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REVIEW

Does it make sense to target one 
tumor cell chemotactic factor or its receptor 
when several chemotactic axes are involved 
in metastasis of the same cancer?
Mariusz Z. Ratajczak1,2*, Malwina Suszynska1,2 and Magda Kucia1,2

Abstract 

The major problem with cancer progression and anti-cancer therapy is the inherent ability of cancer cells to migrate 
and establish distant metastases. This ability to metastasize correlates with the presence in a growing tumor of cells 
with a more malignant phenotype, which express certain cancer stem cell markers. The propensity of malignant cells 
to migrate and their resistance to radio-chemotherapy somewhat mimics the properties of normal developmentally 
early stem cells that migrate during organogenesis in the developing embryo. In the past, several factors, including 
cell migration-promoting cytokines, chemokines, growth factors, bioactive lipids, extracellular nucleotides, and even 
H+ ions, were found to influence the metastasis of cancer cells. This plethora of pro-migratory factors demonstrates 
the existence of significant redundancy in the chemoattractants for cancer cells. In spite of this obvious fact, signifi-
cant research effort has been dedicated to demonstrating the crucial involvement of particular pro-metastatic factor–
receptor axes and the development of new drugs targeting one receptor or one chemoattractant. Based on our own 
experience working with a model of metastatic rhabdomyosarcoma as well as the work of others, in this review we 
conclude that targeting a single receptor–ligand pro-metastatic axis will not effectively prevent metastasis and that 
we should seek other more effective therapeutic options.
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Introduction
Metastasis is responsible for more than 90 % of cancer-
associated mortality, and preventing its occurrence is a 
therapeutic priority in clinical oncology [1]. Several fac-
tors have been identified that induce the migration of 
cancer cells, both in the process of directional cell migra-
tion known as chemotaxis [2] and the random multi-
directional migration termed chemokinesis [2]. Both 
of these processes (Fig.  1) lead to egress of cancer cells 
from the primary tumor, relocation to distant sites, and 
the establishment of metastases. Usually, chemotaxis 
and chemokinesis together play a role in the motility of 

cancer cells. However, depending on the type of a given 
tumor, various chemotactic factors may promote more of 
one or the other cell-trafficking mechanism.

The list of candidate metastatic factors for cancer 
cells is very long and includes cell migration-promot-
ing chemokines (e.g., stromal-derived factor 1, SDF-1), 
growth factors (e.g., hepatocyte growth factor/scatter fac-
tor, HGF/SF), bioactive lipids (e.g., sphingosine-1-phos-
phate, S1P; ceramide-1-phosphate, C1P), extracellular 
nucleotides (e.g., ATP, UTP), and even H+ ions [3–10]. 
The migration of cancer cells may also be affected by cer-
tain hormones (e.g., follicle-stimulating hormone, FSH; 
luteinizing hormone, LH), cleavage fragments of the 
complement cascade (C3 and C5 cleavage fragments; C3a 
and C5a, respectively), components of the coagulation 
cascade (e.g., thrombin), and certain danger-associated 
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molecular pattern molecules (DAMPs; e.g., S100 pro-
teins) [11–16].

Pro-metastatic factors activate various specific, corre-
sponding types of receptors, including cytokine recep-
tors, tyrosine kinase receptors, and G protein-coupled 
receptors. Signals transduced from these receptors acti-
vate similar signaling pathways involved in the regulation 
of cell migration or adhesion and affect elements of the 
intracellular cytoskeleton [17–19].

The redundancy of factors and receptors involved in 
migration of cells in the same type of cancer poses an 
important question: Is it reasonable to target particular 
pro-migratory axes when several other pro-metastatic 
axes exist for a given tumor cell? Moreover, in most of 
the published reports demonstrating migration, “supra-
physiological concentrations” of pro-metastatic factors 
were employed at doses not encountered in normal tis-
sues and that may not be relevant to clinical situations. In 
addition, the responsiveness of primary tumor cells may 
change over time as a malignancy progresses and could 
be affected by several additional clinical problems that 
emerge in patients, such as infections or organ failure.

In this review we will summarize several years of expe-
rience in identifying and blocking crucial pro-metastatic 
axes involved in the metastasis of human rhabdomyo-
sarcoma (RMS) cells [6, 12, 20–25]. Our observations, 
obtained with an RMS cell metastasis model, are also 
relevant to other types of malignancies, as significant 
redundancy in pro-metastatic ligand–receptor axes exists 
for almost all tumor types studied so far.

Rhabdomyosarcoma as a model to study cancer 
metastasis
Rhabdomyosarcoma (RMS) is the most common soft-
tissue sarcoma of adolescence and childhood and report-
edly accounts for 5 % of all malignant tumors in patients 
under 15  years of age [26]. Two major histological sub-
types have been described: alveolar rhabdomyosarcoma 
(ARMS) and embryonal rhabdomyosarcoma (ERMS) 
[27]. ARMS is associated with more aggressive behavior 
and a worse prognosis than ERMS [28]. Together with 
neuroblastoma, nephroblastoma, and Ewing’s sarcoma, 
RMS belongs in the family of so-called “small round blue 
tumor cells”, which often infiltrate bone marrow (BM). 
These tumor cells on BM smears are sometimes misdiag-
nosed as acute leukemia cells [29, 30].

The two types of RMS show differences at the molec-
ular level. ARMS is characterized by the translocation 
(2;13)(q35;q14) in 70 % of cases and the variant translo-
cation (1;13)(p36;q14) in a smaller percentage of cases 
[31, 32]. These translocations disrupt the PAX3 and 
PAX7 genes on chromosomes 2 and 1, respectively, and 
the FOXO1 gene on chromosome 13, which leads to the 
generation of PAX3–FOXO1 and PAX7–FOXO1 fusion 
genes. PAX3–FOXO1 and PAX7–FOXO1 fusion pro-
teins have enhanced transcriptional activity compared 
with wild type PAX3 and PAX7 and are postulated to play 
a role in cell survival and dysregulation of the cell cycle 
in ARMS [31]. Since there are also ARMS cases that are 
fusion-negative and have a better outcome than fusion-
positive cases, it was more recently recommended that 
RMS should be classified into fusion-positive (PAX3–
FOXO1 and PAX7–FOXO1) and fusion-negative tumors 
[7]. In our experiments over the past 15  years to study 
RMS metastasis, we have employed several human RMS 
cell lines, including both fusion-positive (e.g., RH28, 
RH30, RH41) and fusion-negative (e.g., JR, RD, RH18, 
RH36, SMS-CTR) tumor cell lines [8, 20, 21]. Some of 
our results were subsequently verified in primary RMS 
patient tissue samples [25, 33].

However a lot of progress has been made to understand 
pathogenesis of RMS, the origin of cells that gives rise 
in skeletal muscle tissue to this malignancy is still under 
debate. It has been proposed that, while low-passage 
mesenchymal stem cells (MSCs) can generate ARMS, 
low-passage myoblasts can form ERMS [34–36]. On 
the other hand, RMS cells express several cancer testis 
antigens (CTAs), which are characteristic of germline-
derived cells [37–41]. This observation makes a some-
what hypothetical connection to a concept presented 
150  years ago by Rudolf Virchow [42] and Julius Con-
heim [43], who proposed the “embryonic rest hypothesis 
of cancer development” [44]. According to this hypoth-
esis, certain malignancies may develop from dormant 
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Fig. 1  The difference between chemotaxis and chemokinesis. 
Cells may respond to a pro-migratory factor in two different ways: 
by directed movement, in the process chemotaxis, or by random 
multidirectional movement, in the process of chemokinesis. Both 
mechanisms may be involved in egress of cancer cells from the 
primary tumor
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embryonic or germ cells residing in adult tissues [44]. In 
this context, small round blue cell tumors, (e.g., RMS) 
that express several CTA antigens are potential candi-
dates to form such malignancies. This hypothesis, how-
ever, requires further study. In any case, RMS cell lines, 
which are endowed with migratory potential, are a con-
venient model for studying cancer metastasis.

Assays with which to study the metastasis 
of cancer cells
The metastatic potential of tumor cells can be studied by 
employing several complementary assays. The most con-
venient is the Transwell migration assay, which employs 
two chambers separated by a porous membrane [45]. The 
cells to be tested are loaded into the upper chamber, and 
the chemoattractant is added to the lower chamber. The 
readout in this assay is the number of cells that migrate 
from the upper to the lower chamber in response to a 
chemotactic factor, which is a process known as chemo-
taxis. This system also allows us to measure random cell 
migration, which is a process known as chemokinesis 
[45]. In order to study chemokinesis, a pro-metastatic 
factor is added to both the lower and upper chambers, 
and chemokinesis is said to occur when a gradient is 
missing between chambers and cells still migrate to the 
lower chamber from the upper chamber (Fig. 2).

In contrast to in vitro Transwell migration, another rel-
atively easy in vivo assay with which to study the metas-
tasis of human cancer cells is the “cancer cell seeding 
assay” developed by us [8, 20–22] (Fig.  3). This assay is 
based on intravenous injection of tumor cells into immu-
nodeficient mice; 24–48 h later, the organs are extracted 
to detect the presence of human cells. Human cells in 
murine tissues can be detected directly by FACS if the 
injected cells carry fluorescent markers (e.g., transduced 
with the gene encoding GFP protein or labeled ex  vivo 
with PKH26) or indirectly by detecting human DNA 

in murine tissues using RQ-PCR (e.g., to detect human 
DNA specific for α satellite sequences) and comparing 
the amplification result to a standard curve established 
by mixing human and murine cells in different ratios [8, 
20]. From the percentage of human DNA present in DNA 
extracts, we can estimate how many human cells were 
present in a given organ using this standard curve [8, 24]. 
Before injection into experimental animals, the cancer 
cells may be stimulated with pro-metastatic factors or 
exposed to the inhibitor of their corresponding receptors.

By employing this in  vitro Transwell assay and the 
in  vivo cancer cell seeding efficiency assay, it is possi-
ble, in a relatively easy way, to study the contribution of 
several potential pro-metastatic factor–receptor axes to 
cancer metastasis and to test the efficacy of various anti-
metastatic strategies [8, 21, 22, 33].

“The never‑ending story” of pro‑metastatic factors 
for RMS cells
In the past 15  years we have identified several factors 
involved in directing the migration of RMS cells and thus 
potentially directing metastasis of this tumor. The first 
factors that we studied were cytokines with chemotactic 
activity, known as chemokines [6, 9, 20–22]. Chemokines 
regulate the migration of several types of normal cells, 
activate seven-transmembrane-domain G protein-cou-
pled receptors, and it is not surprising that they also che-
moattract cancer cells [18, 23, 36, 46–48]. For example, 
we demonstrated that SDF-1, by engaging both CXCR4 
and CXCR7 seven-transmembrane-domain receptors, 
promotes migration of RMS cells and could be respon-
sible for their metastasis to BM [6, 22]. Specifically, we 
showed that RMS cells respond robustly to gradients of 
SDF-1 employed at high concentrations, and this migra-
tion was inhibited by blocking CXCR4 with small-mol-
ecule antagonists [6]. Later on, when a new ligand for 
CXCR4, the chemokine macrophage migration inhibitory 
factor (MIF), had been described [49], we also confirmed 
that it may direct migration of CXCR4+ RMS cells [21]. 
Since RMS cells express CXCR7, they may also respond 
to another chemokine, interferon-inducible T cell alpha 
chemoattractant (I-TAC) [22]. The role of chemokines in 
regulating the biology of RMS cells is even more compli-
cated, as RMS cells may secrete interleukin 8 (IL-8). Since 
they do not express the corresponding receptors (CXCR1 
and CXCR2), IL-8 secreted by RMS cells exerts paracrine 
effects on the surrounding microenvironment and stimu-
lates tumor angiogenesis [50].

RMS cells also respond to several growth factors that 
engage receptors with intrinsic tyrosine kinase activity 
[18, 51]. It has been reported that insulin-like growth fac-
tor 1 and 2 are not only RMS growth-promoting factors 
but are also potent chemotactic factors for these cells [18, 
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Fig. 2  In vitro Transwell migration assay. Cells to be tested are placed 
in the upper chamber, and the migration-promoting factor to be 
tested for chemotaxis is placed in the lower chamber. If the factor is 
to be tested for chemokinesis, it is added at the same time to both 
upper and lower chambers. Cells that migrate to the lower chamber are 
counted and compared with cells that had migrated in medium with-
out the pro-migratory factor (the control Transwell inserts)
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Recipient mice – immunodeficent 
strains for human cells (irradiated 

by 360 cGy), syngeneic mice for 
murine cell lines

24 h

Tested human or murine cancer 
cells – primed by pro-metasta�c 

factor or exposed to receptor 
inhibitor 

Cells are injected 
intravenously

24-48 h

Organs removed for 
analysis

DNA purifica�on from 
isolated organs
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Fig. 3  In vivo seeding efficiency assay for human cells. Human cells exposed ex vivo (primed) to a pro-metastatic factor or a receptor blocking 
agent are subsequently injected i.v. into immunodeficient mice. Mice can be additionally irradiated with 360 cGy. The number of human cells can 
be detected in murine organs by FACS (after labelling cells with fluorochrome or transducing with GFP) or by detecting the level of human DNA in 
murine organs
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52–54]. In our own work we also confirmed that hepato-
cyte growth factor/scatter factor (HGF/SF) promotes 
migration and adhesion of RMS cells by engaging the 
c-Met receptor [20].

Another group of factors that may direct migration of 
RMS cells are cytokines, and our recent research demon-
strated the involvement of erythropoietin in enhancing 
the pro-metastatic potential of this tumor [55]. Erythro-
poietin is very often employed in patients to ameliorate 
chemotherapy-induced anemia [56]. Therefore, erythro-
poietin supplementation in RMS patients may have the 
unwanted side effect of stimulating tumor progression.

In addition to peptide-based factors, such as cytokines, 
chemokines, and growth factors, another potent class of 
pro-metastatic factors for RMS cells that we have identi-
fied is bioactive lipids. In our recent work we have dem-
onstrated that the pro-metastatic potential of RMS cells 
is enhanced by the presence of sphingosine-1-phosphate 
(S1P), ceramide-1-phosphate (C1P), lysophosphatidyl-
choline (LPC), and its derivative, lysophosphatidic acid 
(LPA) [25]. All these bioactive lipids strongly enhance 
motility and adhesion of human RMS cells, and, more 
importantly, these metastatic-associated phenomena 
were observed at physiological concentrations of these 
lipids that naturally occur in biological fluids [25].

Moreover, a novel class of factors that we identified that 
may enhance the migration of RMS cells is gonadal and 
pituitary sex hormones (SexHs) [55]. SexHs are involved 
in skeletal muscle development and regeneration, and we 
found that follicle-stimulating hormone (FSH) and lute-
inizing hormone (LH) receptors are expressed in estab-
lished human RMS cell lines as well as in primary tumor 
samples isolated from RMS patients. We also found that 
human RMS cell lines responded both to pituitary and 
gonadal SexH stimulation by enhanced proliferation, 
chemotaxis, and cell adhesion [55]. The expression of 
functional SexHs by RMS cells suggests, as mentioned 
above, their developmental relationship with certain 
developmentally early stem cells deposited in adult tis-
sues [57, 58].

Finally, metastasis and migration of RMS cells are also 
affected by several other factors, such as extracellular 
microvesicles (ExMVs) [59, 60], thrombin [12], and even 
extracellular nucleotides (e.g., ATP, UTP) [24]. The list of 
these factors is still open, and new candidates are being 
identified.

Other strategies to inhibit the metastasis of cancer 
cells
Based on our results for a model of RMS metastasis, we 
conclude that there are multiple redundant pro-meta-
static axes for this tumor. Therefore inhibition of one of 
these axes will not prevent pro-metastatic responsiveness 

of the cells to other axes. Instead, most ideal anti-met-
astatic treatment should target common mechanisms 
involved in the metastatic process.

One of these possibilities is to target signaling pathways 
involved in cell migration such as intracellular kinases 
that are known to promote this process (e.g., p42/44 
MAPK, AKT, or PKC). However, since these signaling 
kinases are involved in the regulation of many physiologi-
cal processes, it would be difficult to target them without 
unpredictable side effects.

Another potential strategy would be to enhance the 
expression of certain stress-specific pathways that inhibit 
cell migration. One such strategy that we recently identi-
fied is to upregulate heme oxygenase 1 (HO-1) in cancer 
cells (manuscript in preparation). Small-molecule induc-
ers of this stress-induced enzyme are available, and our 
preliminary results in several tumor models demonstrate 
the efficacy of such treatment in inhibiting the spread of 
cancer cells [61, 62]. However, in parallel we have to take 
into consideration other potential pleiotropic effects of 
HO-1 on tumor cells.

Finally, we have proposed that a pro-metastatic 
microenvironment may be induced in healthy tissues in 
response to radio-chemotherapy [63, 64]. While there 
are several well-known side effects of chemotherapy 
and radiotherapy that are mainly related to toxicity and 
the impaired function of several organs, the induction 
of a pro-metastatic microenvironment is still, surpris-
ingly, not widely acknowledged [63, 64]. We proposed 
that toxic damage in various organs leads to upregula-
tion in “bystander” tissues of several chemotactic factors, 
which attract circulating stem cells for regeneration but 
unfortunately also provide chemotactic signals to attract 
cancer cells that survived the initial treatment [63]. This 
mechanism may play an important role in the metastasis 
of cancer cells to organs such as bones, lungs, and liver, 
which are highly susceptible to chemotherapeutic agents 
as well as ionizing irradiation. We have demonstrated 
that this side effect of radio-chemotherapy can be amelio-
rated by administration of non-steroid anti-inflammatory 
drugs (e.g., ibuprofen) or steroids at the time of admin-
istration of radiochemotherapeutic treatment [63]. This 
strategy may effectively ameliorate collateral induction of 
pro-metastatic factors in various organs and tissue. Based 
on our experimental data these new potential therapeutic 
strategies shall be tested in the clinical settings.

Conclusions
As mentioned in introduction metastasis is responsible 
for more than 90  % of cancer-associated mortality and 
therefore the clinical need to prevent or target metasta-
sis is one of the therapeutic priorities in clinical oncology. 
Our long-standing studies on the mechanisms involved in 



Page 6 of 8Ratajczak et al. Clin Trans Med  (2016) 5:28 

cancer metastasis by employing RMS cells as a model sys-
tem clearly show that targeting a single receptor–ligand 
axis may slow down but will not prevent cancer cells from 
undergoing metastasis, as several redundant pro-metastatic 
receptor–ligand axes exist. Moreover, based on the litera-
ture and taking into consideration that multiple pro-met-
astatic factors have also been identified for other types of 
malignancies, the general conclusions of this review apply 
also to other tumors. Therefore, there is an urgent need to 
develop more efficient anti-metastatic therapies that will 
simultaneously target the response of cancer cells to all 
pro-metastatic factors (e.g., by intracellular upregulation of 
HO-1) or even to employ as a prophylactic treatment drugs 
(e.g., steroids or anti-inflammatory drugs) that prevent 
induction of a pro-metastatic microenvironment induced in 
various organs after radio-chemotherapy. These new poten-
tial anti-metastatic strategies could be combined with sur-
gical treatment and/or cancer immunotherapy. A variety of 
novel surgical approaches as well as strategies to stimulate 
the immune system to destroy growing tumors are available 
including T-cell adoptive transfer combined with inteleu-
kin-2 therapy, genetically engineered T cells specialized to 
recognize tumor antigens or autologous immune enhance-
ment therapy using patient’s own peripheral blood-derived 
NK cells or other relevant immune cells [65–67].
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