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Abstract 

Cancer cells are the site of numerous metabolic and thermodynamic abnormalities. We focus this review on the inter‑
actions between the canonical WNT/beta-catenin pathway and peroxisome proliferator-activated receptor gamma 
(PPAR gamma) in cancers and their implications from an energetic and metabolic point of view. In numerous tis‑
sues, PPAR gamma activation induces inhibition of beta-catenin pathway, while the activation of the canonical WNT/
beta-catenin pathway inactivates PPAR gamma. In most cancers but not all, PPAR gamma is downregulated while the 
WNT/beta-catenin pathway is upregulated. In cancer cells, upregulation of the WNT/beta-catenin signaling induces 
dramatic changes in key metabolic enzymes that modify their thermodynamic behavior. This leads to activation of 
pyruvate dehydrogenase kinase1 (PDK-1) and monocarboxylate lactate transporter. Consequently, phosphorylation of 
PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into 
acetyl-coenzyme A (acetyl-CoA) in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. 
This leads to aerobic glycolysis in spite of the availability of oxygen. This phenomenon is referred to as the Warburg 
effect. Cytoplasmic pyruvate is converted into lactate. The WNT/beta-catenin pathway induces the transcription of 
genes involved in cell proliferation, i.e., MYC and CYCLIN D1. This ultimately promotes the nucleotide, protein and 
lipid synthesis necessary for cell growth and multiplication. In cancer, activation of the PI3K-AKT pathway induces an 
increase of the aerobic glycolysis. Moreover, prostaglandin E2 by activating the canonical WNT pathway plays also a 
role in cancer. In addition in many cancer cells, PPAR gamma is downregulated. Moreover, PPAR gamma contributes to 
regulate some key circadian genes. In cancers, abnormalities in the regulation of circadian rhythms (CRs) are observed. 
CRs are dissipative structures which play a key-role in far-from-equilibrium thermodynamics. In cancers, metabolism, 
thermodynamics and CRs are intimately interrelated.

Keywords:  PPAR gamma, WNT/beta-catenin, Cancer, Circadian rhythms, Pyruvate dehydrogenase kinase, Pyruvate 
dehydrogenase complex, Aerobic glycolysis, Warburg effect, PI3 K-AKT pathway, Dissipative structures

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Schrödinger in his famous book “What is life” [1] pro-
vided us a new understanding of the thermodynamics 
in living systems. By applying this to the thermodynam-
ics of physical, chemical and biological far-from-equi-
librium systems, Prigogine and his colleagues opened 
new avenues for the exploration of dissipative structures 

which occupy a major place in the living world [2, 3]. 
Cancer is an exergonic process in which heat flows from 
the tumor to its surroundings [4]. The entropy produc-
tion rate is increased in cancer cells and is characteristic 
of irreversible processes driven by changes in heat pro-
duction, Gibbs energy, intracellular acidity, ionic con-
ductance, membrane potential gradient [5]. Numerous 
cellular mechanisms can induce and develop carcino-
genic processes. In most cancers, the WNT/beta-catenin 
pathway is upregulated while peroxisome proliferator-
activated receptor gamma (PPAR gamma) is downregu-
lated. This profile has been observed in several diseases 
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[6] such as cancers [7, 8], type 2 diabetes [9], and certain 
neurodegenerative diseases (amyotrophic lateral sclero-
sis [10], Huntington’s disease [11], multiple sclerosis [12, 
13] and Friedreich’s ataxia [14]). The opposite profile has 
been reported in arrhythmogenic right ventricular car-
diomyopathy (ARVC) [15, 16], osteoporosis [17–19], and 
certain neurodegenerative diseases (Alzheimer’s disease 
[20], Parkinson’s disease [21], bipolar disorder [22, 23] 
and schizophrenia [24]). From a thermodynamic view-
point and among numerous cellular processes involved 
in cancers, two major phenomena play a key role, i.e., 
aerobic glycolysis or the Warburg effect and disruption of 
circadian rhythms (CRs). The thermodynamic dysregu-
lation induced by these two processes is consubstantial 
with metabolic abnormalities commonly found in can-
cers. PPAR dysfunction influences statistical mechan-
ics by modifying thermodynamic force, thermodynamic 
flow, and rate of entropy production [5, 25]. We focus 
our review on the opposing interactions observed in 
cancers between the canonical WNT/beta-catenin path-
way and PPAR gamma and their metabolic and energetic 
implications.

Canonical WNT/beta‑catenin pathway
The canonical WNT/beta-catenin pathway plays an 
important role in metabolism, embryonic development, 
cell fate, and epithelial-mesenchymal transition (EMT) 
[26]. The canonical WNT activity is reflected by elevated 
levels of beta-catenin in the nucleus and/or cytoplasm, 
which can be detected by means of immunohistochemical 
staining, Western blotting and semiquantitative RT-PCR 
[27]. Its dysfunction is involved in numerous diseases, 
particularly in cancers [28–31]. The transcription fac-
tor beta-catenin/T-cell factor/lymphoid enhancer factor 
(TCF/LEF) represents the key effector of the canonical 
WNT pathway (Figs. 1, 2). The destruction complex con-
sists of AXIN, tumor suppressor adenomatous polyposis 
coli (APC), and glycogen synthase kinase-3 (GSK-3beta). 
The destruction complex exerts a tight control on the 
beta-catenin signaling. In the absence of WNT ligands 
(“off state”), the destruction complex phosphorylates beta-
catenin which is then degraded in the proteasome. In the 
presence of WNT ligands (“on state”), the WNT receptor 
interacts with Frizzled (FZL) and LDL receptor-related 
protein 5/6 (LRP5/6). WNT receptor is associated with 
Dishevelled (DSH). This triggers the disruption of the 
destruction complex and prevents degradation of beta-
catenin in the proteasome. Beta-catenin then translocates 
to the nucleus and interacts with TCF/LEF. This leads to 
the stimulation of the beta-catenin target genes (pyruvate 
dehydrogenase kinase (PDK), monocarboxylate lactate 
transporter-1 (MTC-1), MYC, CYCLIN D1, cyclooxyge-
nase-2 (COX-2), AXIN) [32–35] (Fig. 1).

PPAR gamma
Peroxisome proliferator-activated receptor gamma is a 
ligand-activated transcriptional factor that belongs to 
the nuclear hormone receptor superfamily [36]. It het-
erodimerizes with the retinoid X receptor. PPAR gamma 
is expressed in numerous cell types, such as adipose tis-
sues, muscles, brain, and immune cells. PPAR gamma 
activates the expression of many genes and regulates 
glucose homeostasis, insulin sensitivity, lipid metabo-
lism, immune responses, cell fate and inflammation [37–
39]. PPAR gamma agonists thiazolidinediones (TZDs) 

Fig. 1  Schema of interactions between the canonical WNT/
beta-catenin pathway and PPAR gamma under aerobic glycolysis 
conditions in cancer. In the absence of the WNT ligands (“off state”), 
cytosolic beta-catenin is phosphorylated by GSK-3 beta. APS and 
AXIN combine with GSK-3 beta and beta-catenin to enhance the 
destruction process in the proteasome. In the presence of the WNT 
ligands (“on state”), Wnt binds both Frizzled and LRP5/6 receptors 
to initiate LRP phosphorylation and dishevelled-mediated Frizzled 
internalization. This leads to dissociation of the AXIN/APC/GSK-3 beta 
complex. Beta-catenin phosphorylation is inhibited which prevents 
its degradation in the proteasome. Thus, beta-catenin accumulates in 
the cytosol and then translocates to the nucleus to bind TCF-LEF co-
transcription factors. This induces the WNT-response gene transcrip‑
tion (PDK, MCT-1, MYC, CYCLIN D1). Glucose itself activates the WNT 
pathway. PPAR gamma inhibits the beta-catenin/TCF-LEF-induced 
activation of WNT target genes. PDK inhibits the PDH complex in 
mitochondria. Thus pyruvate cannot be fully converted into acetyl-
CoA and enter the TCA cycle. MYC activates LDH-A which converts 
cytosolic pyruvate into lactate. MCT-1 favors lactate extrusion out 
of the cytosol which favors angiogenesis. MYC increases glutamine 
entry in the cytosol and mitochondria. MYC-induced glutamine 
enhances aspartate and nucleotide synthesis. APC adenomatous 
polyposis coli, alpha-KG alpha ceto-glutarate, DSH Dishevelled, FZD 
Frizzled, GSK-3beta glycogen synthase kinase-3beta, LDH lactate 
dehydrogenase, LRP5/6 low-density lipoprotein receptor-related 
protein 5/6, MCT-1 monocarboxylate lactate transporter-1, OAA: 
oxalo-acetic acid, PPAR gamm peroxisome proliferator-activated 
receptor gamma, PDH pyruvate dehydrogenase complex, PDK 
pyruvate dehydrogenase kinase, RTK receptor tyrosine kinase, TCF/LEF 
T-cell factor/lymphoid enhancer factor, TCA tricarboxylic acid, *WNT 
targets: PDK, MCT-1, MYC, CYCLIN D1
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improve insulin sensitivity in peripheral tissues [40] and 
ameliorate glucose tolerance and insulin sensitivity in 
type 2 diabetic patients [41]. TZDs act on the promoters 
of glucose transporter (GLUT-2) and glucokinase (GK) 
in pancreatic beta-cells and liver. Abnormalities of PPAR 
gamma are observed in several pathological states such 
as cancers, diabetes, obesity, and atherosclerosis. Some 
TZDs have been used for treating type 2 diabetes. PPAR 
gamma also plays an important role in regulating cardio-
vascular rhythms by controlling circadian variations of 
blood pressure and heart rate through BMAL1 [42, 43]. 
However, numerous side effects induced by TZD have 
been reported [44].

Opposing effects of the canonical WNT/beta‑catenin 
pathway and PPAR gamma
The link between the WNT/beta-catenin pathway and 
PPAR gamma involves the TCF/LEF beta-catenin-bind-
ing domain and a catenin binding domain within PPAR 
gamma. In numerous mammalian cells, PPAR gamma 
and WNT/beta-catenin signaling behave in an opposite 
manner [45–50]. In some diseases, although the WNT/
beta-catenin pathway is downregulated, PPAR gamma 
appears to be upregulated and vice versa (see: “Intro-
duction”) [6]. In several cellular systems, beta-catenin 
is inhibited by PPAR gamma agonists [45, 47, 48, 51]. It 
has also been observed that inhibition of the WNT/beta-
catenin pathway induces activation of PPAR gamma [15].

Aerobic glycolysis in cancer cells: role of the canonical WNT 
signaling
The role of the WNT/beta-catenin signaling in cancer 
development, especially in colorectal cancer, is now bet-
ter understood [52, 53]. Upregulation of the WNT/beta-
catenin pathway via TCF/LEF leads to cell proliferation, 
EMT, migration and angiogenesis [54–56]. In cancer 
cells, overactivation of the WNT/beta-catenin pathway 
induces aerobic glycolysis. This allows glucose utilization 
for cell proliferation [35]. Thus in a large part, glucose 
supply is fermented in lactate regardless of oxygen avail-
ability. This phenomenon is referred to as aerobic glyco-
lysis or the Warburg effect [57].

In cancer, the behavior of two key enzymes involved in 
glucose metabolism is modified leading to the Warburg 
effect. Activation of PDK-1 is required for the Warburg 
aerobic glycolysis. Upregulation of WNT/beta-catenin 
signaling activates both PDK-1 and MCT-1 [35, 58]. 
PDK-1, a major regulator of glucose metabolism, phos-
phorylates the pyruvate dehydrogenase complex (PDH) 
which is inhibited and largely prevents the conversion 
of pyruvate into acetyl-CoA in mitochondria [59]. In 
colon cancer, PDK-1 is upregulated [35, 60], so that the 
conversion of pyruvate into acetyl-CoA in mitochondria 
is diminished with a consequent reduction of acetyl-
CoA entering the tricarboxylic acid (TCA) cycle. This 
induces aerobic glycolysis in spite of the availability of 
oxygen. PDK-1 has also been observed to be upregulated 
in several other cancers [61, 62]. Cytosolic pyruvate is 
converted into lactate through activation of lactic dehy-
drogenase-A (LDH-A). Upregulation of both LDH-A 
and MCT-1 results in pyruvate being diverted towards 
the formation of lactate and the secretion of the latter 
outside of the cell, which favors angiogenesis [63] and 
ultimately leads to anabolic production of biomass i.e., 
nucleotide synthesis [64, 65]. The Warburg effect partly 
shunts the TCA cycle leading to aerobic glycolysis which 
is less efficient in terms of ATP production. The most 
cost effective way producing ATP is via glucose oxida-
tion (ATP/O2  =  6.4), since the pathway via free fatty 
acid beta-oxidation is less efficient (ATP/O2 = 5.6). This 
takes about 11% more O2 to produce the same amount 
of ATP from fatty acids as it does from glucose. Moreo-
ver, PDK-1 and 2 enhance angiogenesis [66, 67]. Block-
ing WNT reduces the PDK-1 level via the transcription 
regulation and reduces in vivo tumor growth [35]. Con-
versely, PPAR gamma activation selectively decreases 
PDK mRNA [68]. PDKs allow metabolic flexibility [69] 
and are transcriptionally regulated by insulin, glucocor-
ticoids, thyroid hormone and fatty acids [70]. Several 
diseases presenting PDK abnormalities are often associ-
ated with type 2 diabetes, obesity, metabolic disorders, 
cardiomyopathies, neuropathies and cancers.

Fig. 2  Synthetic diagram of opposing effects of PPAR gamma and 
canonical WNT/beta-catenin signaling in cancer. Green arrow activa‑
tion; red arrow inhibition; A-CoA acetyl-CoA, GSK-3beta glycogen 
synthase kinase-3beta, IC lactate intracellular lactate, EC lactate 
extracellular lactate, GSK-3beta glycogen synthase kinase-3beta, 
LDH-A lactico-dehydrogenase-A, MCT-1 monocarboxylate lactate 
transporter-1, PI3 K-AKT phosphatidylinositol 3-kinase-protein kinase 
B, PDH pyruvate dehydrogenase, PDK pyruvate dehydrogenase 
kinase, TCF/LEF T-cell factor/lymphoid enhancer factor, PPAR gamma 
peroxisome proliferator-activated receptor gamma
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In colon cancer, activation of WNT/beta-catenin sign-
aling decreases the oxidative metabolism in the TCA 
cycle and promotes cell proliferation [35]. In addition, 
the WNT/beta-catenin pathway induces the transcrip-
tion of genes involved in cell proliferation, particularly 
CYCLIN D1 and MYC operating through the G1 phase 
[71–74]. MYC activates aerobic glycolysis and glutami-
nolysis and favors nucleotide synthesis [75, 76]. MYC 
also activates LDH-A, induces glutamine uptake into the 
cell and mitochondria, and stimulates aspartate synthesis 
which favors nucleotide synthesis [75] (Fig.  1). Moreo-
ver, MYC increases the hypoxia-inducible factor -1alpha 
(HIF1A) which controls PDK-1 [77]. Part of the pyruvate 
is converted into acetyl-CoA which in turn enters the 
TCA cycle and is converted into citrate. This promotes 
protein and lipid synthesis. Cellular accumulation of 
metabolic intermediates (aspartate, serine, glycine, and 
ribose) allows de novo nucleotide synthesis, which con-
tributes to growth and proliferation.

Phosphofructokinase (PFK), an allosteric enzyme, is 
responsible for glycolytic oscillations. PFK can lead to 
instabilities beyond which a new state can be organized 
in time and in space [78]. A positive feedback is respon-
sible for periodic behavior. These far-from-equilibrium 
oscillatory mechanisms come within the field of dissipa-
tive structures initially described by Illia Prigogine [79]. 
Elevated PFK-1 activity is characteristic of cancer cells 
and is induced in response to oncogenes [80].

Cancer cells are characterized by increased glucose 
consumption. High serum glucose levels may modu-
late cancer-related processes. Glucose itself can directly 
impact the canonical WNT pathway [81]. High glucose 
level enhances the nuclear translocation of beta-catenin 
in response to WNT activation. In cancer cells, glu-
cose-induced beta-catenin acetylation favors the WNT 
pathway.

Aerobic glycolysis and vitamin C
It has been recently described a novel antitumoral mech-
anism of vitamin C [82]. Mutation of the proto-oncogene 
KRAS is often present in colon and pancreatic cancer. In 
KRAS mutant colorectal cancer, this mechanism involves 
the Warburg metabolic disruption. In the absence of vita-
min C, pyruvate kinase PKM2 is phosphorylated, then 
translocates to the nucleus and binds the beta-catenin/
TCF/LEF transcriptional factor. This promotes the 
MYC transcription which in turn enhances GLUT-1 and 
Polypyrimidine Tract Binding Protein (PTB) expression. 
In the presence of vitamin C which enters into the cell 
via GLUT-1, RAS is detached from the cell membrane 
which blocks the PKM2 phosphorylation. This induces 
downregulation of GLUT-1 and PKM2 expression via 
disruption of the beta-catenin/TEF/LEF transcriptional 

complex. This leads to downregulation of MYC and inhi-
bition of the Warburg pathway. Thus, vitamin C uncou-
ples the Warburg metabolic switch in KRAS mutant 
colon cancer.

Thermodynamics and lawless‑disorderly cancer growth
From a thermodynamic viewpoint, the lawless-disor-
derly cancer growth and the orderly fetal growth share 
some similar features [83]. Hypoxic conditions reported 
in cancer cells for their growth requirements resemble 
to those observed during normal fetal growth, which 
requires a relatively low oxygen tension. For both cancer-
ous and fetal growth, low energy requirements are linked 
to the tumorigenic arm of acute inflammation [83], as 
in wound healing. Moreover, the production of lactate 
under aerobic glycolysis conditions is characteristic of 
the human placenta [84], a tissue in which the population 
of contractile myofibroblasts is important [85]. In can-
cer (mammary carcinoma, epithelial cells in cancerous 
mammary glands), fibrotic lesions (Dupuytrens nodules, 
hypertrophic scars) [86], and normal placental stem villi 
[87], the main myosin molecular motor in myofibroblasts 
is the non muscle myosin (NMM). Kinetics of contrac-
tile NMM crossbridges are dramatically slow [88] and 
their entropy production rate is extremely low [89]. The 
presence of numerous myofibroblasts is associated with 
the aerobic glycolysis metabolism. In epithelial cancers, 
myofibroblasts represent a significant part of the stroma 
reaction. Myofibroblasts, epithelial cells, and connective 
tissue cells participate to cancer invasion, with loss of 
epithelial characteristics and acquisition of mesenchymal 
properties. This refers to as EMT [26] which greatly influ-
ences the invasive carcinoma progression and in which 
the canonical WNT pathway plays a key role. WNT3a 
favors myofibroblast differentiation by upregulating the 
transforming growth factor (TGF-beta1). This occurs 
through SMAD2 in a beta-catenin-dependent manner 
[90]. Importantly, it has been recently demonstrated that 
aerobic glycolysis is induced in response to TGF-beta1 
[91].

Activation of WNT/beta‑catenin pathway and inactivation 
of PPAR gamma in cancers
WNT/beta-catenin signaling has been found to be acti-
vated in cancers [92, 93]. WNT1 was first discovered 
as a proto-oncogene in a breast cancer mouse model. 
Increased expression of beta-catenin may be due to fac-
tors such as mutations in beta-catenin, abnormalities in 
the beta-catenin destruction complex, mutations in APC, 
overexpression of WNT ligands, and loss of inhibition or 
decreased activity of regulatory pathways. Alterations in 
gene expression of CTNNB1 which encodes beta-catenin, 
have been reported in numerous cancers such as breast 
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colorectal, melanoma, prostate and lung tumors. WNT 
1, WNT2 and WNT7A ligand-proteins are overex-
pressed in glioblastoma, esophageal cancer and ovarian 
cancer respectively. Proteins of the TCF/LEF family and 
WNT5A may also induce cancer. Repression of WNT/
beta-catenin signaling can prevent EMT and inhibit 
metastasis. Mutations of the WNT pathway components 
are associated with many cancers, particularly with colo-
rectal cancer. APC deficiency and beta-catenin muta-
tions upregulate the WNT/beta-catenin pathway and 
prevent beta-catenin degradation. This leads to excessive 
stem cell renewal and cell proliferation that predisposes 
to tumor genesis particularly for colorectal cancer [94]. 
Nuclear accumulation of beta-catenin drives cancer cell 
proliferation. In colon cancer, beta-catenin-TCF/LEF 
signaling is activated [95], and activation of the WNT 
pathway via APC gene mutations favors cell proliferation 
[96]. Mutations in PPAR gamma are linked with human 
colon cancer [97].

Several studies have presented evidence for a protec-
tive role of PPAR gamma against cancer. In colon cancer, 
PPAR gamma downregulates the oncogene beta-catenin 
and suppresses cell proliferation [98]. In contrast, other 
studies have implicated PPAR gamma in the promotion 
and development of cancer [8]. Thus, PPAR gamma acti-
vation by specific agonists can induce growth inhibition, 
apoptosis and differentiation of numerous tumor cells. 
On the contrary, overexpression of PPAR gamma has 
been reported in tumors of colon, breast, prostate, stom-
ach, salivary gland, cervix, ovary, bladder, lung, testes and 
the neural crest element of sympathetic nervous system 
[7]. The biological significance of PPAR gamma in cancer 
remains controversial. Activation of PPAR gamma can 
induce either tumor suppressive or promoting responses. 
On the one hand, PPAR gamma can act as a tumor 
inhibitor in colon cancer [99–105], in breast cancer 
[106–110], in urological cancer [110–115], in lung can-
cer [116–118], and in gastric cancer [119–122]. On the 
other hand, PPAR gamma can act as a tumor promotor in 
colon cancer [123–126], in breast cancer [127–132], and 
in urological cancer [133–135]. There is no clear unify-
ing accepted mechanism explaining these contradictory 
evidences concerning either the protective role of PPAR 
gamma or their role on promotion/development of can-
cer. This might be partly explained by cell type-specific 
effects, organ-specific effects, receptor-independent 
effects according to the PPAR gamma agonist used. This 
might also be due to specific pharmacokinetic properties 
of PPAR gamma ligands or the stage of cancer develop-
ment at which the PPAR gamma ligand is administered 
[8]. These arguments are hypotheses, and for the time 
being, no universal mechanism is able to explain the con-
tradictory effects of PPAR gamma ligands on cancers.

Role of PI3K‑AKT pathway in aerobic glycolysis and cancers
Hyperactivation of phosphatidylinositol 3-kinase (PI3K)-
protein kinase B (AKT) pathway is associated with an 
increased rate of glucose metabolism in tumor cells 
[136]. AKT signaling directly acts on aerobic glycolysis in 
cancer cells. AKT regulates the localization of GLUT1 in 
the plasma membrane and hexokinase expression. It also 
activates phosphofructokinase-1 (PFK-1) which directly 
phosphorylates PFK-2. This leads to produce fructose-
2.6-bisphosphate, an activator of PFK-1. AKT activa-
tion causes an increase in aerobic glycolysis or Warburg 
effect in cancer. PI3K-AKT pathway promotes cell sur-
vival, cell growth, cell proliferation, cell migration and 
angiogenesis in response to extracellular signals includ-
ing hormones and growth factors. This pathway is stimu-
lated by the binding of extracellular ligands to a receptor 
tyrosine kinase (RTK) located in the plasma membrane 
(Fig. 1). This signaling is upregulated in certain cancers. 
Through phosphorylation of GSK-3beta, PI3  K-AKT 
favors the G1 phase of the cell cycle. GSK-3beta phos-
phorylation decreases the degradation of beta-catenin 
in the proteasome. Thus, TCF/LEF transcription factor 
is activated which in turn favors transcription of the tar-
get gene CYCLIN D1 [137]. Consequently, by decreasing 
the GSK-3beta activity, AKT pathway behaves similarly 
to the WNT pathway. Aberrant activation of PI3K-AKT 
is often associated with cancers, including glioblasto-
mas, ovarian, pancreatic and breast cancers [138]. AKT 
mRNA is increased in breast and prostate cancer. PI3K-
AKT contributes to angiogenesis by acting on the vascu-
lar endothelial growth factor in endothelial cells and on 
the endothelial nitric oxide synthase. This activates vaso-
dilation and vascular remodeling [139]. Moreover, the 
PI3K-AKT pathway increases the hypoxia-inducible tran-
scription factor [140].

The phosphatase and tensin homologue (PTEN) repre-
sents the main brake of the PI 3′-OH kinase (PIK3)-AKT 
pathway [141]. PI3K generate phosphatidylinositol-3,4,5-
triphosphate (PIP3) from PIP2. AKT is activated by PIP3. 
PTEN is a PIP3-phosphatase and its activity is opposed 
to that of PI3K. PI3K-AKT signaling is a major pathway 
which is activated in cancer. PTEN appears to be rel-
evant against cancer progression and represents a target 
for somatic cancer inactivation. In some cancers (endo-
metrial, breast, and colorectal cancers), PI3K and PTEN 
mutations coexist. PTEM also induces a decrease in can-
cer cell proliferation due to cell cycle arrest in the G1 
phase.

Prostaglandins, WNT and PPAR gamma
Several studies have established the role of prostaglandin 
E2 (PGE2) by activating the WNT/beta-catenin path-
way. The link between PGE2 and the canonical WNT 
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pathway suggests that chronic inflammation induced by 
a prolonged increase of PGE2 could lead to activation of 
WNT signaling resulting in cell proliferation and cancer. 
PGE2 enhances the beta-catenin-dependent transcrip-
tion [142, 143]. PGE2 promotes colon cancer cell growth 
through the beta-catenin pathway. Thus, blockage of 
WNT/beta-catenin signaling can be of interest for cancer 
treatment. In treatment of colorectal cancer, nonsteroi-
dal anti-inflammatory drugs (NSAIDs) induce benefi-
cial effects [144], partly due to their interaction with the 
beta-catenin pathway and their inhibition of the PGE2 
synthesis. PGE2 modulates the WNT activity in hemat-
opoietic stem cell (HSC) in zebrafish. Inhibition of PGE2 
synthesis blocks alterations in HSC induced by WNT. 
PGE2 modifies the WNT signaling cascade at the level of 
beta-catenin degradation through the cAMP/PKA path-
way. WNT activation in stem cells requires PGE2 [145]. 
Dimethyl-prostaglandin E2 increases HSC in  vivo. In 
addition, dimethyl-prostaglandin E2 leads to the forma-
tion of components of the WNT pathway [146]. WNT 
signaling upregulates interleukin (IL)-7R and IL-2Rbeta. 
In neuroectodermal (NE-4C) stem cells, PGE2 inter-
acts with the canonical WNT signaling through PKA 
and PI3K [147]. In WNT-induced cells, beta-catenin is 
increased and the WNT-target genes (Ctnnb1, Ptgs2, 
Ccnd1, Mmp9) are significantly upregulated after PGE2 
use. PPAR gamma and proinflammatory enzyme path-
ways are interrelated. Decreased expression of PPAR 
gamma and high levels of COX-2 have been reported 
in many cancers [148]. TZDs decrease COX-2, inhibit 
growth of non-small-cell lung cancer cells in  vitro, and 
block tumor development. TZDs diminish COX-2 and 
PGE2 through PPAR gamma. The PPAR gamma activa-
tor 15dPGJ2 plays an anti-inflammatory role in a PPAR 
gamma-dependent manner, decreasing COX-2, PGE2 
and iNos expression [149].

Circadian rhythms (CRs), cancers, metabolism 
and thermodynamics
CRs can be defined as endogenous, entrainable free-run-
ning periods that last approximately 24  h. CRs are far-
from-equilibrium dissipative structures and are due to a 
negative feedback produced by a protein on the expres-
sion of its own gene [150–152]. They operate in far-
from-equilibrium manner if affinity of the studied system 
is ≫RT (R is the universal gas constant and T is the abso-
lute temperature), and generate order spontaneously by 
exchanging energy with their external environment [2, 
153]. In mammals, CRs involve several major critical 
transcription factors such as circadian locomotor output 
cycles kaput (CLOCK), brain and muscle aryl-hydrocar-
bon receptor nuclear translocator-like1 (BMAL1), period 
1 (PER1), period 2 (PER2), and period 3 (PER3) [154, 

155]. Transcription/translation autoregulatory feedback 
loops with both activating and inhibiting pathways are 
involved in CRs [156, 157].

Circadian rhythms govern numerous physiological 
and metabolic functions [158]. Thus, CRs are observed 
in sleep-awake and feeding patterns, energy metabolism, 
body temperature, hormone secretion, heart rate and 
blood pressure. Following epidemioloigical and genetic 
probes, it has been suggested that disruption of CRs may 
be directly linked to cancer, leading to aberrant cellular 
proliferation [159]. Since numerous connections between 
the circadian clock and cellular metabolism have been 
reported, it is thougth that the abnormal metabolism 
observed in cancer may be a consequence of disrupted 
CRs. CRs within the cell regulate the timing of many 
important life cycles [160]. The phase diffusion constant 
depends on the free-energy dissipation per period. Oscil-
lations are driven by multiple irreversible cycles that 
hydrolyze fuel molecules such as ATP. The free energy 
consumed per period is proportional to the number of 
phase coherent periods. A decreased BMAL1 function 
modifies the behavior of genes involved in the canoni-
cal WNT pathway [161]. Beta-catenin induces PER2 
degradation altering circadian clock gene in intestinal 
mucosa of ApcMin/+ mice [162]. A deceased expression 
level of PER1 and/or PER2 has been reported in numer-
ous cancers: breast cancer [163], prostate cancer [164], 
pancreatic cancer [165], colorectal cancer [166], chronic 
myeloid leukemia [167], and glioma [168, 169].

Peroxisome proliferator-activated receptors interferes 
with the mammalian clock and energy metabolism [170]. 
PPARs are rhythmically expressed in mammalian tis-
sues [171] and directly interact with the core clock genes. 
PPAR gamma exhibits variations in diurnal expression in 
mouse fat, liver and blood vessels [42]. Deletion of PPAR 
gamma in mouse impairs diurnal rhythms [172]. PPAR 
gamma plays an important role in the coordinated con-
trol of circadian clocks, metabolism and cardiac perfor-
mance. PGC-1 alpha, a transcriptional co-activator that 
regulates energy metabolism, is rhythmically expressed 
in the liver and skeletal muscle of mice. PGC-1 alpha 
upregulates the expression of the clock genes BMAL1 
and Rev-erb alpha. Mice lacking PGC-1 alpha show 
changes in CRs and metabolism [173]. PGC-1 alpha 
acts as a stress sensor in cancer cells. In maintaining 
metabolic homeostasis, PGC-1 alpha favors cancer cell 
survival [174]. PGC-1 alpha interfers in a very complex 
manner with nuclear receptors such as Rev-erb, ROR, 
PPARs [175]. PPAR alpha and gamma up-regulate the 
expression of Rev-erb alpha and BMAL1 by binding to 
their promotors. PGC-1 potentiates ROR alpha tran-
scriptional activity and enhances both Rev-erb alpha 
and BMAL1 transcription. Moreover after serum shock, 
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GSK-3beta-mediated stabilization of Rev-erb alpha plays 
a key role to initiate, maintain and synchronize CRs.

Conclusions
Cancers exhibit thermodynamic and metabolic altera-
tions and abnormal CRs. In many cancers but not all, the 
canonical WNT/beta-catenin pathway is upregulated, 
while PPAR gamma is downregulated, the two systems 
behaving in an opposite manner. Overactivation of the 
WNT pathway results in cell proliferation due to the 
activation of certain target genes of beta-catenin, such as 
MYC and CYCLIN D1. This promotes protein synthesis 
and angiogenesis. PDK and MCT-1 are also target genes 
of beta-catenin, explaining the significant decrease in the 
transformation of pyruvate into acetyl-CoA in mitochon-
dria and the formation of intracellular lactate, which will 
be extruded out of the cell. This is referred to as aerobic 
glycolysis or the Warburg phenomenon. The expression 
of PPAR gamma is decreased due to the overactivation 
of WNT/beta-catenin signaling. Circadian rhythms, dis-
sipative structures which are governed by the laws of 
far-from-equilibrium thermodynanics are disrupted in 
cancers. They are influenced by both the WNT/beta-
catenin pathway and PPAR gamma. Changes in thermo-
dynamics, metabolism and circadian rhythms are tightly 
linked in cancers.
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