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Abstract

Background: Psoriasis is a cytokine-mediated skin disease that can be treated effectively with immunosuppressive biologic
agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis.
To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy.

Methods: Meta-analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis
patients (n= 237). We compiled a dictionary of 2935 binding sites representing empirically-determined binding affinities of
TFs and unconventional DNA-binding proteins (uDBPs). This dictionary was screened to identify “psoriasis
response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs.

Results: PREs are recognized by IRF1, ISGF3, NF-kappaB and multiple TFs with helix-turn-helix (homeo) or
other all-alpha-helical (high-mobility group) DNA-binding domains. We identified a limited set of DEGs that
encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN,
RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine-encoding DEGs (IL17A,
IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs).
To illustrate this idea, we designed a cdODN to concomitantly target psoriasis-activated TFs (i.e., FOXM1,
ISGF3, IRF1 and NF-kappaB). Finally, we screened psoriasis-associated SNPs to identify risk alleles that disrupt
or engender PRE motifs. This identified possible sites of allele-specific TF/uDBP binding and showed that
PREs are disproportionately disrupted by psoriasis risk alleles.

Conclusions: We identified new TF/uDBP candidates and developed an approach that (i) connects
transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS
findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility.
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Background
Psoriasis is a chronic condition characterized by sharply
demarcated skin lesions and increased risk of arthritis
and cardiovascular disease. Lesion development is as-
sociated with excessive keratinocyte (KC) proliferation,
altered KC differentiation, and an inflammatory infil-
trate that includes innate and adaptive immune cells
(e.g., neutrophils and T-cells) [1,2]. For moderate-to-
severe psoriasis, effective biologic therapies have been
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developed to block specific cytokines (e.g., etanercept)
or interfere with T-cell activation (e.g., efalizumab).
The majority of patients, however, present with mild-
to-moderate psoriasis, and for such patients biologic
therapies do not provide a suitable first-line treatment.
Even for those with moderate-to-severe psoriasis, bio-
logic therapies are expensive [3], are not equally effect-
ive in all patients [4], and the long-term safety profile
(>5 years) of immunosuppressive biologics is not fully
established [5]. Development of new psoriasis treat-
ments targeting more specific disease mechanisms has
therefore remained a research priority [6]. Along these
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lines, transcription factors (TFs) are appealing as drug
targets because they function as upstream regulators
that can be inhibited locally, without necessarily tar-
geting upstream cytokines or inflammatory processes
[7]. Ideally, for instance, mild-to-moderate psoriasis
could be controlled by effective topical agents, which
rapidly resolve lesions by directly interfering with TFs
and cellular pathways that promote excessive KC pro-
liferation [8,9].
TFs contribute to immune cell activation in psoriasis

as well as aberrant KC activity within lesions [10,11].
Genome-wide association studies (GWAS), for example,
have identified variants near TF-encoding genes with
significantly elevated frequency in psoriasis patients (e.g.,
ETS1, IRF4, KLF4, RUNX3, STAT3, STAT5A and
STAT5B) [12]. Other TFs likely participate in lesion de-
velopment through their role in KC proliferation (e.g.,
E2F and FOXM1), KC differentiation (e.g., TP63, KLF4
and AP-1), or immune cell activation (e.g., NF-κB). Top-
ical agents may interfere with activation of these TFs in
psoriasis, but may also have off-target effects limiting
their efficacy (e.g., corticosteroids) [8,9]. To more specif-
ically target one or multiple TFs, a promising approach
may be to employ cis-element double-stranded decoy ol-
igonucleotides (dODN), which mimic the DNA recogni-
tion site for a TF and thus attenuate its cellular activity
[13,14]. In 1996, the first ODN-based therapy directed
against E2F was approved by the Food and Drug Admin-
istration for treatment of neointimal hyperplasia in vein
bypass grafts [13]. Since then, dODNs were shown to be
effective for topical treatment of skin diseases, such as
allergic contact dermatitis and wound fibrosis [15,16].
Indeed, a STAT3 dODN has already been demonstrated
to resolve lesions in a psoriasis mouse model [17]. To
design new dODN molecules for psoriasis, it is essential
to have knowledge of the cis-element(s) recognized by
TFs central to the disease process. For this purpose,
studies that have compared gene expression in lesions
and uninvolved (normal) skin from psoriasis patients are
a valuable resource [18-24]. In such studies, genes with
significantly altered expression in lesions can be identi-
fied (i.e., DEGs) and statistical approaches can be used
to identify cis-regulatory elements overrepresented in
upstream sequences of such genes [25]. These elements
may then provide starting points for rational dODN de-
sign, essentially providing a direct pathway connecting
bioinformatics to drug development.
Identifying TFs and cis-regulatory elements that drive

psoriasis plaque formation should also illuminate our in-
terpretation of GWAS findings [26]. GWASs have
helped establish the immunological basis of psoriasis
and have been valuable for identifying candidate disease
mechanisms [27]. Despite this progress, most psoriasis
susceptibility variants have been located in intergenic or
intronic regions, suggesting that such variants confer in-
creased disease risk through their effects on gene regula-
tion [26,28]. To better characterize such mechanisms, it
will ultimately be necessary to understand how TF-DNA
interactions mediate psoriasis plaque development. By
identifying DNA elements involved in these sequence-
specific interactions, it will be possible to scan hits from
psoriasis GWASs to identify variants that disrupt or en-
gender such elements, potentially identifying sites at
which allele-specific TF binding takes place to influence
psoriasis risk [29,30]. This information could be further
integrated with chromatin feature data for key cell types
from the Human Encyclopedia of DNA Elements (EN-
CODE) project [31], with the ultimate goal of prioritiz-
ing non-coding risk variants for functional testing (e.g.,
by genome editing using CRISPR/Cas systems) [28,32].
The goals of this study are to use expression profiling

data from psoriasis lesions to identify TFs and cis-regu-
latory elements mediating psoriasis plaque development.
We identify differentially expressed genes (DEGs) by
comparing lesional and uninvolved skin from a large
meta-cohort of psoriasis patients (n = 237) [18-24]. To
analyze DEGs, we assembled a dictionary of binding
sites for human TFs and unconventional DNA-binding
proteins (uDBPs) [33]. By screening this dictionary, we
identified “psoriasis response elements” (PREs) overrep-
resented in sequences upstream of psoriasis DEGs. We
show that only a fraction of DEGs encode proteins that
recognize PREs, suggesting strong candidates for further
study. We also demonstrate how PREs can be incorpo-
rated into complex dODN molecules as candidate psor-
iasis therapies, and we screen non-coding hits from
psoriasis GWASs to identify PREs altered by risk alleles
within enhancer regions. These findings provide novel
and important steps forward in psoriasis drug development
and the interpretation of GWAS hits at non-coding loci.
The informatics pipeline developed in this study, moreover,
could be applied to other diseases to similarly facilitate
dODN design and GWAS interpretation.

Methods
Ethics Statement
All experiments were performed in accordance with
Declaration of Helsinki principles. Samples were
obtained from volunteer patients with informed
written consent and protocols were approved by an
institutional review board (University of Michigan,
Ann Arbor, MI, IRB No. HUM00037994).

Meta-analysis of psoriasis gene expression data
We pooled microarray data from nine studies that had
evaluated lesional (PP) and uninvolved (PN) psoriasis skin
(Gene Expression Omnibus accession IDs: GSE13355,
GSE14905, GSE30999, GSE34248, GSE41662, GSE41663,
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GSE47751, GSE50790 and GSE51440) [18-24]. Eight stud-
ies utilized the Affymetrix Human Genome U133 Plus 2.0
array and one (GSE51440) utilized the “high throughput”
version of this platform (Affymetrix HT HG-U133+ PM
array plates). HT HG-U133+ PM array plates feature the
same probe set content as U133 Plus 2.0 arrays, except
mismatch probes are absent and most probe sets are fil-
tered to include 9 probes (rather than 11) [34]. With re-
spect to matching probe sets, fold-change estimates (PP/
PN) were well-correlated between HT HG-U133+ PM
and U133 Plus 2.0 arrays (0.47 ≤ rs ≤ 0.65) (Additional file
1: part A). Data from both array platforms was therefore
integrated in our analyses.
The initial pooled dataset included paired PP and PN

samples from 248 patients. Affymetrix quality control
metrics were calculated for each sample (i.e., average
background, scale intensity factor, RNA degradation
score, percentage of probe sets called present, NUSE me-
dian, NUSE IQR, RLE median and RLE IQR) (Additional
file 1: parts B – I) [35-37]. For GSE51440 samples, it was
not possible to calculate some QC metrics because the
array design lacked mismatch probes (e.g., percentage of
probe sets called present) (Additional file 1, parts B – I).
For each dataset, QC metrics were converted into Z-scores
and we removed samples with Z-scores greater than 3.5 in
absolute value. This removed 9 samples from 9 patients,
yielding a total of 239 patients. We then inspected median
fold-change estimates (PP/PN) of genes most commonly el-
evated or repressed in psoriasis lesions (n = 239 patients;
Additional file 1, part J). This identified two patients for
which PP-increased genes were repressed and PP-
decreased genes were increased. Since PP and PN labels
might have been reversed during sample processing for
these patients, these samples were removed to yield the
final dataset upon which subsequent analyses were based
(n = 237 patients). A two-dimensional principal component
plot did not reveal extreme outliers (Additional file 1: parts
K and L). Likewise, cluster analysis did not identify outliers
and suggested good agreement between HT HG-U133+
PM array plates (GSE51440) and the U133 Plus 2.0 plat-
form (Additional file 1: part M).
Normalized expression values for the 474 samples

(237 PP and PN pairs) were calculated using robust mul-
tichip average (RMA) [38,39]. The array platform in-
cluded probe sets corresponding to 19851 human genes,
with most genes represented by multiple probe sets [40].
To limit redundancy, a single representative probe set
was identified for each human gene. We preferentially
chose as representatives those probe sets for which
cross-hybridization was expected to be minimal [29]. If
multiple probe sets were available for the same gene
without any difference in cross-hybridization potential,
we selected as a representative whichever probe set had
the highest median expression across all 474 samples.
This yielded 19851 probe sets (one per gene). Of these,
we excluded 3734 from further analyses because they
were not significantly expressed above background with
respect to at least 10% of all samples (excluding
GSE51440 samples generated from HT HG-U133+ PM
arrays without mismatch probes). A probe set was con-
sidered expressed above background if there was a sig-
nificant signal intensity difference between perfect
match (PM) and mismatch probes (MM) (P < 0.05; Wil-
coxon signed-rank test) [41]. For the remaining 16117
skin-expressed genes, the PP – PN difference in RMA
expression intensity was calculated for each patient and
we used the Wilcoxon rank sum test to assess whether
the median difference was greater or less than zero (n =
237). Raw p-values were adjusted using the Benjamini-
Hochberg method to control the false discovery rate
(FDR) [42]. To meet criteria for differential expression,
we required FDR < 0.05 with PP/PN fold-change greater
than 1.50 or less than 0.67. We additionally required the
median FC to be greater than 1 with respect to each of
the 9 datasets included in our analysis (PP-increased
DEGs) or less than 1 with respect to each dataset (PP-
decreased DEGs).

Motif dictionary
We assembled a dictionary of 2935 motifs representing
empirically-determined binding affinities of human and/
or mouse TFs and uDBPs. The 2935 motifs were se-
lected from an initial set of 4378 motifs pooled from
multiple sources, including the human protein-DNA
interaction database (hPDI) [43], Jaspar [44], UniPROBE
[45] and TRANSFAC Professional (release 2013.4) [46]
(Additional file 2). We also included motifs derived from
a recent analysis of ENCODE ChIP-Seq datasets [47,48],
as well as one study that systematically investigated hu-
man TF binding preferences using high-throughput
SELEX technology [49] (Additional file 2). UniPROBE
and hPDI motifs were generated using cell-free systems
with TF/uDBP fusion constructs cloned in yeast and
printed onto protein microarrays [43] or hybridized to
double-stranded DNA microarrays [45]. Other experi-
ments were performed using various cell types, with
many ENCODE ChIP-Seq datasets generated using five
transformed cell lines (i.e., K562, GM12878, HepG2, H1-
hESC and HeLa) [47,48].
Position frequency matrices (PFM) from each source

were converted to position probability matrices (PPM).
A pseudocount of 0.80 was used following the sugges-
tion of Nishida et al. [50]. To trim PPM matrices, we re-
moved columns at each flank until two consecutive
columns with information content greater than 0.25
were encountered. In a small number of cases, matrices
were heavily gapped and applying this criterion would
have removed all columns. In these cases, positions were
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removed at each flank until one column was encoun-
tered with information content greater than 0.25. If
even the less stringent trimming procedure engen-
dered a matrix with fewer than 4 columns, the matrix
was discarded.
We expected that some motifs in our initial set of

4378 would be redundant, since the databases we
pooled are not entirely independent, and in some
cases two independent experiments might yield simi-
lar motifs for a given protein. We therefore filtered
the 4378 motifs to limit redundancy, preferentially
retaining matrices with greater average information
content. Filtering was carried out in two steps. First,
we identified matrices of the same length with the
same IUPAC consensus sequence. If two matrices
with the same IUPAC consensus were found, we ex-
cluded whichever matrix had lower average informa-
tion content, except when the average difference of
values in PPM matrices exceeded 0.05. Based upon
this criterion, we removed 715 matrices to yield a set
of 3663. Secondly, we filtered out matrices that dif-
fered in length but which could, upon alignment, be
shown to share a similar recognition sequence. For
this purpose, inter-motif distances were calculated
using Smith-Waterman alignment and the Pearson
correlation coefficient (R package: MotIV, function:
motifDistances) [51]. This identified groups of similar
motifs (distance < 10−14) and for each group we se-
lected the single motif with highest information con-
tent. This removed an additional 728 motifs to yield
the final set of 2935 upon which further analyses
were based.
The 2935 binding sites were recognized by TFs associ-

ated with 1422 unique human genes, most of which
(1129) were associated with the Gene Ontology terms
“TF activity”, “Cofactor activity”, or “DNA Binding”
(Additional file 3). Of the 1422 genes, 1049 (74%) were
included within the TFclass catalogue of human genes
encoding TFs [52]. There were 447 TFs from the TFclass
catalogue not represented by a motif in our dictionary.
Despite this, the dictionary included motifs for TFs from
each major DNA-binding domain superclass and class
(e.g., zinc-coordinating C2H2, helix-turn-helix homeo
and basic bHLH domains) [52] (Additional file 4). Clus-
ter analysis demonstrated a high diversity of DNA recog-
nition sequences among the 2935 binding site models
(Additional file 5).

Motif k-mer scores
The 2935 motifs were assigned k-mer scores reflecting
the degree of sequence preference with respect to 3-mer
(n = 64) and 4-mer (n = 256) words. k-mer scores were
calculated using position probability matrices (PPM) for
each motif and the following formula.
k−mer score ¼ max min p1; p2;…; pkð Þi¼1;…;m

h i

ð1Þ
For a given k-mer at PPM position i, the overall k-mer

match score at position i was the lowest of the k prob-
abilities associated with the k nucleotides. This lowest
probability was recorded at each of the m possible PPM
positions, and the overall match score for a given k-mer/
PPM pairing was the highest of these minimal probabil-
ities. This score was calculated using both 5′-3′ se-
quences for a given k-mer word, with the final assigned
score equal to the higher of the two values. k-mer scores
are thus [0, 1] probability values, with values near 1 indi-
cating a motif ’s strong preference for a given k-mer se-
quence. We here use k-mer word scores to visualize
trends among sets of motifs, as well as to calculate inter-
motif distances for clustering motifs using the HOPACH
algorithm [53]. Using HOPACH, motifs highlighted by
our analyses were assigned to separate groups, based
upon correspondence of their k-mer scores and the Me-
dian/Mean Split Silhouette (MSS) criterion [53].

Identification of motifs enriched in sequences upstream
of psoriasis DEGs using generalized additive logistic
regression models
Transcription start site (TSS) proximal sequences of
protein-coding human genes were scanned for matches
to the 2935 motifs (5 kb upstream – 500 bp down-
stream). Coding regions and sequence assembly gaps
were masked. We did not mask repetitive sequences be-
cause prior work has demonstrated in vivo binding of
such sequences by TFs [48,54]. For a given locus and
PPM motif of width m, a correspondence score (ψ) was
calculated using position weight matrices (PWMs),
which were calculated from PPM nucleotide probabil-
ities (p) and nucleotide background frequencies (f ), as
described in the following equation [55].

ψ ¼
Xm

i¼1ð Þlog2
p
f

� �
i

ð2Þ

The correspondence ψ was calculated for each locus
and a PWM motif match was called if this score
exceeded 80% of the maximum score possible for a given
PWM model (i.e., ψ/ψmax ≥ 0.80; R package: Biostrings,
R function: matchPWM) [25,55,56]. For scanning pro-
moter regions, we used empirical background prob-
abilities observed across all TSS-proximal sequences
included in our analysis (A: 0.247, C: 0.251, G: 0.254,
T: 0.248). All other sequence scans were performed
using uniform background frequencies (i.e., 0.25 per
nucleotide). Sequences were scanned using both 5′ to
3′ orientations for each PWM model and we summed
the total number of matches obtained using both
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orientations. Overlapping matches were merged and
not double-counted.
Semiparametric generalized additive logistic models

(GAM) were used to identify those PWMs for which
the number of matches to TSS-proximal sequences
was significantly elevated among psoriasis DEGs
[25]. For these analyses, we identified PWM models
for which the number of matches was significantly
elevated in (i) PP-increased DEGs as compared to all
other skin-expressed genes, (ii) PP-decreased DEGs
as compared to all other skin-expressed genes, and
(iii) all psoriasis DEGs as compared to all other
skin-expressed genes. GAM models included a 0–1
response variable indicating whether a gene belonged
to the set of psoriasis DEGs, along with two covari-
ates (x1 and x2) corresponding to the total number
of TSS-proximal matches for a given PWM model
(x1) and the length of non-masked sequence scanned
for each gene (x2) [25]. Both covariates were log10-
transformed and the significance of PWM enrich-
ment was assessed based upon the Z statistic and p-
value associated with x1. Separate GAM models were
fit for all 2935 PWMs, with raw p-values adjusted
using the Benjamini-Hochberg method [42]. A motif
was classified as significantly enriched with respect
to psoriasis DEGs if the FDR-adjusted p-value was
less than 0.10 with Z statistic greater than zero.

Risk allele effects on PWM matches at disease-associated
SNP loci
Disease-associated SNPs may disrupt or engender TF/
uDBP binding sites [30]. We thus identified 36 psoriasis-
associated SNPs from a recent GWAS meta-analysis
along with 536 SNPs in strong linkage disequilibrium
(r2 ≥ 0.90) [12]. Linked SNPs were identified using
PLINK and 1000 Genomes (phase 1) variant call format
files [29,57]. This yielded a total of 572 disease-
associated SNPs, and PWM match scores were calcu-
lated for each SNP with respect to risk (ψR) and non-risk
alleles (ψNR). The difference in match scores was nor-
malized by the maximum score possible for a given
PWM matrix (ψmax), as shown in the following equation.

Risk allele effect ¼ 1
ψmax

ψR−ψNRð Þ ð3Þ

Negative values thus denote SNP-motif combinations
for which a risk allele is predicted to decrease affinity be-
tween a TF/uDBP and its recognition motif, whereas
positive values denote combinations for which a risk al-
lele is predicted to increase affinity. Quantified in this
way, risk allele effects may be continuous, possibly
strengthening or weakening PWM correspondence with-
out altering a binding site (i.e., ψ/ψmax < 0.80 for both
risk and non-risk alleles). We thus additionally iden-
tified SNP-motif combinations for which the SNP is
predicted to engender or disrupt a binding site, based
upon the ψ/ψmax threshold of 0.80. We defined a bind-
ing site as having been engendered by a risk allele if
ψR/ψmax > 0.85 and ψNR/ψmax < 0.75. Conversely, we de-
fine a binding site as having been disrupted by a risk al-
lele if ψR/ψmax < 0.75 and ψNR/ψmax > 0.85.

Additional RNA-seq, microarray and ENCODE datasets
For selected genes, we used RNA-seq (GSE54456) to
compare expression between 92 lesional skin samples
from psoriasis patients (PP) and 82 normal skin
samples from control subjects (NN) [58]. Raw se-
quence reads were downloaded, filtered, and mapped
to the human genome (Ensembl GRCh37) following
procedures described by Swindell et al. [59]. Expres-
sion responses of genes to cytokine treatments were
evaluated using a panel of microarray experiments
described previously [60]. Likewise, changes in the
expression of genes across skin diseases were evalu-
ated using microarray data from diseased and normal
skin, as described in an earlier report [29]. To
localize expression to anatomical skin compartments
(dermis, basal epidermis or suprabasal epidermis),
microarray data from normal skin sectioned by laser
capture microdissection was used (GSE42114; Affy-
metrix Human Genome U133 Plus 2.0 array) [61].
Expression of genes in whole blood was also com-
pared between psoriasis patients (n = 44) and control
subjects (n = 30) (GSE55201; Affymetrix Human Gen-
ome U133 Plus 2.0 array) [62]. All Affymetrix data
was normalized using robust multichip average (RMA)
[38], except when raw data was unavailable, in which
case it was necessary to use contributor-normalized
expression values from GEO series matrix files. In
all cases, significant gene expression differences were
assessed using linear models and moderated t sta-
tistics (R package: limma, function: lmFit) [63]. Gen-
ome conservation scores (phastcons) and ENCODE
peaks were retrieved from the UCSC browser using
rtracklayer [64,65]. NHEK enhancers were identified
in a prior study using multivariate hidden Markov
models and combinatorial analysis of 15 chromatin
states [66].

Immunohistochemistry (IHC)
Lesional (PP) and uninvolved (PN) skin samples were
obtained from 3 patients (European Caucasian ancestry)
with informed written consent. Prior to biopsy collec-
tion, each patient was instructed to follow medication
washout protocols as described previously [20]. Anti-
EHF and anti-AVEN antibodies were obtained from
Thermo-Scientific (cat no. PA5-30716) and Abnova (cat
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no. PAB13091), respectively. Diaminobenzidine staining
of paraffin embedded tissue sections from both PP and
PN skin was performed with 1:200 (EHF) or 1:400
(AVEN) antibody dilutions.

Results
Meta-analysis identifies differentially expressed genes
and near-universal gene expression patterns in psoriasis
lesions (n = 237 patients)
We used microarray data from seven prior studies to
compare gene expression in lesional (PP) and unin-
volved (PN) skin from psoriasis patients (n = 237)
[18-24]. From among 16117 skin-expressed genes,
we identified 1823 differentially expressed genes
(DEGs) with significantly altered expression, includ-
ing 1027 PP-increased DEGs (median FC > 1.50 and
FDR < 0.05) and 796 PP-decreased DEGs (median FC <
0.67 and FDR < 0.05). Differential expression statistics for
all 16117 skin-expressed genes are provided as supple-
mental data (Additional file 6).
PP-increased DEGs included late KC differentiation

genes, such as FAPB5, CALML5, TGM1, SPRR2G,
SPRR3 and LCE3D (Additional file 7). Among all
237 patients, there was variability in expression
shifts of genes expressed in the basal layer (ITGA6,
KRT5, KRT14), granular layer and cornified envelope
(IVL, LOR, FLG), and early KC differentiation genes
(KRT1, KRT10, DSG1, DSC1) (Additional file 7).
With respect to loricrin (LOR), for instance, expres-
sion decreased slightly on average (FC = 0.75; P =
2.0 × 10−8), but was reduced more than 0.26-fold in
some patients (lowest 10%) while increased 2.59-fold
in others (highest 10%) (Additional file 7). This re-
flects molecular-level heterogeneity among psoriasis
lesions, which can only be discerned by studying a
sufficiently large patient cohort [22,29].
We could not identify any genes with decreased ex-

pression in all 237 patients, but we identified 5 genes
for which expression was increased in all 237 pa-
tients (PI3, IL36G, KYNU, SERPINB13 and WNT5A)
(Additional file 8: part A). These may be regarded as
hallmark psoriasis genes for which expression is
near-universally elevated in lesions. Using RNA-seq,
we confirmed that expression of the 5 genes is ele-
vated in lesions (n = 92) as compared to normal skin
from non-psoriatic controls (n = 82) (Additional file
8: part B). The 5 genes were also induced in cultured
KCs following treatment with TNF, IL-17A or the
combination TNF + IL17A (Additional file 8: part C).
The 5 genes did not exhibit a psoriasis-specific ex-
pression pattern, since their expression was also ele-
vated in squamous cell carcinoma, Mediterranean
spotted fever eschars and atopic eczema (Additional
file 8: part D).
Identification of “psoriasis response elements” (PREs)
enriched in genomic sequences upstream of psoriasis
DEGs
The shifts in gene expression we observed in psoriasis
lesions are likely due, in part, to activation or repression
of TF-mediated regulatory mechanisms. To understand
which TFs/uDBPs and cis-regulatory elements have a
dominant role, we screened 2935 position weight matrix
(PWM) models (see Methods) to identify those for
which matching motifs are most significantly enriched in
genomic sequences upstream of the 1027 PP-increased
DEGs, the 796 PP-decreased DEGs, and the complete
set of all 1823 DEGs (PP-increased + PP-decreased).
Altogether, this identified 126, 461 and 462 PWMs for
which motifs were significantly enriched with respect to
the PP-increased DEGs, PP-decreased DEGs, and the
combined set of all DEGs, respectively (FDR < 0.10). We
collectively refer to the set of DNA elements matching
these significantly enriched motifs as “psoriasis response
elements” (PREs).

Combined analysis of differential expression and PREs
highlights six transcription factor-encoding genes
(FOSL1, FOXM1, IRF1, SOX10, SOX8 and GATA3)
We identified many TF-encoding genes as differentially
expressed in psoriasis lesions, but only a fraction of
these encode TFs interacting with PREs. Of 1823 DEGs,
106 were included within the TFclass database of TF-
encoding genes (39 PP-increased and 67 PP-decreased)
(Figure 1A). These 106 TF-encoding DEGs were more
likely to interact with PRE motifs than other TF-
encoding non-DEGs (P ≤ 0.015; Additional file 9). Over-
all, 28 of the 106 interacted with PREs, with the direc-
tion of differential expression often matching the pattern
of motif enrichment. TFs encoded by PP-decreased
DEGs, for instance, more commonly interacted with
PREs enriched in sequences upstream of PP-decreased
DEGs (14 of 67), but less commonly interacted with
PREs enriched in sequences upstream of PP-increased
DEGs (1 of 67) (Figure 1A). We identified 6 TF-
encoding DEGs interacting with PREs enriched in se-
quences upstream of PP-increased DEGs as well as PP-
decreased DEGs (FOSL1, FOXM1, IRF1, SOX10, SOX8
and GATA3) (Figure 1A). We identified 14 DEGs that
encode uDBPs interacting with PREs (Figure 1B). Of
these, 4 recognized a PRE enriched in sequences up-
stream of both PP-increased and PP-decreased DEGs
(AVEN, RBM8A, CAT and MYLK; Figure 1B).
For nearly all TFs/uDBPs interacting with PREs, we

confirmed differential expression in psoriasis lesions
using RNA-seq (n = 92 patients vs. n = 82 normal con-
trols; Additional files 10 and 11). Several TFs/uDBPs
additionally showed altered expression in blood from
psoriasis patients (increased: JUNB, STAT3, DTL, CAT;



Figure 1 Transcription factors and unconventional DNA-binding proteins with significantly altered expression in psoriasis lesions (n= 237
patients). (A) Transcription factors. We identified 106 TF-encoding psoriasis DEGs and determined which of these recognize PRE motifs significantly
enriched (FDR < 0.10) in sequences upstream of PP-increased DEGs (green background), PP-decreased DEGs (magenta), or both increased and decreased
DEGs (yellow). For each DEG, laser capture microdissection data (GSE42114) was used to assess whether its expression is localized to
a particular skin compartment (dermis, basal epidermis or suprabasal epidermis). (B) Unconventional DNA-binding proteins. We identified 14
DEGs encoding an uDBP that recognized a PRE motif significantly enriched (FDR < 0.10) in genomic sequences upstream of PP-increased DEGs
(green background), PP-decreased DEGs (magenta), or both increased and decreased DEGs (yellow). The figure shows enrichment (Z statistic)
for each uDBP motif with respect to sequences upstream of PP-increased and PP-decreased DEGs, respectively, as well as relative expression
in dermis, suprabasal epidermis and basal epidermis (laser capture microdissection; GSE42114).
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decreased: CUX2, ZNF559, AVEN, RUVBL1, RAN;
Additional files 10 and 11). IHC staining was used to
evaluate the distribution of ETS homologous factor
(EHF) and apoptosis caspase activation inhibitor
(AVEN) in PP and PN skin (Additional files 10 and 11).
EHF is a differentiation-associated transcriptional re-
pressor that interacts with 5-TTCCGA/TCGGAA-3
PRE elements (Figure 1A) [67-69], and IHC stains
confirmed increased EHF abundance in PP skin, par-
ticularly within cell nuclei and the basal epidermis
(Additional file 10). AVEN is an anti-apoptotic uDBP
that interacts with 5-TTTCCA/TGGAAA-3 PREs
(Figure 1B) [70], and IHC stains revealed diffuse ele-
vation of AVEN in both the psoriatic epidermis and
dermis (Additional file 11).
PREs interact with IRF1, ISGF3, NF-κB and TFs with helix-
turn-helix/homeo (MEOX2, EN1, NANOG) or other all-alpha-
helical/high-mobility group (SOX5, SOX8, SOX6) DNA-binding
domains
The spectrum of PREs revealed signatures of TF families
that share particular DNA-binding domains (Figures 2
and 3). The 126 PREs associated with PP-increased
DEGs were frequently recognized by IRF, ETS, Jun and
Fos family TFs (Additional file 12, part A). Overall, the
YY1 recognition site 5-ATGG/CCAT-3 was the most
strongly enriched element in regions upstream of PP-
increased DEGs (Additional file 13, part A). Cluster ana-
lysis of all 126 motifs identified two sub-groups, loosely
characterized by the elements 5-AGTCA/TGACT-3 and
5-GAAA/TTTC-3, respectively (Figure 2). The first



Figure 2 PRE motifs significantly enriched in sequences upstream of psoriasis-increased DEGs. We identified 126 PWM models matching
motifs significantly enriched in sequences upstream of PP-increased DEGs (FDR < 0.10). (A) The 126 motifs were clustered based upon k-mer
scores (HOPACH algorithm), leading to the identification of two motif sub-groups (blue and green, respectively). The shown k-mers were chosen
by dividing the dendrogram into branches and identifying the 3- or 4-mer for which k-mer scores (yellow-black heatmap; see Methods) were
most significantly elevated among motifs within a given branch. Red-black heatmaps show enrichment scores indicating how similar a PWM is to
other PWMs associated with DNA-binding domain superfamily and class groups. To calculate such scores for a given motif, we first screened the
2935 PWMs to identify the 10% most similar “nearest neighbor” PWMs (Pearson correlation). We then assessed whether PWMs from a given superfamily
or class were enriched among nearest neighbors (Fisher’s Exact Test), and the p-value from this test was used to calculate the enrichment score (−log10
(p-value)). (B) Number of motifs associated with DNA-binding domain superfamilies. P-values assess whether motifs belonging to a
superfamily are overrepresented among the 126 PRE motifs (right margin; Fisher’s Exact Test; asterisks denote FDR < 0.05). (C) Number
of motifs associated with DNA-binding domain classes (top 10). P-values assess whether motifs from a given class are overrepresented
among the 126 PRE motifs (right margin; Fisher’s Exact Test; asterisks denote FDR < 0.05).
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element partially matches the canonical AP-1 recogni-
tion sequence (5-TGANTCA-3), and accordingly, motifs
from this group were associated with basic leucine zip-
per family TFs (e.g., AP-1 and RUNX1). The second
element is strongly preferred by IRF1, the ISGF3 com-
plex (STAT1, STAT2, IRF9) and, to a lesser degree, by
NF-κB. Consistent with these trends, the 126 PREs were
disproportionately associated with the helix-turn-helix,
basic and immunoglobulin fold superfamilies, as well as
the W cluster TF class (Figure 2).
Of 461 PRE motifs enriched in regions upstream of PP-

decreased DEGs (FDR < 0.10), the top-ranked was recog-
nized by a helix-turn-helix forkhead box TF (FOXP4)
(consensus: 5-CTTTTCC/GGAAAAG-3) and most others
also featured a TTTC core element (Additional file 13, part
B). These elements partially match IRF1, ISGF3 and NF-κB
recognition sequences. The set of 461 motifs was fairly
homogenous, although two sub-groups could be discerned,
with one set of 375 motifs enriched for 5-AAT/ATT-3 ele-
ments, and another set of 86 enriched for 5-AAA/TTT-3
elements (Figure 3). Enrichment for 5-AAT/ATT-3 ele-
ments was likely driven by two DNA-binding domain sig-
nature trends (Additional file 14). First, we discerned a
distinct signature for TFs with the helix-turn-helix
(homeo) DNA-binding domain (Figure 3). Consistent with
this, several TFs with this domain interacted with PREs



Figure 3 PRE motifs significantly enriched in sequences upstream of psoriasis-decreased DEGs. We identified 461 PWM models matching
motifs significantly enriched in sequences upstream of PP-decreased DEGs (FDR < 0.10). (A) The 200 most significantly enriched motifs were clustered as
described in Figure 2, leading to the identification of two motif sub-groups. The yellow-black heat map shows PWM k-mer scores (top margin). Red-black
heatmaps show enrichment scores indicating how well PWMs match those associated with DNA-binding domain superfamily and class groups. (B)
Number of motifs associated with DNA-binding domain superfamilies. P-values assess whether motifs belonging to a superfamily are overrepresented
among the 461 PRE motifs (right margin; Fisher’s Exact Test; asterisks denote FDR < 0.05). (C) Number of motifs associated with DNA-binding domain
classes (top 10). P-values assess whether motifs from a given class are overrepresented among the 461 PRE motifs (right margin; Fisher’s Exact
Test; asterisks denote FDR < 0.05).
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and were encoded by PP-decreased DEGs (i.e., MEOX2,
EN1, NANOG, CUX2, POU3F3, HOXB3, LHX2, HOXC9;
Figure 1A). Second, we identified a group of motifs inter-
acting with TFs possessing an all-alpha-helical (high-mobil-
ity group) DNA-binding domain (Figure 3A), in agreement
with down-regulation of SOX-related TFs in lesions (i.e.,
SOX5, SOX8, SOX6, SOX10; Figure 1A). Both of these
binding domains (helix-turn-helix and other all-alpha-
helical) were associated with PP-decreased TFs that pre-
ferred 5-AAT/ATT-3 elements (e.g., MEOX2, EN1, LHX2,
SOX5, SOX8; Additional file 14).
There was only a slight correlation (rs = 0.29) between

motif enrichment scores obtained for PP-increased and
PP-decreased DEGs (Additional file 13, part D). In part,
such limited correspondence may be due to the AP-1
basic leucine zipper family signature, which was prominent
with respect to PP-increased DEGs (Figure 2), but absent
with respect to PP-decreased DEGs (Figure 3). Among 462
motifs enriched in sequences upstream of all DEGs (in-
creased + decreased), trends were similar to those for PP-
decreased DEGs (Figure 3), with clear signatures for TFs
with helix-turn-helix/homeo and alpha-helical/high-mobil-
ity group DNA-binding domains (Additional file 15).

PREs are prominent within enhancer regions of cytokine-
encoding gene promoters (IL17A, IL19 and IL1B)
Cytokines activate inflammatory and proliferative
cascades in psoriasis lesions [71], as evidenced by
the effectiveness of treatments directed against TNF,
IL-17A and IL-23 [24,72]. We therefore considered
whether PREs may contribute to regulation of cyto-
kine gene expression.
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Within psoriasis lesions, IL-17A is thought to be pro-
duced by Th17 cells, γδ T-cells, neutrophils, mast cells,
and innate lymphoid cells [73]. Consistent with this,
IL17A expression was significantly elevated in psoriasis
lesions (FC = 2.74; n = 237 patients; Figure 4A). We
inspected the IL17A promoter and noted high frequency
of 5-TGGAAA/TTTCCA-3 elements. Such elements
matched a motif associated with the all-alpha-helical
(high mobility group) transcription factor A (TFAM).
The motif was significantly enriched in sequences up-
stream of PP-increased DEGs (P = 5.2 × 10−4), PP-
decreased DEGs (P = 8.8 × 10−13), and the full set of
PP-increased and PP-decreased DEGs (P = 3.6 × 10−14).
TFAM mRNA was not differentially expressed in psor-
iasis lesions (FC = 0.98, P = 0.366), but the TFAM motif
contained elements similar to those present in IRF1,
Figure 4 PRE motifs are prominent in the IL17A promoter and presen
site. (A) IL17A expression is significantly elevated in psoriasis lesions. Grey b
dataset (whiskers: middle 90%; yellow symbols: extreme values). The media
(B) Sequence logos for the TFAM PRE motif significantly overrepresented in
is elevated within the IL17A promoter (see table). (C) IL17A promoter (chr6
elements are indicated (underlined sequence, phastcons≥ 0.50). Yellow hig
ISGF3 and NF-κB recognition sites (Figure 4B). Fre-
quency of this motif was more than two-fold elevated
in the IL17A promoter (Figure 4B). We could identify
19 such elements immediately surrounding the IL17A
TSS (−2200 to 200 bp), but ENCODE data allowed us
to pinpoint a Th17 cell DNase I hypersensitive site 200
– 350 bp downstream of the TSS (Figure 4C). Within
this region, there were two TFAM recognition sites,
both of which are conserved among mammalian spe-
cies (i.e., phastcons ≥ 0.50; Figure 4C).
IL19 is produced exclusively by KCs within lesions and

recent work has shown that IL-19 can potentiate effects
of IL-17A [74,75]. It was also reported that expression of
IL19 is more strongly elevated in psoriasis lesions than
any other cytokine [75], and in agreement our data
showed that IL19 mRNA was elevated 5-fold in lesions
t within an enhancer downstream from the transcription start
oxes outline the middle 50% of fold-change (FC) estimates for each
n FC for each dataset is listed (right margin; FDR < 0.05 for red labels).
sequence regions upstream of psoriasis DEGs. The motif’s frequency

, 52048984 – 52051683). TFAM motif matches (red font) and conserved
hlighted sequence denotes a DNase I hypersensitive site (Th17 cells).



Swindell et al. Clinical and Translational Medicine  (2015) 4:13 Page 11 of 21
(Additional file 16, part A; n = 237 patients). The IL19
promoter featured increased frequency of a PRE motif
recognized by nucleobindin 1 (NUCB1) (consensus:
5-ATGGGAA/TTCCCAT-3), which we found to be
significantly enriched in regions upstream of PP-
increased DEGs (P = 7.7 × 10−5), PP-decreased DEGs
(P = 5.1 × 10−4), and the combined set of PP-
increased and PP-decreased DEGs (P = 5.29 × 10−8)
(Additional file 16, part B). We identified matches to
this motif at eight loci 3600 – 4700 base pairs up-
stream from the IL19 TSS (Additional file 16, part
C). This region featured an NHEK histone modification
associated with transcriptional activation and repression
(histone H4 Lys 20 methylation, H4k20me1) [76]. Two
NUCB1 motifs within this methylated element are con-
served among mammals (chr1, 206968062–206968088;
Additional file 16, part C).
IL-1 facilitates T-cell infiltration, blocks insulin-

dependent KC differentiation and promotes KC prolif-
eration [77,78]. IL1B expression was significantly ele-
vated in psoriasis lesions (FC = 2.74; n = 237 patients;
Additional file 17, part A). Within the IL1B promoter,
there was increased frequency of a PRE motif recog-
nized by TAL1 (consensus: 5-TTATCT/AGATAA-3),
which was among the motifs most strongly enriched
in promoter regions of PP-increased DEGs (P = 7.0 ×
10−3), PP-decreased DEGs (P = 1.5 × 10−9), and the
combined set of PP-increased and PP-decreased DEGs
(P = 4.7 × 10−10). Density of this motif was elevated
4-fold in the IL1B promoter (Additional file 17, part
B). We identified two such motifs within a candidate
NHEK regulatory region upstream of the IL1B TSS,
with one motif overlapping a conserved element
(Additional file 17, part C). Combinatorial analysis
of chromatin marks indicated that this region is
an NHEK enhancer [66], and an open chromatin
structure in NHEK was confirmed by independent
DNase I hypersensitivity and Faire-seq data (Additional
file 17, part C).

Design of a complex decoy oligonucleotide (cdODN)
directed against TFs activated in psoriasis lesions
(FOXM1, ISGF3, IRF1 and NF-κB)
Complex decoy ODNs (cdODNs) with cis-regulatory ele-
ments recognized by multiple TFs can be used to block
several disease-associated pathways concomitantly [79].
To design a candidate cdODN for psoriasis treatment,
we focused on a limited set of TFs (FOXM1, IRF1 and
NF-κB) as well as the IFN-stimulated gene factor 3
(ISGF3) complex (i.e., STAT1, STAT2 and IRF9). These
TFs were considered because (i) they are encoded by
PP-increased DEGs and (ii) they interact with PRE mo-
tifs enriched in sequences upstream of PP-increased
DEGs (Figure 1). Prior work also supports these TFs as
participants within the combined set of proliferative and
inflammatory mechanisms driving lesion development
[10,56,80,81].
We identified top-ranking PRE motifs recognized by

FOXM1, ISGF3, IRF1 and NF-κB, respectively. Given
these four motifs, we enumerated 384 possible cdODN
designs, based upon two 5′ to 3′ orientations for each
site and alternative orderings within the cdODN.
These designs varied in their specificity, since for any
one cdODN we identified between 66 and 121
matches to the 2935 PWMs. For PWMs matching
each cdODN design, we calculated an average enrich-
ment score with respect to PP-increased DEGs (i.e.,
average Z statistic), and identified two designs for
which this score was highest (designated “cdODN186”
and “cdODN199”, respectively). The average Z statistic
was similar for both designs (1.71 vs. 1.70), but
cdODN199 was more specific, since it matched only
78 PWMs (as compared to 108 for cdODN186).
cdODN199 was therefore examined further (Figure 5A).
Notably, this design featured five of the 5-GAAA/
TTTC-3 elements prominent within the IL17A pro-
moter (Figure 4).
We compared cdODN199 to a set of 91 TF decoy

molecules developed and validated in previous studies
(Additional file 18). Surprisingly, most dODN designs
were non-specific, often most closely matching a PWM
associated with an off-target TF (Figure 5B). We identi-
fied 7 dODNs for which matching PWMs were associ-
ated with average Z statistics greater than cdODN199
(Figure 5B). Most of these, however, best matched an
off-target TF, or were designed to block AP-1 activity,
and may thus be expected to exacerbate lesion develop-
ment rather than counteract it (Figures 5B, E and F)
[82]. Despite the length of cdODN199 (42 bp), the most
closely matching PWMs were associated with targeted
TFs (i.e., IRF1, ISGF3 and NF-κB). Additionally, in com-
bination, the IRF1 and NF-κB recognition sites create a
binding site for AVEN (Figure 5C), an anti-apoptotic
and PRE-associated uDBP with increased abundance
throughout the psoriatic epidermis and dermis (Figure 1B
and Additional file 11).
Although cdODN199 includes FOXM1, ISGF3, IRF1

and NF-κB recognition sites, it does not include a bind-
ing site for STAT3, previously validated as an effective
dODN target in a psoriasis mouse model [17]. However,
when we inspected the STAT3 decoy previously shown
to resolve psoriasiform lesions in mice, we found that
the decoy sequence most closely matched STAT1 PWMs
(Figure 5D). Potentially, therefore, off-target inhibition
of STAT1 or ISGF3 might have contributed to anti-
psoriatic effects previously documented [17], and similar
effects might be achieved using cdODN199, which
includes an ISGF3 recognition sequence (Figure 5A).



Figure 5 Design of a complex decoy oligonucleotide (cdODN) directed against TFs activated in psoriasis lesions (FOXM1, ISGF3, IRF1
and NF-κB). (A) Psoriasis cdODN199. The proposed design consists of consensus sequences from four PRE motifs significantly enriched in sequences
upstream of PP-increased DEGs (FDR < 0.10). cdODN199 was chosen from among 384 possible combinations of the four PRE sequences (see text).
5-TTTC/GAAA-3 elements are shown with red font. (B) Top-ranked dODN molecules most closely matching PWM motifs enriched in sequences upstream
of PP-increased DEGs. Each dODN was evaluated to identify matching motifs within our dictionary (2935 PWMs; ψ/ψmax > 0.80, see Methods). The number
of PWM matches is indicated (left) along with Z statistics (right), reflecting enrichment of matching motifs in sequences upstream of PP-increased DEGs.
The PWM most closely matching each dODN is listed (right margin). Further details for each dODN can be obtained from the PubMed ID (left margin in
parentheses). Parts (C) – (F) show the top 10 PWM models most closely matching (C) cdODN199, (D) STAT3 (15592573), (E) AP1 (23223130) and (F)
STAT6 (23146666). dODN sequences are listed (bottom margin) and each figure shows consensus sequences for best-matching PWMs. Match scores are
listed in the right margin (see Methods, Equation 2). The [0, 1] probability preference (PPM value) for each base is indicated by the color scale (right).
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PRE motifs are disproportionately disrupted by SNP risk
alleles at enhancer-associated non-coding psoriasis
susceptibility loci
Genetic variants identified by psoriasis GWASs have
been predominantly located in non-coding regions, sug-
gesting that their influence on disease risk is indirect
and could involve gene regulation [26]. We therefore
asked whether psoriasis susceptibility variants disrupt or
engender PREs within non-coding enhancers.
We identified 536 SNPs in strong linkage disequilib-

rium (r2 > 0.90) with 36 lead SNPs from a psoriasis
GWAS meta-analysis [12], yielding a total of 572 SNPs
(lead + linked SNPs combined). Of these 572 SNPs, 324
were non-coding, while 53 were both non-coding and
within an NHEK enhancer. We screened the 2935
PWMs and calculated the average difference in binding
affinity with respect to risk and non-risk alleles (Figure 6).
The 126 PRE motifs enriched in regions upstream of PP-
increased DEGs (FDR < 0.10) were more likely to be dis-
rupted by risk alleles, as compared to all other 2641 motifs
(FDR > 0.10) (P = 0.022 for non-coding SNPs; P = 0.0014
for non-coding enhancer-associated SNPs; Figures 6A and
C). To an even greater degree, the 461 PRE motifs
enriched in sequences upstream of PP-decreased DEGs
(FDR < 0.10) were more likely to be disrupted by risk al-
leles, when compared to the other 2306 motifs (FDR >
0.10) (P = 0.00034 and P = 1.2 × 10−6; Figure 6B and D).
Psoriasis risk alleles at non-coding SNPs therefore tend to
abrogate, rather than engender, PRE motifs. PREs most
frequently disrupted by risk alleles were recognized by



Figure 6 PREs are disproportionately disrupted by SNP risk alleles at enhancer-associated non-coding psoriasis susceptibility loci. We
analyzed 572 psoriasis-associated SNPs, including (A, B) 324 non-coding SNPs and (C, D) 53 non-coding SNPs within an NHEK enhancer. Risk alleles for
these SNPs were evaluated to assess whether they strengthened (effect > 0) or weakened (effect < 0) matches to the 2935 motifs included in our dictionary
(see Methods, Equation 3). Parts (A) – (D) compare the median SNP effect between PRE motifs enriched in sequences upstream of psoriasis DEGs (FDR< 0.10)
and all other non-enriched motifs (FDR> 0.10). For each motif group, boxes outline the middle 50% of risk allele effects and whiskers outline the middle 80% of
effects (324 SNPs in parts A and B; 53 SNPs in parts C and D). P-values assess whether the median risk allele effect differs between motif groups (Wilcoxon rank
sum test). Part (E) lists PREs associated with PP-increased DEGs (FDR< 0.10) with the lowest and highest effects (on average among the 324 non-coding SNPs).
Part (F) lists PREs associated with PP-decreased DEGs (FDR< 0.10) with the lowest and highest effects (on average among the 324 non-coding SNPs).
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AP-1 (Figure 6E), while PREs most commonly engendered
by risk alleles were recognized by GATA3 (Figure 6F).
We screened 6678 SNP-PRE combinations involving

one of the 53 non-coding enhancer-associated SNPs and
one of the 126 PRE motifs enriched in sequences up-
stream of PP-increased DEGs. Of these, there were 79
cases (1.18%) in which the SNP risk variant engendered
(37 cases; 0.554%) or disrupted (42 cases; 0.629%) a PRE
match (Figure 7A). These percentages and the disrupted/
engendered proportion (1.13) did not differ significantly
from values observed in simulation trials, in which effects
of randomly sampled SNPs on PRE matches were identi-
cally quantified (P ≥ 0.34; Additional file 19). We next
screened 24433 SNP-PRE combinations involving
one of the 53 non-coding enhancer-associated SNPs
and one of the 461 PRE motifs enriched in se-
quences upstream of PP-decreased DEGs. Of these,
there were 203 cases (0.83%) in which the SNP risk
variant engendered (73 cases; 0.298%) or disrupted
(130 cases; 0.532%) a PRE match (Figure 7B). These
percentages differed slightly from those observed in
simulation trials (P ≤ 0.162), while the disrupted/engen-
dered proportion (1.79) was significantly large (P =
0.045; Additional file 19, part F). This again suggested
that psoriasis risk alleles are more likely to disrupt, ra-
ther than engender, PRE motifs, particularly those



Figure 7 Identification of enhancer-associated non-coding psoriasis susceptibility loci as potential sites of allele-specific transcription
factor binding. We examined 53 psoriasis-associated non-coding SNPs within an NHEK enhancer to identify SNP-PRE combinations representing
possible sites of allele-specific TF binding. (A) Predicted effects of risk alleles with respect to 79 SNP-PRE combinations involving PRE motifs
enriched in sequences upstream of PP-increased DEGs (FDR < 0.10) (see Methods, Equation 3). (B) Predicted effects of risk alleles with respect to
203 SNP-PRE combinations involving PRE motifs enriched in sequences upstream of PP-decreased DEGs (FDR < 0.10). (C) The 79 SNP-PRE combinations
from (A) were filtered to identify those for which the SNP locus is conserved and/or the PRE is recognized by a PP-increased DEG. (D) The 203 SNP-
PRE combinations from (B) were filtered to identify those for which the SNP locus is conserved and/or the PRE is recognized by a PP-decreased DEG.
In both (C) and (D), we list the SNP’s genomic location and nearest gene (left margin) and the PRE motif label for the corresponding PWM matrix (right
margin). The phastcons conservation score for the SNP locus is also shown, along with Z statistic indicating how strongly the PWM motif was enriched
in sequences upstream of (C) PP-increased DEGs or (D) PP-decreased DEGs. The Z statistic is listed within the bar graphs, with yellow text denoting
cases in which the PWM is recognized by (C) a PP-increased DEG or (D) a PP-decreased DEG.
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enriched in sequences upstream of PP-decreased
DEGs.
We next aimed to identify individual SNP-PRE

combinations most likely to be associated with
allele-specific TF/uDBP binding (Figure 7). The 79
and 203 SNP-PRE combinations cited above (Figure 7A
and B) were filtered to identify those for which the SNP
locus is conserved and/or the PRE is recognized by a
TF/uDBP-encoding DEG (Figure 7C and D). This
highlighted SNP-PRE pairs involving PREs recognized
by TFs or uDBPs with increased expression in psoriasis
lesions (i.e., AVEN, RBM8A and FOXM1; Figure 7C).
For PP-decreased DEGs, nearly all (16/18) of the
filtered SNP-PRE combinations involved PRE disrup-
tion by the risk allele (Figure 7D). Several of these PREs
interacted with TFs/uDBPs encoded by PP-decreased
mRNAs (i.e., WISP2, TCEAL2, MEOX2, LHX2, SOX10,
GATA3, and MYLK; Figure 7D).



Figure 8 Summary of differentially expressed TFs/uDBPs
interacting with PREs and proposed model linking cumulative
risk allele burden to PRE occupancy. (A) Selected TFs and uDBPs
that are differentially expressed in psoriasis lesions and interact with
PREs (red font: PP-increased DEGs; blue font: PP-decreased DEGs;
asterisks: uDBPs). Sequence logos depict DNA-binding affinities
(both 5′-3′ orientations are shown). (B) Proposed model linking
cumulative risk allele burden at non-coding SNPs to PRE occupancy
and disease susceptibility. Risk alleles at disease-associated SNPs favor
decreased PRE occupancy, thereby disrupting interactions between
PREs and trans-acting factors (e.g., AP-1). This increases susceptibility by
compromising epidermal homeostasis and barrier function, thus lowering
the trigger threshold for innate immune responses to facilitate immune cell
infiltration and lesion development.
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Discussion
Psoriasis is debilitating for many patients with direct and
indirect costs that exceed one billion dollars annually
within the United States alone [3]. To identify TFs con-
tributing to aberrant KC activity, including abnormal dif-
ferentiation and excessive proliferation, we evaluated
gene expression in psoriasis lesions from a meta-cohort
of 237 patients. Through in silico screening of known
DNA binding sites, our findings highlight proteins not
yet well studied in psoriasis, including TFs (FOXM1,
EHF, SOX5) and uDBPs (AVEN, RBM8A, GPAM,
WISP2). We also uncovered “psoriasis response ele-
ments” (PREs) overrepresented in psoriasis DEG pro-
moter regions, which are present within enhancers near
cytokine-encoding genes (e.g., IL17A, IL19 and IL1B).
We show that PREs can be strategically combined to
create a cdODN concomitantly targeting psoriasis-
activated TFs (FOXM1, ISGF3, IRF1 and NF-κB), illus-
trating how transcriptome informatics can be directly
connected to dODN development. Finally, our findings
address the challenge of how to interpret GWAS hits
within non-coding regions [26], and we have identified
disease-associated SNPs within non-coding NHEK en-
hancers that disrupt or engender PRE motifs. As possible
sites of allele-specific TF/uDBP binding, such SNPs rep-
resent priority candidates for functional studies. These
findings offer new insights into the underlying transcrip-
tional circuitry of psoriasis lesions, and demonstrate
how sequence-specific TF/uDBP-DNA interactions can
be exploited to support dODN drug development and
enhance interpretation of non-coding GWAS signals.
Psoriasis lesions develop in response to interplay be-

tween lesion-infiltrating inflammatory cells and local
KCs, which respond to cytokine signals by failing to dif-
ferentiate completely and adopting a phenotype resem-
bling that of proliferating basal-layer KCs [1,2]. This
pathological KC activity proceeds in coordination with
an underlying TF regulatory network. Previous studies
have identified DEGs showing altered expression in
psoriasis lesions, but many DEGs may play only a pas-
sive role in lesion development, without active participa-
tion in the disease process [18-24]. In our analyses, we
first identified psoriasis DEGs, but then filtered these to
define a more exclusive set of DEGs for which encoded
proteins interact with PRE motifs (Figure 1). By combin-
ing information in this way, we narrowed the focus con-
siderably, highlighting those DEGs with an extra layer of
evidence for active participation in the psoriasis transcrip-
tion network. In agreement with prior work, our findings
lend support to AP-1, IRF1, NF-κB, STAT3, GATA3 and
the ISGF3 complex (STAT1, STAT2 and IRF9) as “hubs”
within this network (Figure 8A) [10,56,60]. Additionally,
however, we uncovered TFs not extensively studied in
psoriasis, but which may nonetheless have important roles
in KC differentiation, KC proliferation, apoptosis, inflam-
mation, WNT signaling and lipid synthesis (e.g., FOXM1
and EHF; Figure 8A) [67-69,80]. Our findings also suggest
the possibility that repression of gene expression in lesions
is driven, at least in part, by decreased abundance of TFs
with helix-turn-helix (homeo) and other all-alpha-helical
(high-mobility group) DNA-binding domains (i.e., MEOX2,
EN1, NANOG, SOX5, SOX8, SOX6). Such TFs prefer 5-
TAA/TTA-3 elements (overrepresented in promoters of
psoriasis-decreased DEGs), and their decreased expression
in psoriasis may contribute to incomplete KC differenti-
ation, thereby favoring KC proliferation [83,84].
Unconventional DNA-binding proteins (uDBPs) par-

ticipate in sequence-specific DNA interactions and cellu-
lar cytokine responses [33,43]. We identified two uDBPs
encoded by PP-increased DEGs that recognize PRE mo-
tifs and have anti-apoptotic functions (AVEN, RBM8A).
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Within lesions, KCs from the basal layer are resistant to
apoptosis [85-87], while those in the suprabasal differen-
tiated epidermis appear susceptible [86], and this may
alter the differentiation/proliferation balance maintain-
ing homeostasis in normal skin. AVEN interferes with
apoptosome assembly by interacting with the adaptor
protein Apaf-1, but this activity requires proteolytic re-
moval of the N-terminal domain [70]. The cleavage reac-
tion is mediated by Cathepsin D (CDSD) [70], which
also shows elevated expression in psoriasis lesions (FC =
1.56; P = 4.61 × 10−38). Expression of RNA-binding pro-
tein 8A (RBM8A) appears necessary to prevent apop-
tosis, since RBM8A deficiency triggers apoptosis and
disrupts cell cycle progression [88,89]. Beyond this,
RBM8A binds STAT3 to modulate its activity in cells
stimulated by IL-6 or TNF [90,91]. Finally, expression of
glycerol-3-phosphate acyltransferase (GPAM) was sig-
nificantly decreased in psoriasis lesions and our analysis
revealed that GPAM recognizes PRE motifs enriched in
sequences upstream of PP-decreased DEGs (Figure 1).
Since GPAM is required for triacylglycerol and phospho-
lipid biosynthesis [92], decreased GPAM activity may
contribute to defects in epidermal barrier and cornified
envelope formation, which is hypothesized to be a factor
triggering innate immune responses at initial stages of
lesion development [93].
TF decoys have become an established approach for

nucleic acid-based treatment of human disease and skin
conditions [14-16]. We have here introduced a bioinfor-
matic pipeline for data-driven cdODN design, in which
we (i) screen binding sites of known TFs and uDBPs to
identify cis-regulatory elements associated with a disease
phenotype, (ii) select a small set of the enriched regula-
tory elements as cdODN “building blocks”, and (iii) enu-
merate and screen all possible cdODN conformations to
select the one that best matches motifs overrepresented
in promoters of disease-associated genes. Applying this
approach, we designed a cdODN (cdODN199) targeting
TFs whose activation in lesions is likely to augment KC
proliferation and cytokine-trigged inflammatory cascades
(i.e., FOXM1, ISGF3, IRF1 and NF-κB). We expect that,
by testing the in vivo activity of cdODN199, it will be
possible to introduce refinements, including the addition
or removal of certain PRE elements. Our main innovation
in the current study is development of a bioinformatic
analysis protocol for designing a cdODN matched to the
differential expression profile of psoriasis lesions. Compu-
tational screens of this type have not been previously used
to ensure such a “lock-and-key” type relationship between
cdODN sequence and disease phenotype. The importance
of specificity is, however, clearly demonstrated by the clin-
ical failure of Edifoligide, an E2F dODN developed to pre-
vent neointimal hyperplasia in vein bypass grafts [94].
After many years and considerable development costs,
Edifoligide was ineffective for its intended purpose, pos-
sibly because the dODN sequence was not sufficiently
specific for the targeted E2F factor [94]. For most dODN
molecules, such non-specificity may be the rule, rather
than the exception, since we have shown that dODNs
generally match PWMs associated with multiple TFs
(Figure 5). By matching dODN sequence to the disease
phenotype’s expression profile, however, we have out-
lined a computationally-driven approach for improving
specificity. In particular, this provides a practical strat-
egy for psoriasis and other skin diseases, since lesions
can be readily sampled and analyzed by expression
profiling.
GWAS findings have been instrumental for identifying

the genes and pathways serving as genetic trigger points
that predispose to psoriasis [12,20,93]. Similar to other
complex diseases, however, most psoriasis GWAS sig-
nals have been identified in non-coding regions (intronic
or intergenic), suggesting that their effects on gene regu-
lation, rather than protein function, may explain their
contribution to susceptibility [28,30,95]. This has chal-
lenged our interpretation of GWAS findings, in part
because we lack a complete understanding of which
sequence-specific TF-DNA or uDBP-DNA interactions
coordinate plaque development. To bridge this gap, we
characterized the core set of PRE cis-regulatory motifs
enriched in psoriasis DEG promoters. This allowed us
to identify SNPs at which risk alleles create or engender
PREs recognized by DEG-associated TFs/uDBPs (e.g.,
AVEN, RBM8A, FOXM1, WISP2,TCEAL2, MEOX2, LHX2,
SOX10, GATA3 and MYLK; Figure 7C and D). Potentially,
such SNPs may represent sites at which risk alleles have
major impacts on TF/uDBP-PRE interaction, with import-
ant downstream consequences that predispose to psoriasis,
or genetically-related autoimmune diseases [96].
An alternative model, however, is that an accumulation

of risk alleles at non-coding loci, each with minor effects
on TF/uDBP-PRE interaction, has an aggregate effect
promoting susceptibility in those individuals with the
greatest cumulative risk allele burden (Figure 8B). This
latter view is consistent with an “analog” view of tran-
scription [97], in which expression of genes ensuring
homeostasis and normal epidermal barrier function
gradually increases in proportion to noncooperative
PRE-TF/uDBP interactions in key genome regions. Sup-
porting this idea, risk alleles tended to decrease match
scores between PRE motifs and genomic loci, often to a
limited degree but nonetheless consistently across non-
coding psoriasis-associated SNPs (Figure 6A – 6D). A
consistent effect of non-coding risk alleles, moreover,
was to degrade matches to PREs recognized by TFs sup-
porting normal barrier function and KC differentiation
(e.g., AP-1; Figure 6E). Such a pattern may be driven by
haplotypes of linked non-coding risk alleles, where each



Swindell et al. Clinical and Translational Medicine  (2015) 4:13 Page 17 of 21
individual allele may have only a minor effect on PRE
occupancy at a given locus. Cumulatively, however, such
minor effects may engender disease-associated haplotypes
that contribute to population-level variation in PRE occu-
pancy (e.g., by AP-1), which is in turn connected to sus-
ceptibility through its influence on the expression of genes
promoting normal KC differentiation and barrier function
(Figure 8B). Such effects may parallel those of some cod-
ing variants (e.g.,TRAF3IP2 and/or TNFAIP3), which may
not increase risk by amplifying inflammatory responses
directly, but instead increase risk by disrupting epidermal
homeostasis under non-inflammatory conditions, thereby
lowering immune response thresholds [98,99].
Cellular function depends upon a dynamic protein-

DNA interactome, where disease states may correspond
to aberrant connections or missing links within this net-
work [100]. To better understand such network abnor-
malities, in silico screening of TF/uDBP binding sites
offers a valuable approach, and we have shown that this
can facilitate discovery of cis-regulatory modules, design
of targeted dODN therapies, and interpretation of
GWAS hits at non-coding loci. In coming years, this in-
formatics strategy can be applied on a larger scale, as we
develop a more complete empirical database of DNA se-
quence preferences for human TFs and uDBPs. We
were, for instance, able to identify 447 known TFs for
which no known binding site model is available in an
existing database [43,45-49]. Our understanding of TF-
DNA interactions may therefore be, at best, 70%
complete, notwithstanding that many TFs have context-
specific binding affinities dependent upon co-factors, cell
type, cellular activation status, and/or genetic back-
ground [101,102]. Beyond this, we have only a partial
catalogue of uDBP recognition sites, and although we
now have foundational in vitro chromatin feature data
for key cell types, the in vivo relevance of these features
and their consistency across genetic backgrounds is not
fully established [103]. Addressing these gaps will re-
quire continued systematic data aggregation with com-
plementary development of statistical methods, such as
improved approaches for modeling TF sequence specifi-
city [104]. Despite these challenges, targeted analysis of
the protein-DNA interactome can guide hypothesis-
driven studies of human disease, while illuminating a
data-driven pathway towards development of nucleic
acid-based therapies.

Conclusions
The psoriasis transcriptome points towards previously
unknown “psoriasis response elements” (PREs) enriched
in DEG upstream sequences. We show that PREs are lo-
cated within TSS-proximal regulatory regions near key
cytokine genes (e.g., IL17A, IL19 and IL1B). Although
106 TFs are encoded by psoriasis DEGs, only a fraction
interacts with PREs (26/106), and several of these have
not yet been examined in psoriasis studies (e.g., FOXM1,
EHF, SOX5). Similarly, we identified DEG-encoded
uDBPs that interact with PREs, whose function in psor-
iasis is presently unknown (e.g., AVEN, RBM8A, GPAM,
WISP2). Having identified diverse PRE motifs, we dem-
onstrate two applications for this information, including
(i) informatics-guided design of cdODN molecules with
a lock-and-key relationship to the disease phenotype
expression profile and (ii) identification of non-coding
enhancer-associated SNPs that disrupt/engender PREs
(i.e., allele-specific TF/uDBP binding). Our findings il-
lustrate the strong potential of our in silico strategy
with respect to both applications. These results can
help guide development of psoriasis therapies, includ-
ing first-line treatments for mild-to-moderate psoriasis
and adjuvant medications for immunosuppressive therapy.
We envision that data resources and the informatics pipe-
line developed here can be extended to other complex
genetic diseases, as a general strategy to facilitate dODN
design and enhance interpretation of GWAS findings.

Additional files

Additional file 1: Quality control processing of lesional (PP) and
uninvolved (PN) skin microarray samples. (A) PP/PN fold-change
comparison (PP/PN) between GSE51440 (HT HG-U133+ PM array plates)
and datasets generated using Affymetrix Human Genome U133 Plus 2.0
arrays. Yellow ellipses outline the middle 50% of FC estimates (Mahalanobis
distance). (B – I) QC metrics. We calculated (B) average background, (C) scale
factor, (D) percentage of probe sets called present, (E) degradation scores,
(F) NUSE median, (G) NUSE IQR, (H) RLE median and (I) RLE IQR. Yellow
symbols denote excluded samples (Z scores > 3.5 in absolute value).
(J) Median FC estimates among PP-increased (FC > 2; FDR < 0.05) and
PP-decreased DEGs (FC < 0.50; FDR > 0.05). Two excluded outlier samples
are indicated. (K) Principal component plot for GSE51440 samples
(HT HG-U133+ PM array plates). (L) Principal component plot for all
other samples (Affymetrix Human Genome U133 Plus 2.0 arrays). (M)
Final cluster analysis of the 237 paired PP and PN samples, with distance
between samples based upon PP – PN differences in RMA expression
scores (i.e., Euclidean distance normalized to [0,1] interval).

Additional file 2: Construction of motif dictionary by integration
across seven sources. The initial set of 4378 motifs was filtered to
remove redundant motifs and motifs with low information content,
yielding the final set of 2935 motifs used in our analyses (see
Methods). The table lists the number of motifs obtained from each
source before and after filtering. The number of unique human genes
associated with motifs is listed in parentheses.

Additional file 3: Gene ontology (GO) biological process (BP)
terms and genes associated with DNA motifs within our dictionary.
The 2935 PWM motifs were associated with 1422 unique human genes.
The Venn diagram shows the number of these genes associated with GO
biological process terms “transcription factor activity” (GO:0003700),
“transcription cofactor activity” (GO:0003712) and “DNA binding”
(GO:0003677).

Additional file 4: Transcription factor DNA-binding domain
superfamily and class groups. 1509 human TF-encoding genes from
the TFclass database were assigned to superfamily and class groups
based upon their DNA-binding domain. We identified the largest
superfamily and class groups and determined the number of genes in
each group associated with at least one PWM model from our dictionary
of 2935 motifs (red).
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Additional file 5: Cluster analysis of the 2935 PWM models included
within our motif dictionary. Motifs were clustered as described in
Figures 2A and 3A. The yellow-black heatmap shows motif k-mer scores
(top margin). Red-black heatmaps show enrichment scores indicating how
well a given PWM matches other PWMs associated with different
DNA-binding domain superfamily and class groups (TFclass database).

Additional file 6: Differential expression statistics for 16117
skin-expressed genes. This file provides differential expression
statistics for the 16117 skin-expressed genes included in our
analysis (PP versus PN skin; n = 237 patients).

Additional file 7: KC proliferation and differentiation markers in
psoriasis lesions and uninvolved skin (n = 237 patients). (A) KC
proliferation and differentiation markers (left margin). The number of
patients showing increased (red) or decreased (blue) expression is
indicated for each gene, along with the median PP/PN fold-change and
p-value (right margin; Wilcoxon rank sum test). (B – F) Distribution of
FC estimates across all patients for selected genes.

Additional file 8: Hallmark psoriasis genes with near-universally
increased expression in lesional skin (PI3, IL36G, KYNU, SERPINB13 and
WNT5A). We identified five genes for which expression was higher in
lesional (PP) as compared to uninvolved skin (PN) for all patients
(n = 237). (A) Distribution of PP/PN fold-change (FC) estimates among
patients (grey boxes: middle 50%; yellow boxes: middle 80%). Median FC
estimates and p-values are listed (right margin). (B) Mean expression in
lesional (PP) and normal skin (NN) from control subjects (RNA-seq,
GSE54456). Expression is measured using fragments per kilobase of
transcript per million mapped reads (FPKM). (C) Cytokine responses in
cultured KCs (*HaCAT KCs; **reconstituted epidermis). The cytokine,
concentration (per μL), duration of cytokine treatment, and Gene Expression
Omnibus series identifier is listed for each experiment (top margin). (D) Skin
disease panel. The expression of each gene was evaluated in other skin
diseases and compared to its expression in normal skin.

Additional file 9: TF-encoding DEGs are more likely to interact with
PRE motifs than TF-encoding non-DEGs. Our analysis identified 1149
TF-encoding genes expressed in human skin, including 39 PP-increased DEGs,
67 PP-decreased DEGs, and 1043 non-DEGs with similar expression in lesional
and uninvolved skin. We evaluated whether TF-encoding DEGs are more likely
to interact with PRE motifs than TF-encoding non-DEGs. The analysis was per-
formed with respect to TF-encoding PP-increased DEGs (n = 39), PP-decreased
DEGs (n = 67) and both PP-increased + PP-decreased DEGs (n = 106); addition-
ally, analyses were performed with respect to PRE motifs enriched upstream of
PP-increased DEGs (n = 126 PREs), PP-decreased DEGs (n = 461), and the
combined set of all DEGs (n = 462). For each row of the table, the percent-
age of TF-encoding DEGs associated with a PRE motif was compared with
that observed among TF-encoding non-DEGs (Fisher’s Exact Test).

Additional file 10: TFs encoded by psoriasis DEGs that interact with
PREs. (A) Expression in psoriasis lesions and normal skin from
control subjects (RNA-seq; GSE54456). Symbols denote average
expression (±1 standard deviation). Expression is measured using
fragments per kilobase of transcript per million mapped reads (FPKM).
(B) Expression in blood from psoriasis patients and control subjects
(GSE55201). In (A) and (B), genes in red and blue font have increased and
decreased expression in PP vs. PN skin, respectively (n = 237 patients,
microarray). (C) IHC stain for ETS homologous Factor (EHF) in PP skin
(10X magnification). (D) IHC stain for EHF in PN skin (10X magnification).

Additional file 11: uDBPs encoded by psoriasis DEGs that interact
with PREs. (A) Expression in psoriasis lesions and normal skin from
control subjects (RNA-seq; GSE54456). Symbols denote average
expression (±1 standard deviation). Expression is measured using fragments
per kilobase of transcript per million mapped reads (FPKM). (B) Expression in
blood from psoriasis patients and control subjects (GSE55201). In (A) and (B),
genes in red and blue font have increased and decreased expression in PP
vs. PN skin, respectively (n = 237 patients, microarray). (C) IHC stain for
apoptosis caspase activation inhibitor (AVEN) in PP skin (10X magnification).
(D) IHC stain for AVEN in PN skin (10X magnification).

Additional file 12: DNA-binding domain families associated
with psoriasis DEGs. DNA-binding domain families most strongly
overrepresented among PRE motifs enriched in sequences
upstream of (A) PP-increased DEGs, (B) PP-decreased DEGs, (C)
PP-increased and PP–decreased DEGs. P-values assess whether motifs
belonging to a family are significantly overrepresented among the set of
PRE motifs associated with (A) – (C), respectively (right margin; Fisher’s
Exact Test). Example sequence logos are shown for the most strongly
overrepresented TF families (i.e., interferon regulatory factors, part A;
NK-related factors, part B; HOX-related factors, part C).

Additional file 13: Psoriasis response elements (PREs) most
strongly enriched in genomic sequences upstream of psoriasis
DEGs. We screened 2935 binding sites (PWM matrix models) to identify
PRE motifs most significantly enriched in 5KB regions upstream of
psoriasis DEGs. (A – C) Top 12 motifs enriched with respect to (A)
PP-increased DEGs, (B) PP-decreased DEGs, and (C) all psoriasis DEGs,
respectively. For each motif, enrichment is proportional to the Z statistic
obtained from semiparametric generalized additive logistic modeling
(see Methods). The ratio between the number of motif occurrences in
regions upstream of psoriasis DEGs and the number of occurrences among
other skin-expressed genes is listed (Ratio). Labels in red or blue font (left
margin) denote cases in which the motif is recognized by a protein
encoded by a PP-increased DEG or PP-decreased DEG, respectively. (D)
Comparison between enrichment Z statistics obtained with respect to
PP-increased DEGs and PP-decreased DEGs (n = 2935 PWM models).
The yellow circle outlines the 50% of values closest to the centroid
(Mahalanobis distance). (E) PWM sequence logos associated with top-ranking
motifs from (A) – (C).

Additional file 14: PREs upstream of PP-decreased DEGs
interact with helix-turn-helix (homeo) and other all-alpha-helical
(high-mobility group) DNA-binding domains. (A) TFs encoded by
helix-turn-helix (homeo) and other all-alpha-helical (high-mobility
group) DNA-binding domains show decreased expression in psoriasis
(n = 237 patients; microarray). Most PP-decreased TFs with these
domains recognize DNA elements enriched in sequences upstream of
PP-increased and/or PP-decreased DEGs (see Z statistics; middle two
figures). The right-most figure shows relative expression in dermis,
suprabasal epidermis and basal epidermis (laser capture microdissection,
GSE42114). (B) Mean expression in lesional (PP) and normal skin (NN)
from control subjects (RNA-seq; GSE54456). Expression is measured
using fragments per kilobase of transcript per million mapped reads
(FPKM). (C) Sequence logos for helix-turn-helix (homeo) TFs. (D) Sequence
logos for other all-alpha-helical (high-mobility group) TFs.

Additional file 15: PRE motifs significantly enriched in sequences
upstream of psoriasis-increased and psoriasis-decreased DEGs.
We identified 462 PWM models matching motifs significantly enriched
in sequences upstream of PP-increased and PP-decreased DEGs
(FDR < 0.10). (A) The 200 most significantly enriched motifs were
clustered as described in Figure 2, leading to the identification of three
motif sub-groups. The yellow-black heat map shows k-mer scores for each
motif (top margin). Red-black heatmaps show enrichment scores indicating
how well a given PWM matches others associated with DNA-binding domain
superfamily and class groups (TFclass database).

Additional file 16: PRE motifs are prominent in the IL19 promoter
and present within an upstream enhancer region. (A) IL19 expression
is significantly elevated in psoriasis lesions. Grey boxes outline the middle
50% of fold-change (FC) estimates for each dataset (whiskers: middle
90%; yellow symbols: extreme values). The median FC for each dataset is
listed (right margin; FDR < 0.05 for red labels). (B) Sequence logos for the
NUCB1 motif significantly overrepresented in sequence regions upstream
of psoriasis DEGs. The motif’s frequency is elevated within the IL19 promoter
(see table). (C) IL19 promoter (chr1, 206967214–206969913). NUCB1 motif
matches (red font) and conserved elements are indicated (underlined,
phastcons ≥ 0.50). Yellow highlighted sequence denotes H4k20me1 histone
modification (NHEKs).

Additional file 17: PRE motifs are prominent in the IL1B promoter
and present within an upstream enhancer region. (A) IL1B expression
is significantly elevated in psoriasis lesions. Grey boxes outline the middle
50% of fold-change (FC) estimates for each dataset (whiskers: middle
90%; yellow symbols: extreme values). The median FC for each dataset is
listed (right margin; FDR < 0.05 for red labels). (B) Sequence logos for the
TAL1 motif significantly overrepresented in sequence regions upstream
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of psoriasis DEGs. The motif’s frequency is elevated within the IL1B promoter
(see table). (C) IL1B promoter (chr2, 113594157–113596856). TAL1 motif
matches (red font) and conserved elements are indicated (underlined,
phastcons ≥ 0.50). Yellow highlighted sequence denotes a DNase I
hypersensitive site and Faire-seq peak (NHEKs).

Additional file 18: List of 91 unique TF decoy oligonucleotides
(dODNs). A literature review identified 167 dODNs used and validated in
prior studies. These were screened to exclude redundant dODNs with the
same sequence, yielding a set of 91 unique dODNs. For those dODNs
reported by multiple publications, the table in this file lists the earliest
publication reporting the dODN sequence.

Additional file 19: Variants at psoriasis-associated non-coding/
enhancer SNP loci disproportionately disrupt PRE motifs in sequences
upstream of PP-decreased DEGs (simulation analysis). Simulation was
used to assess the effects of risk variants at psoriasis-associated SNP loci on
PRE motifs in comparison to the effects of genetic variants at randomly
sampled SNP loci (1000 trials). We considered 53 psoriasis-associated
non-coding SNPs within NHEK enhancers and the effects of associated
risk variants on PRE motif matches. In each simulation trial, 53 SNPs
were randomly chosen from a larger pool of 1.82 million SNPs, which
was generated by identifying autosomal SNPs positioned within
non-coding NHEK enhancer regions and located at least 500 kb from
any psoriasis-associated SNP (at least 4 Mb in the MHC region). The
53 random SNPs were frequency-matched with respect to the 53
psoriasis-associated SNPs. For each random SNP, one associated genetic
variant was randomly designated as the risk allele. Analyses were performed
with respect to the 126 PRE motifs enriched in sequences upstream of
PP-increased DEGs (parts A – C), as well as the 461 PRE motifs enriched
in sequences upstream of PP-decreased DEGs (parts D – F). In each trial,
we evaluated the percentage of SNP-PRE combinations in which a PRE
match was disrupted (parts A and D) or engendered (parts B and E), as
well as the ratio of disrupted to engendered matches (parts C and F).
Figures show the null distribution generated by random SNP sampling
in relation to the corresponding value calculated with respect to the 53
psoriasis-associated SNPs (red vertical line). P-values indicate the proportion of
the null distribution for which values are more extreme than those calculated
based upon the 53 psoriasis-associated SNPs (one-sided hypothesis test).
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