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Depurinating estrogen‑DNA adducts, 
generators of cancer initiation: their 
minimization leads to cancer prevention
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Abstract 

Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol 
estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves 
apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and 
exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and 
protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 
3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. 
The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high 
risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates 
that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have 
high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating 
estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries 
led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. 
The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured 
human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the 
risk of developing various prevalent types of human cancer.
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Mechanism of metabolic activation of estrogens 
to initiate cancer
One of the major obstacles in cancer research is related 
to the concept that cancer is a problem of many diseases. 
This viewpoint has kept researchers from investigat-
ing the etiology of cancer because a search for numer-
ous causes would be prohibitively complex. While the 
expression of various cancers coincides with the concept 
of numerous diseases, we think many types of prevalent 
cancers have a common etiology. The understanding of 

this common mechanism of cancer initiation can lead to 
cancer prevention.

Exposure to estrogens is a known risk factor for devel-
oping cancer. The scientific community predominantly 
considers estrogens to be epigenetic carcinogens because 
these compounds do not induce mutations in standard 
bacterial and mammalian test systems. This presumably 
occurs because the reactive catechol estrogen quinone 
metabolites are not formed or cannot reach the target 
DNA [1–5]. These results have led scientists to classify 
estrone (E1) and estradiol (E2) as epigenetic carcinogens 
that function by stimulating abnormal cell proliferation 
via estrogen receptor (ER)-mediated processes [5–10]. 
These latter events can accelerate the process of car-
cinogenesis, but do not play the critical role in cancer 
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initiation because the hypothetical mutations obtained 
are random.

Unbalanced estrogen metabolism is a critical factor in 
cancer initiation. The discovery that specific oxidative 
metabolites of estrogens, the catechol estrogen quinones, 
react with DNA supports the hypothesis that estrogens 
can become endogenous carcinogens by generating the 
mutations leading to the initiation of cancer [11–14]. 
This paradigm indicates that specific, critical mutations 
produce abnormal cell proliferation leading to cancer, 
rather than ER-mediated abnormal cell proliferation that 
generates random mutations [1, 6–10]. The specificity 
of the critical mutations is the result of the preliminary 
intercalating physical complex between estrogen and 
DNA that occurs before formation of the covalent bond 
between them. This intercalating mechanism has been 
demonstrated for the human carcinogen diethylstilbes-
trol (DES) [15].

Benzene and naphthalene
Natural and synthetic estrogens contain a benzene ring 
in their structure. For compounds containing one or two 
benzene rings, there is a common mechanism of meta-
bolic activation, which produces extremely weak ultimate 
carcinogens. This mechanism of activation (Fig.  1) has 
been demonstrated to occur with benzene [16, 17], naph-
thalene [18, 19], the natural estrogens E1 and E2 [20–26], 
and the synthetic estrogens DES [15, 27] and hexestrol 
(HES) [23, 28, 29].

It has long been known that benzene causes acute 
myelogenous leukemia in humans [30, 31]. The benzene 
metabolites include catechol, (CAT, 1,2-dihydroxyben-
zene) and hydroquinone (1,4-dihydroxybenzene) [32, 
33]. CAT and hydroquinone can accumulate in the bone 
marrow [34, 35], where they can be oxidized by peroxi-
dases [36] to the corresponding quinones. The CAT-1,2 
quinone reacts with DNA by 1,4 Michael addition to 
yield the depurinating adducts CAT-4-N7Gua and CAT-
4-N3Ade (Fig.  1) [16, 17]. These results suggest that 
the ultimate carcinogenic metabolite of benzene is the 
benzene-1,2-quinone.

Inhalation of naphthalene by male and female rats for 
two years produced olfactory epithelial neuroblastomas 
in 5–10 % of the animals [37]. The logical mechanism of 
metabolic activation of naphthalene is analogous to the 
one described above for benzene. In fact, naphthalene-
1,2-quinone reacts with DNA to produce the depuri-
nating N3Ade and N7Gua adducts in  vitro and in  vivo 
(Fig. 1) [18, 19].

Natural and synthetic estrogens
One of the major metabolic pathways of the natural estro-
gens E1 and E2 is the formation of catechol estrogens. 

These metabolites are oxidized to semiquinones and then 
to quinones. Their reaction with DNA forms predomi-
nantly the depurinating adducts N3Ade and N7Gua that 
can initiate cancer (Fig.  1). Synthetic estrogens, such as 
the human carcinogen DES [38] and its hydrogenated 
derivative HES, display properties similar to the natural 
estrogens: (1) they are carcinogenic in the kidney of Syr-
ian golden hamsters [39, 40]; (2) the major metabolites 
are their catechols [40–43]; (3) the catechol quinones of 
DES and HES have chemical and biochemical proper-
ties similar to those of the natural E1(E2)-3,4-quinones 
[E1(E2)-3,4-Q], namely they form N3Ade and N7Gua 
adducts after reaction with DNA (Fig.  1). Depurination 
of the N3Ade adduct is instantaneous, whereas depuri-
nation of the N7Gua adduct occurs rather slowly [15, 23, 
27–29]. These data suggest that the catechol quinones of 
DES and HES are their cancer initiators.

Catechol estrogen metabolic pathway
Strong evidence from studies of estrogen metabolism, 
formation of DNA adducts, mutagenicity, cell trans-
formation and carcinogenicity led to and supports the 
hypothesis that specific estrogen metabolites, the cat-
echol estrogen quinones, can react with DNA to form 
estrogen-DNA adducts in critical genes that lead to the 
initiation of cancer [11, 12].

Metabolic formation of estrogens derives from aro-
matization of testosterone and 4-androstene-3,17-di-
one, catalyzed by CYP19 (aromatase), to yield E2 and 
E1, respectively (Fig. 2). E2 and E1 are interconverted by 
17β-hydroxysteroid dehydrogenase. If an excess of estro-
gen is obtained, it is stored as estrone sulfate. Estrogens 
are metabolized via two major pathways: formation of 
16α-OHE1(E2) (not shown in Fig. 2) and formation of the 
catechol estrogens 2-OHE1(E2) and 4-OHE1(E2) (Fig.  2) 
[44]. Cytochrome P450 (CYP)1A and CYP3A catalyze 
the hydroxylation preferentially at the 2 position, whereas 
CYP1B1 catalyzes the hydroxylation almost exclusively 
at the 4 position [45–47]. The two catechol estrogens are 
inactivated by conjugation to glucuronides and sulfates 
especially in the liver (not shown in Fig.  2). In extrahe-
patic tissues, the most common path of conjugation of 
the catechol estrogens is O-methylation, catalyzed by 
catechol-O-methyltransferase (COMT) [48, 49]. A low 
activity of COMT renders more competitive oxidation of 
the catechol estrogens to E1(E2)-2,3-Q and E1(E2)-3,4-Q 
catalyzed by CYP or peroxidases (Fig. 2).

Oxidation of semiquinones to quinones can also be 
obtained by molecular oxygen (Fig.  2). Reduction of 
estrogen quinones to semiquinones by CYP reductase 
completes the redox cycle. In this process, the molecu-
lar oxygen is reduced to superoxide anion radical, and 
then converted by superoxide dismutase to hydrogen 
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peroxide. In the presence of Fe2+ the hydrogen peroxide 
is converted to hydroxyl radical. Reaction of the hydroxyl 
radical with lipids produces lipid hydroperoxides [50] 
(not shown in Fig. 2).

Following the formation of catechol estrogen qui-
nones (Fig.  2), they can be inactivated by reacting with 

glutathione (GSH). A further inactivation pathway for 
the quinones is reduction to their respective catechols by 
quinone reductase [51, 52], a protective enzyme that can 
be induced by a variety of compounds [53].

If all the protective processes are insufficient, the cat-
echol estrogen quinones can react with DNA to form 

Fig. 1  Common mechanism of metabolic activation and reaction with DNA to form the N3Ade and N7Gua depurinating adducts for benzene, 
naphthalene, estrone (E1), estradiol (E2), diethylstilbestrol (DES), and hexestrol (HES). The figure shows the progression from parent compound to 
hydroxy derivative, catechol, and then quinone, which reacts with DNA to form the depurinating adducts at the N3Ade and N7Gua
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predominantly the depurinating adducts 4-OHE1(E2)-1-
N3Ade plus 4-OHE1(E2)-1-N7Gua (97  %) from E1(E2)-
3,4-Q and 2-OHE1(E2)-6-N3Ade (3 %) from E1(E2)-2,3-Q 
(Fig.  2). The much larger amount of adducts formed by 
the E1(E2)-3,4-Q compared to those from the E1(E2)-
2,3-Q results from the chemical properties of the qui-
nones [26].

Depurinating estrogen‑DNA adducts: generators 
of cancer initiation
Carcinogens react with DNA to form two types of 
adducts: stable adducts and depurinating adducts. In 
the Watson–Crick DNA model (Fig.  3), the backbone 
is constituted by deoxyribose and phosphate, the Gua 
is hydrogen-bonded to cytosine, and Ade is hydrogen-
bonded to thymine. The Gua has one exocyclic NH2 
group that can react with electrophiles to form a stable 
adduct (Fig.  3, hollow arrow). If reaction occurs at the 

N-7 and sometimes C-8 of Gua, depurinating adducts are 
formed (Fig. 3, solid arrows). In the case of Ade, reaction 
of an electrophile at the exocyclic NH2 group forms a sta-
ble adduct (Fig.  3, hollow arrow), whereas depurinating 
adducts are obtained after reaction at the N-3 and N-7 
sites (Fig. 3, solid arrows). Following reaction at the N-3 
of Ade, destabilization of the glycosyl bond occurs via 
formation of an intermediate oxocarbenium ion with 
subsequent depurination and generation of an apurinic 
site in the DNA [54].

Cancer researchers have focused on stable adducts, 
which remain in DNA unless removed by repair. These 
adducts are routinely detected and quantified by the 
32P-postlabeling technique, but their structure has not 
always been identified.

Stable adducts are formed when electrophilic carcino-
genic compounds react with the exocyclic amino group 
of Ade or Gua [25]. If formation of adducts occurs at the 

Fig. 2  Formation of estrogens, catechol estrogen metabolic pathway and DNA adducts of estrogens. Activating enzymes and depurinating DNA 
adducts are in red and protective enzymes are in green. N-acetylcysteine (NAC, shown in blue) and resveratrol (Res, shown in burgundy) indicate the 
various steps where NAC and Res can improve unbalanced estrogen metabolism by reducing formation of depurinating estrogen-DNA adducts
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N-3 or N-7 of Ade, or the N-7 of Gua, the most nucle-
ophilic sites in Ade and Gua [55], destabilization of the 
glycosyl bond and subsequent depurination of the adduct 
from DNA takes place [20, 22, 25]. The critical relevance 
of these depurinating adducts is still not recognized by 
researchers 20 years after their discovery [56].

Evidence that depurinating DNA adducts play the pre-
dominant role in cancer initiation was first obtained from 
a correlation between the levels of depurinating polycy-
clic aromatic hydrocarbon-DNA adducts and oncogenic 
Harvey (H)-ras mutations in mouse skin papillomas [56, 
57]. The very potent carcinogens 7,12-dimethylbenz[a]
anthracene [58] and dibenzo[a,l]pyrene [59, 60] form 
predominantly depurinating Ade adducts and induce 
an A to T transversion in codon 61 of the H-ras onco-
gene. Instead, benzo[a]pyrene yields approximately twice 
as many Gua depurinating adducts as Ade depurinating 
adducts in mouse skin [61], and twice as many codon 13 
G to T transversions as codon 61 A to T transversions 
[56, 61, 62].

A similar correlation between the sites of formation 
of depurinating DNA adducts and H-ras mutations was 

observed in mouse skin and rat mammary glands treated 
with E2-3,4-Q [63, 64].

E1(E2)‑3,4‑quinones and E1(E2)‑2,3‑quinones
The predominant cancer initiating pathway (97  %) 
derives from E1(E2)-3,4-Q and is shown in Fig.  4 [26]. 
E1 and E2 are metabolically converted to 4-OHE1(E2) by 
CYP1B1. Oxidation of the catechol estrogens leads to the 
corresponding E1(E2)-3,4-Q, which can react with DNA 
to form small amounts of stable adducts (1 %) remaining 
in the DNA and preponderant amounts of the depurinat-
ing adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-
N7Gua (97  %), which detach from DNA leaving behind 
DNA with apurinic sites [26]. Possible errors in the repair 
of these sites can lead to the critical mutations initiating 
many common human cancers [63, 64].

E1(E2)-2,3-Q form a much lower amount (2  %) of 
the depurinating adducts 2-OHE1(E2)-6-N3Ade by 
1,6-Michael addition (Fig.  5) [26]. This product is 
obtained after tautomerization of the E1(E2)-2,3-Q to 
E1(E2)-2,3-Q methide [65]. The E1(E2)-2,3-Q form 10 
to 50 times higher levels of stable DNA adducts than 

Fig. 3  Formation of stable DNA adducts, and depurinating DNA adducts that generate apurinic sites
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E1(E2)-3,4-Q [20, 24]. The level of stable adducts formed 
by E1(E2)-2,3-Q is still lower than the level of the depuri-
nating adducts 2-OHE1(E2)-6-N3Ade [21, 26].

The effectiveness of the E1(E2)-3,4-Q versus E1(E2)-
2,3-Q to form depurinating adducts has been determined 
by reacting a mixture of E2-3,4-Q and E2-2,3-Q with 
DNA at different ratios. To achieve comparable levels of 
depurinating adducts, the mixture needs to contain 95 % 
E2-2,3-Q and 5 % E2-3,4-Q (Fig. 6a) [26].

Similar results are obtained from mixtures of 4-OHE2 
and 2-OHE2 oxidized by tyrosinase in the presence of 
DNA (Fig.  6b). These results demonstrate the effective-
ness of E2-3,4-Q to react with DNA in the formation of 
depurinating adducts compared to E2-2,3-Q.

The levels of depurinating DNA adducts formed by the 
catechol estrogen quinones [26] are in agreement with 
the greater carcinogenic activity of 4-OHE1(E2) compared 
with the borderline carcinogenic activity of 2-OHE1(E2) 
[66–68].

Imbalance of estrogen metabolism in cancer 
initiation
The metabolism of estrogens through the catechol estro-
gen pathway is characterized by homeostasis, a balanced 
set of activating and protective enzymes. Homeostasis 
minimizes the metabolic oxidation of catechol estro-
gens to catechol quinones and their reaction with DNA 

(Fig.  2). Disruption of homeostasis in the metabolism 
of estrogens, with excessive production of estrogen qui-
nones and depurinating estrogen-DNA adducts, can lead 
to the initiation of cancer. A variety of endogenous and 
exogenous factors can disrupt estrogen homeostasis.

One factor that can imbalance estrogen metabolism is 
the excessive synthesis of estrogens by overexpression of 
CYP19 (aromatase) in target tissues (Fig. 2) [69–71]. A sec-
ond factor that can imbalance estrogen homeostasis is the 
presence of unregulated sulfatase that converts excessive 
stored E1-sulfate into E1 (Fig. 2) [72, 73]. A third factor in 
imbalance is the production of high levels of 4-OHE1(E2), 
due to overexpression of CYP1B1, which converts E1(E2) 
predominantly to 4-OHE1(E2) (Fig.  2) [45–47, 74, 75]. 
Higher levels of 4-OHE1(E2) can give rise to higher levels 
of the strongest ultimate carcinogenic metabolites, E1(E2)-
3,4-Q. An analogous effect can be produced by a lack or low 
level of COMT activity due to polymorphic variation [49, 
76]. Insufficient activity of this enzyme would be translated 
into low levels of methylation of 4-OHE1(E2) and subse-
quent increase in the competitive oxidation of 4-OHE1(E2) 
to E1(E2)-3,4-Q (Fig.  2). Higher levels of E1(E2)-3,4-Q can 
also be obtained by polymorphism in quinone reductase 
(NQO1) which leads to decreased conversion of quinones 
into catechols (Fig.  2) [77]. Furthermore, low cellular lev-
els of GSH, which reacts efficiently with the quinones, can 
leave higher levels of E1(E2)-3,4-Q available.

Fig. 4  Major metabolic pathway in cancer initiation by estrogens
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Imbalances in estrogen metabolism have also been 
observed in animal models for estrogen carcinogenic-
ity: the prostate of Nobel rats [78], the kidney of male 
Syrian golden hamsters [79] and the mammary gland of 
ER-α knockout mice [80]. Imbalance of estrogen homeo-
stasis can also be seen by comparing analyses of breast 
tissue from women with and without breast cancer [81]. 
In non-tumor breast tissue from women with breast car-
cinoma, the levels of 4-OHE1(E2) were nearly four-times 
higher than the levels in breast tissue from women with-
out breast cancer. Further evidence of imbalance in estro-
gen homeostasis derives from the greater expression of 
estrogen-protective enzymes, COMT and NQO1 (Fig. 2), 
in women without breast cancer and greater expression 
of estrogen-activating enzymes, CYP19 and CYP1B1 
(Fig. 2), in breast tissue of women with breast cancer [82].

Imbalance in estrogen metabolism can also be trig-
gered by environmental factors. These factors include 
substances we ingest by mouth, skin and nose. It is logical 

to hypothesize that these environmental compounds 
are capable of changing estrogen metabolism, leading 
to increased formation of catechol estrogen quinones. 
Dioxin, for example, induces expression of the activating 
enzyme CYP1B1 [74, 75] (Fig. 2). This compound is not 
carcinogenic by itself, but makes the estrogens become 
carcinogenic by disrupting their metabolic homeostasis.

Depurinating estrogen‑DNA adducts, the 
biomarkers of risk for women with and 
without breast cancer
Development of biomarkers for cancer risk has been a 
major goal in cancer research for decades. The ratio of 
the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-
N3Ade, 4-OHE1(E2)-1-N7Gua and 2-OHE1(E2)-6-N3Ade 
to their respective catechol estrogen metabolites and cat-
echol estrogen conjugates provides a biomarker of risk 
that is related to the initiating step of breast and other 
prevalent types of human cancer.

Fig. 5  Reaction of E1(E2)-2,3-Q with dG or dA to form the stable 2-OHE1(E2)-6-N2dG or 2-OHE1(E2)-6-N6dA adducts (minor), respectively, and the 
depurinating 2-OHE1(E2)-6-N3Ade adducts (major)

ratio =

(

4-OHE1(E2)-1-N3Ade+ 4-OHE1(E2)-1-N7Gua

4-catechol estrogens + 4-catechol estrogen conjugates

+
2-OHE1(E2)-1-N3Ade

2-catechol estrogens+ 2-catechol estrogen conjugates

)

× 1000
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Three case–control studies have been conducted in 
women diagnosed with breast cancer, as well as women 
at high risk or normal risk for the disease (Fig. 7) [83–85]. 
The high-risk women were identified by using the Gail 
model score to estimate a 5-year risk greater than 1.66 % 
[86]. Calculation of the Gail model score is based on age, 
age at menarche, age at first birth, prior breast biopsies or 
atypical hyperplasia, and number of first-degree relatives 
with breast cancer.

In the first two studies [83, 84], a spot urine sample 
(~50 ml) was collected from each subject. An aliquot of 
the sample was partially purified by solid-phase extrac-
tion and analyzed for 38 catechol estrogen metabolites, 
catechol estrogen conjugates and depurinating estrogen-
DNA adducts. The estrogen analytes were identified and 
quantified by using ultraperformance liquid chroma-
tography/tandem mass spectrometry, and the ratio (see 
equation above) was calculated for each subject (Fig. 7a, 

Fig. 6  Depurinating adducts formed by mixtures of a E2-3,4-Q and E2-2,3-Q at different ratios after 10 h of reaction with DNA. The level of stable 
adducts formed in the mixtures ranged from 0.1 to 1 % of total adducts; and b 4-OHE2 and 2-OHE2 in the presence of tyrosinase at different ratios 
after 10 h of reaction with DNA. The level of stable adducts formed in the mixtures ranged from 0.1 to 0.7 % of total adducts [26]
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Fig. 7  Ratios of depurinating estrogen-DNA adducts to catechol estrogen metabolites and catechol estrogen conjugates in a first study [83]: urine 
of healthy women, high risk women and women with breast cancer; b second study [84]: urine of healthy women, high risk women and women 
with breast cancer; c third study [85]: serum of healthy women, high risk women and women with breast cancer
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b). In the first study of 46 normal-risk women, 12 high-
risk women and 17 women diagnosed with breast cancer, 
the ratios in the high risk (p < 0.001) and breast cancer 
(p  <  0.001) were significantly higher than the ratios in 
the normal-risk women (Fig. 7a) [83]. Similar differences 
were observed in the second study between 40 normal-
risk women, 40 high-risk women and 40 women with 
breast cancer (both p < 0.001) (Fig. 7b) [84].

In the third study, serum was collected from each of 
the 74 normal-risk women, 80 high-risk women and 
79 women diagnosed with breast cancer (Fig.  7c) [85]. 
Once again, the ratio of adducts to metabolites and con-
jugates was significantly lower in the women at normal 
risk, compared to the high-risk and breast cancer women 
(both p < 0.001).

In all three studies, the high ratios arose from high 
levels of adducts and low levels of metabolites and con-
jugates, although in some samples the levels of adducts 
were average, but the levels of metabolites and conjugates 
were very low [83–85], yielding a similar ratio in both 
cases. Overall, the high ratio of depurinating estrogen-
DNA adducts to the catechol estrogen metabolites and 
catechol estrogen conjugates is a biomarker of risk for 
breast cancer.

Since estrogens initiate breast cancer by a genotoxic 
mechanism, the observation of higher levels of estrogen-
DNA adducts in women at high risk for breast cancer 

suggests that formation of these adducts is a causative 
factor in the etiology of breast cancer and not a conse-
quence of the cancer itself.

Similar case–control studies were conducted with 
women diagnosed with ovarian cancer and healthy 
women [87], and women with thyroid cancer and healthy 
women [88]. In both cases, the women diagnosed with 
the disease had much higher ratios of depurinating estro-
gen-DNA adducts to catechol estrogen metabolites and 
conjugates. Similar results were obtained in case–control 
studies of men with prostate cancer [89] or with non-
Hodgkin lymphoma [90].

We think that other prevalent types of cancer, which 
have not yet been investigated for depurinating estrogen-
DNA adduct formation, are also initiated by estrogens. 
These cancers include brain, colon, endometrium, kid-
ney, leukemia, lung of non-smokers, melanoma, mye-
loma, pancreas and testis.

Prevention of cancer initiation by N‑acetylcysteine 
and resveratrol acting as antioxidants, enzyme 
modulators and inhibitors of depurinating 
estrogen‑DNA adduct formation
The metabolism of estrogens in the catechol estrogen 
pathway is regulated by homeostasis, a balanced set of 
activating and protective enzymes. Homeostasis can 
be maintained or re-established by the use of specific 
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Fig. 8  Ability of NAC, Res or their combination to block formation of depurinating estrogen-DNA adducts in MCF-10F human breast epithelial cells 
treated with 4-OHE2. The numbers on bars are the percentage of the inhibition of the depurinating estrogen-DNA adducts compared to treatment 
with 4-OHE2 alone [106]
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compounds, N-acetylcysteine (NAC) and resveratrol 
(Res), which are particularly effective in blocking forma-
tion of estrogen-DNA adducts [91]. NAC is the acetyl 
derivative of the amino acid cysteine (Fig.  8), which is 
one component of the tripeptide GSH. Res, which is the 
3,5,4′-hydroxy stilbene (Fig.  8), is a natural antioxidant 
present in grapes, wine, peanuts and other plants. NAC 
and Res can prevent oxidative and/or electrophilic dam-
age to DNA by inhibiting formation of the electrophilic 
catechol estrogen quinones and/or reacting with them.

The anticarcinogenic properties of NAC are attributed 
to multiple protective mechanisms, such as its nucleo-
philicity, antioxidant activity and inhibition of DNA 
adduct formation [92, 93]. Hydrolysis of NAC by acylase 
in the liver and gut yields cysteine, one of the precur-
sors in the synthesis of intracellular GSH. The presence 
of cysteine guarantees replenishment of this crucial trip-
eptide. Changes in GSH homeostasis have been impli-
cated in the etiology and progression of cancer and other 
human diseases [94]. GSH cannot be used as a preventive 
agent because it does not cross cell membranes. The use 

of cysteine as a preventive agent is limited by its toxic-
ity. NAC, instead, has very low toxicity and it can cross 
the blood–brain barrier [92, 93]. NAC reacts efficiently 
with the electrophilic E1(E2)-3,4-Q [95, 96] to prevent 
their reaction with DNA to form adducts (Fig.  2). Fur-
thermore, NAC reduces catechol estrogen semiquinones 
to catechol estrogens (Fig. 2) [97] and prevents malignant 
transformation of the human MCF-10F cells [98], as well 
as the mouse E6 mammary cells treated with 4-OHE2 
[99].

Res exerts chemopreventive effects in various in  vitro 
and in  vivo systems [100, 101]. These properties are 
attributed to the easy hydrogen abstraction from the 
4′-OH bond with formation of an oxy radical [102]. The 
easy abstraction is due to the great resonance stabiliza-
tion energy of the oxy radical intermediate. Res is a mod-
ulator of CYP1B1 [74, 75, 103] and an inducer of quinone 
reductase (Fig.  2) [75, 104]. Res also reduces estrogen 
semiquinones to catechol estrogens (Fig.  2) [75]. When 
MCF-10F cells are cultured in the presence of 4-OHE2 
and Res, formation of depurinating estrogen-DNA 

Fig. 9  Assessment of depurinating estrogen-DNA adduct ratios before women began treatment with the Healthy Breast Protocol and after having 
been on the treatment for 3 months. Green bars represent women whose adduct ratios decreased, blue bars represent women whose adduct ratios 
remained the same and the red bars represent a woman whose adduct ratio increased over the course of the study [107]
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adducts is inhibited in a dose-dependent manner [75, 
105]. To investigate whether the inhibitory effects of 
NAC and Res on the formation of estrogen-DNA adducts 
are additive or synergistic, MCF-10F cells were cultured 
in the presence of 4-OHE2 plus NAC or Res or NAC and 
Res together (Fig. 8) [106]. It was found that the effects 
of NAC and Res combined were additive in inhibiting 
formation of the depurinating estrogen-DNA adducts 
(p  <  0.0001) [106]. NAC and Res had similar inhibi-
tory effects at low concentrations, but the effects of Res 
were about 50  % greater than those of NAC at high 
concentrations.

A Healthy Breast Protocol that included NAC and Res 
was administered to women [107]. A group of 21 women 
(ages 30–70), who had never been diagnosed with can-
cer, participated in a study of the Healthy Breast Proto-
col [107]. They followed the treatment daily for 3 months 
and provided a spot urine sample before starting the 
treatment and after the 3 month period. The urine sam-
ples were analyzed for catechol estrogen metabolites and 
conjugates, and depurinating estrogen-DNA adducts by 
ultraperformance liquid chromatography/tandem mass 
spectrometry, and the ratio of adducts to metabolites and 
conjugates was calculated for each sample (Fig. 9). Of the 
21 women participants, 16 experienced a decrease (green 
bars) in the ratio of adducts to metabolites and conju-
gates, four remained the same (blue bars) and one had an 
increase (red bars). The decrease in the ratio after treat-
ment was statistically significant (p  <  0.03) [107]. These 
results indicate that a treatment including NAC and 
Res can reduce depurinating estrogen-DNA adduct lev-
els in people. This preventive approach does not require 
knowledge of the genes involved or the complex series of 
events that follow cancer initiation.

In summary, NAC and Res are both able to reduce 
estrogen semiquinones to catechol estrogens [75, 97]. 
Furthermore, NAC keeps the cell replenished with GSH 
and reacts efficiently with the potential carcinogens, cat-
echol estrogen quinones (Fig. 2). Res induces the enzyme 
quinone reductase and modulates the CYP1B1 activity 
(Fig.  2). Thus, NAC and Res, by inhibiting formation of 
depurinating estrogen-DNA adducts, maintain homeo-
stasis in the metabolism of estrogens.

Conclusions
Metabolism of estrogens via the catechol estrogen path-
way is characterized by homeostasis, a balanced set of 
activating and protective enzymes (Fig.  2). Under these 
conditions, formation of the catechol estrogen quinones, 
the ultimate carcinogenic metabolites of estrogens, is 
minimized. These compounds are not available to react 
with DNA; therefore, cancer cannot be initiated. When 

homeostasis is disrupted, however, excessive oxidation 
of catechol estrogens to quinones occurs. The quinones 
can react with DNA to form predominantly the depuri-
nating adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-
N7Gua. The apurinic sites derived from the loss of these 
adducts from DNA lead to the mutations that can initiate 
cancer.

Knowledge of the mechanism of cancer initiation 
by estrogens suggests that prevention of cancer can 
be achieved by blocking formation of the depurinat-
ing estrogen-DNA adducts. If the initiation of cancer is 
blocked, promotion, progression and development of the 
disease would be prevented. A variety of evidence sug-
gests that cancer prevention could be achieved by use 
of the dietary supplements NAC and Res. Thus, use of 
these two dietary supplements could prove to be a widely 
applicable approach to cancer prevention.
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