ODE-based mathemati-
cal transcriptional models. Through their framework, 
authors were able to reconstruct transcriptional dynam-
ics of specific genes during differentiation of hematopoi-
etic stem cells.

The application of scRNA‑seq in the brain
The mammalian brain is considered to be the most com-
plex organ due to its cellular diversity, the variety and 
scope of its functions and its transcriptional regulation 
[92]. Previous studies have aimed at studying the diver-
sity of brain cells through RNA-seq samples from puri-
fied populations of cerebral cortex [93, 94]. Recently, 
scRNA-seq is being used as a tool to assess the brain’s 
complexity and to identify new cell subpopulations, 
specific gene signatures, and underlying regulatory net-
works. This section will provide an overview of relevant 
scRNA-seq studies related to different types of brain 
cells. A more detailed description of selected studies is 
listed in Tables 1 and 2 and depicted in Fig. 1.

The identification of brain cell types
The brain contains highly complex neural cell types/
subtypes. Traditionally, neural cells were identified by 
morphology, excitability, connectivity and the cell’s loca-
tion [95]. Recently, scRNA-seq was used to identify dif-
ferent neural types and subtypes, and to discover novel 
cell-specific markers. For instance, Amit Zeisel et  al. 
[8] sequenced 3005 single-cells and revealed 9 major 
classes of cells (S1 and CA1 pyramidal neurons, interneu-
rons, oligodendrocytes, astrocytes, microglia, vascular 
endothelial cells, mural cells and ependymal cells). The 
authors identified specific novel gene markers for dif-
ferent cell types, for example, S1 pyramidal cells were 
characterized by Gm11549 (a long noncoding RNA), hip-
pocampal pyramidal cells by Spink8 (a serine protease 
inhibitor), and interneurons by Pnoc (prepronociceptin).

Striatum is a subcortical part of the forebrain. The 
striatal dysfunction can cause many neuropsychiatric 

disorders, for instance, Parkinson’s and Huntington’s 
disease, obsessive–compulsive disorder, and autism [96, 
97]. Traditionally, the neuronal composition of the stria-
tum has been defined by mostly medium spiny neurons 
(MSN) and a small population of interneurons [74]. 
MSNs have been classified anatomically and functionally 
into D1 and D2 MSNs [98] however, striatal diversity has 
not been assessed.

Ozgun Gokce et  al. [74] used two approaches: micro-
fluidic single-cell RNA sequencing (MIC-scRNA-seq) 
and single-cell isolation by fluorescence-activated cell 
sorting (FACS-scRNA-seq) to analyze the transcriptomes 
of 1028 single striatal cells. The transcriptomes revealed 
ten different cell subpopulations including neurons, 
astrocytes, oligodendrocytes, stem cells, immune, epend-
ymal, and vascular cells. Through robust PCA, novel gene 
markers were found to discriminate between D1 and D2 
MSN cells.

Neural stem cells (NSCs) can self-renew and pro-
duce neural cell types, including neurons, astrocytes 
and oligodendrocytes [99, 100]. NSCs maintain a bal-
ance between quiescent and activated states [101, 102]. 
If the brain is injured, endogenous NSC will be activated 
to repair brain tissue [103]. Previous works were lim-
ited by small number of factors analyzed and mixed cell 
populations. It was not completely understood how the 
NSCs became activated. Recently, two studies have used 
single-cell methods to examine the activation of dormant 
neuron stem cells after injury. In one study, Llorens-
Bobadilla and colleagues investigated the characteris-
tics of the activation of dormant NSCs after brain injury 
[22]. The authors identified NSCs in quiescent and active 
states and uncovered the progression of activation using 
single-cell sequencing. They identified new gene mark-
ers of NSCs subpopulations and they found that, during 
brain ischemia, dormant NSCs proceed to activation via 
interferon gamma signaling. Another study also showed 
that central nervous system (CNS) injury could activate 
CD133+ quiescent NSCs. Luo et  al. [104] demonstrated 
that vascular endothelial growth factor (VEGF) could 
activate CD133+ ependymal neural stem cell (NSCs), 
and together with basic fibroblast growth factor, elicit 
neural lineage differentiation and migration. In a recent 
study, Dulken et  al. [57] sequenced 329 high quality 
single-cells sorted by FACS from four different popula-
tions [astrocytes, quiescent neural stem cells (qNSC), 
activated neural stem cells (aNSCs), and neural precur-
sor cells (NPCs)] within the sub-ventricular zone of adult 
mice. Through PCA, authors were able to discriminate 
quiescent cell types (astrocytes and qNSCs) from active 
and proliferative cell types (aNSCs and NPCs). Inter-
estingly, authors compared their single-cell transcrip-
tomes with those from similar cells [NSCs and transit 
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amplifying progenitors (TAPs)] sorted with different cell 
markers [22]. To be able to compare single-cell datasets 
processed in different batches and thus with dissimi-
lar library preparations and sequencing depths, Dulken 
et al. mapped Llorens-Bobadilla and colleagues’ datasets 
using their own pipeline and then performed PCA with 
the most variable genes. Additionally, they performed 
pseudo-time ordering using Monocle with their con-
sensus-ordering genes and found similar dynamic gene 
expression related to quiescence and activation of NSCs. 
Through this meta-analysis, authors were able to observe 
a high correlation between NSCs from both studies in 
spite of divergent isolation methods and batch effects.

Oligodendrocytes were considered an important func-
tionally homogeneous population in the CNS, however 
these cell’s morphologies are diverse [105]. It is unclear 
whether the diversity in morphology is due to oligoden-
drocytes interacting with the local environment during 
maturation or due to their intrinsic functional hetero-
geneity [106, 107]. Marques et  al. [75] isolated single-
cells from 10 different regions of juvenile and adult mice 
CNS by FACS and sequenced 5072 oligodendrocytes by 
scRNA-seq. The authors identified 13 distinct subpopula-
tions from which 12 represent differentiation stages from 
oligodendrocyte precursor cells to mature oligodendro-
cytes. The fine differentiation stages were identified using 
t-SNE for dimensionality reduction and the biclustering 
tool BackSPIN2 for pseudo-time analysis. Thereby, using 
scRNA-seq methods, the authors revealed the dynamics 
of the differentiation and maturation of oligodendrocytes.

It is difficult to interrogate the underlying transcription 
landscape of individual neurons. Previously, many stud-
ies of single adult human neurons were dependent on 
the availability of freshly isolated neurosurgical tissues 
from limited regional samples [109]. Although freshly 
isolated neurosurgical tissues are better for analyzing sin-
gle neurons, postmortem tissues can provide more input 
sample. Lake and colleagues developed a new method 
which can sequence and quantify RNA in isolated neu-
ron nuclei from postmortem brains [108]. They dissected 
six distinct regions of the cerebral cortex, and produced 
3227 sets of single-neuron RNA-seq data. After cluster-
ing and classification, 16 neuronal subtypes were identi-
fied and were evaluated by known markers and cortical 
cytoarchitecture.

The regulation of brain developments by long non‑coding 
RNAs (lncRNAs)
Studies have revealed thousands of lncRNAs in mam-
malian transcriptomes [110]. lncRNAs are not well 
conserved during evolution [111], but the promoters of 
lncRNAs are more conserved than protein coding genes 
[112, 113]. lncRNAs have tissue specific expression in 

human brain [114, 115] and have been shown to be 
involved in the regulation of brain diseases and neurode-
velopmental disorders [116, 117]. Previous studies based 
on bulk tissues suggested that the expression levels of 
lncRNAs are lower than those of protein coding genes 
[114, 118]; however, it is unknown whether lncRNAs are 
expressed at low levels in all cells [119].

Researchers have studied the expression of lncR-
NAs in purified mouse brain cells and found their role 
in fate determination of oligodendrocyte precursor 
cells (OPC) [120]. Recent approaches are now aiming 
at addressing lncRNAs in brain scRNA-seq samples. 
Liu et al. [119] used scRNA-seq to analyze lncRNAs in 
the developing human neocortex. The authors isolated 
total RNA from 276 single-cells of different stages of 
human neocortex development and analyzed their tran-
scriptomes. To evaluate if lncRNAs were expressed at 
high levels in subpopulations of cells, the authors used 
the lncRNA:mRNA median ratio which compares the 
median expression of lncRNAs to the median expres-
sion of mRNA. Compared with lncRNAs from bulk tis-
sue (the median lncRNA:mRNA ratio was 0.31), many 
lncRNAs were abundantly expressed in individual cells 
(in single-cells, 32.2% of cells’ median lncRNA:mRNA 
ratio exceeded 1.0). The authors found that lncRNA 
LOC646329 was enriched in the ventricular zone, where 
most radial glia reside. When LOC646329 was knocked 
down, the propagation of U87 cells was reduced. Results 
suggest that lncRNAs might regulate cell proliferation.

Future perspectives
In summary, scRNA-seq is a powerful tool that will 
allow researchers to address human brain complexity 
by identifying cell subpopulations and elucidating spe-
cific functions. scRNA-seq has a higher resolution than 
bulk RNA-seq and allows us to better understand cel-
lular heterogeneity and how it changes during dynamic 
processes, such as development, differentiation and 
disease progression. Major resolution, however, makes 
samples more vulnerable to disturbances and confound-
ing effects. Experimental and computational methods 
are being developed to overcome challenges posed by 
detecting single-cell signal in the presence of intrin-
sic noise and technical variability. Recently, chromatin 
accessibility [121, 122], chromatin conformation [123], 
and DNA methylation [124] with single-cell resolution 
were successfully implemented. Single-cell DNA/RNA-
seq approaches will allow scientists to simultaneously 
assess the genomic, epigenomic, and transcriptomic 
states of individual cells in biological processes. Single-
cell sequencing will be expanded to also address metabo-
lomics in order to construct a more complete picture of 
a cell.
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