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Abstract

The Hippo tumour suppressor pathway co-ordinates cell proliferation, cell death and cell differentiation to regulate
tissue growth control. In mammals, a conserved core Hippo signalling module receives signal inputs on different
levels to ensure the proper regulation of YAP/TAZ activities as transcriptional co-activators. While the core module
members MST1/2, Salvador, LATS1/2 and MOBT have been attributed tumour suppressive functions, YAP/TAZ have
been mainly described to have oncogenic roles, although some reports provided evidence supporting growth
suppressive roles of YAP/TAZ in certain cancer settings. Intriguingly, mammalian Hippo signalling is also implicated
in non-cancer diseases and plays a role in tissue regeneration following injury. Cumulatively, these findings indicate
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that the pharmacological inhibition or activation of the Hippo pathway could be desirable depending on the
disease context. In this review, we first summarise the functions of the mammalian Hippo pathway in tumour
formation, and then discuss non-cancer diseases involving Hippo signalling core components with a specific focus
on our current understanding of the non-cancer roles of MST1/2 and YAP/TAZ. In addition, the pros and cons of
possible pharmacological interventions with Hippo signalling will be reviewed, with particular emphasis on
anti-cancer drug development and regenerative medicine.
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Introduction

In complex multicellular organisms, normal tissue devel-
opment, repair and maintenance is essential for organ
functionality and consequently the survival of the organ-
ism. To ensure that these complex biological events are
performed accurately, cell proliferation, cell death and
cell differentiation (and de-differentiation) must be coor-
dinated by cellular signalling mechanisms. Research per-
formed mainly over the past decade has uncovered that
the Hippo tumour suppressor pathway is a master re-
gulator of proliferation, death and differentiation [1].
Therefore, intensive research efforts have been invested
to understand the molecular function and regulation of
Hippo signalling. Although Drosophila genetics have
been an instrumental driving force in obtaining our
current level of knowledge of Hippo signalling [2], we
will focus in this review only on the mammalian Hippo
pathway.
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The main function of the Hippo pathway is to regulate
in a negative fashion the transcriptional co-activators Yes
associated protein (YAP) and transcriptional co-activator
with PDZ-binding motif (TAZ; also known as WWTR1)
[3,4]. The core of the Hippo pathway consists of the mam-
malian Ste20-like serine/threonine kinases 1/2 (MST1/2),
members of the Ste20 group of protein kinases [5], the
large tumour suppressor 1/2 serine/threonine protein
kinases (LATS1/2), members of the AGC kinase family
[6,7], as well as their adaptor proteins Salvador (SAV;
also termed WW45) [8] and Mps-one binder 1 (MOB1)
[9]. Mechanistically, activated MST1/2 kinases associate
with their scaffolding partner SAV and phosphorylate
LATS1/2 and MOBI, resulting in increased LATS/MOB1
complex formation and LATS1/2 activation (Figure 1).
Activated LATS1/2 kinases then phosphorylate YAP/
TAZ on different sites, leading to the inactivation of YAP/
TAZ by cytoplasmic sequestering and/or proteasome-
mediated degradation (Figure 1). In case the MST1/2-
SAV-MOBI1-LATS1/2 signalling axis is inactive, YAP/
TAZ can accumulate in the nucleus and function as

© 2014 Gomez et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.


mailto:a.hergovich@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0

Gomez et al. Clinical and Translational Medicine 2014, 3:22 Page 2 of 12
http://www.clintransmed.com/content/3/1/22

Plasma membrane
Cytoplasm v
-7
P -
- -

00 |
Oo
250 QLD (P SPIEYR)
(@)

Nucleus
Figure 1 The Hippo signalling core cassette in mammals. In response to upstream signals (coming from GPCRs and other plasma membrane
associated factors), MST1/2 are activated by phosphorylation. Phosphorylated MST1/2 in complex with the scaffolding protein SAV then activates
LATS1/2 kinases by phosphorylation. Activated LATS1/2, associated with their co-activator MOB1, hyperphosphorylate YAP/TAZ on different sites. These
YAP/TAZ phosphorylation events create a 14-3-3 binding site that causes the cytoplasmic retention of YAP/TAZ (mediated by Ser127 phosphorylation
of YAP) and a separate phospho-degron that mediates the proteasomal degradation of YAP/TAZ (mediated by Ser381 phosphorylation of YAP). When
the Hippo pathway is inactive, YAP/TAZ are not phosphorylated by LATS1/2 allowing the transcriptional co-activators YAP/TAZ to accumulate in the
nucleus which can result in the transcription of specific target genes involved in cell cycle, apoptosis and differentiation control. Of note, the MST1/
2-LATS1/2-YAP/TAZ axis can also be influenced by additional factors (depicted as X) on each individual signalling level.
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transcriptional co-activators by interacting with transcrip-
tion factors such as the TEA domain family members
(TEADs; also known as TEFs) [1,4]. Key downstream tar-
gets of YAP/TAZ are regulators of cell cycle, apoptosis,
and differentiation, although currently the precise tran-
scriptional programmes of YAP/TAZ are not fully defined
[4]. It is noteworthy that YAP/TAZ also interact with
SMADs and other transcription factors in the context of
the crosstalk between Hippo signalling and pathways such
as Wnt and TGFp signalling. Due to the emphasis of
this manuscript, we refer the reader to other reviews to
obtain an overview of these topics [10,11]. Furthermore,
we would like to stress that different Hippo branches can
function upstream of YAP/TAZ [1,3,12], but we focus here
on discussing the main MST1/2-SAV-MOB1-LATS1/2-
YAP/TAZ axis (Figure 1).

Review

Hippo signalling in cancer

The current view in the Hippo signalling field is that factors
contributing to the inactivation of the proto-oncogenic
YAP/TAZ proteins most likely represent tumour suppres-
sor genes (TSGs), whereas activators/facilitators of YAP/
TAZ functions are very likely to be proto-oncogenes. Given
that these TSG vs. oncogene concepts have recently been
summarised by excellent reviews on Hippo signalling in
cancer [3,12], we will discuss in this subsection only
some selected cancer-related points before highlighting
non-cancer related pathologies upon deregulation of
Hippo signalling.

In full support of TSG functions for the core compo-
nents MST1/2, SAV and MOBI, loss of MST1/2, SAV,
or MOBI in mice results in the development of differ-
ent tumour types, while YAP overexpression is sufficient
to cause tumour formation (summarised in [3]). The de-
velopment of tumours in LATS1 null mice has been re-
ported more than 15 years ago, but this specific research
aspect has not been pursued further since then. To our
knowledge, conditional LATS1, LATS2 or LATS1/2 null
mice have not been reported with respect to tumour de-
velopment. Nevertheless, studies using mammalian cell
lines support a role of LATS1/2 as TSGs (summarised in
[6,13]). Unfortunately, the lack of LATS1/2 animal studies
has hindered the definition of how far the MST1/2-
SAV-MOBI1-LATS1/2-YAP axis is responsible for tumour
formation in transgenic MST1/2, SAV, MOBI, or YAP
mice. Current evidence actually suggests that this axis
does not always play a central role in animal models.
For example, MOBI1-deficient animals [14] develop the
broadest range of tumours amongst all mice carrying
manipulations of Hippo signalling components, suggesting
that factors other than MST1/2, SAV, or LATS1/2 might
play additional key roles [3,15]. As another example, liver
specific ablation of MST1/2 causes liver tumours by YAP
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deregulation without any apparent role of LATS1/2
[16], while thymocyte specific deletion of MST1/2 results
in thymic egress through a mechanisms not involving
LATS1/2-YAP signalling [17]. These two studies strongly
suggest that factors other than LATS1/2 function down-
stream of MST1/2 signalling. Whatever the case, it is
undisputed that the deregulation of mammalian Hippo
signalling components is implicated in tumour forma-
tion in spite of these findings [3].

Although Hippo signalling activities are clearly al-
tered in human cancers, only few germline and somatic
mutations of Hippo signalling components have been
described so far, with the exception of YAP/TAZ amp-
lification [3,4,12]. Considering recently reported genome
wide screens for human cancer genes [18-20], none of
the Hippo core components would have been defined
as major TSGs or proto-oncogenes. Unlike well-defined
oncogenic (e.g. c-kit) or tumour suppressor pathways (e.g.
p53), no human cancers have been attributed to mutations
or loss of the core signalling components of the Hippo
pathway [3]. Given the observed redundancies for MST1/
2, LATS1/2 and MOB1 (MOBI refers to MOB1A and
MOBI1B, two independent genes in the genome [9]), it is
unlikely that homozygous loss of MST1 and MST2 (or
LATS1/2 or MOB1) can occur, since a total of four gene
copies would have to be lost per signalling factor (e.g. both
copies of MST1 and MST2). In support of this notion,
biallelic loss of MST1 (also known as STK4) is not suffi-
cient to cause human malignancies [21]. Given these puz-
zling findings in human samples, the following key
questions with respect to human Hippo signalling remain
unanswered: To what extent and how frequent is Hippo
signalling deregulated in human tumours? How is Hippo
signalling most frequently deregulated? Which cancer sub-
types are mostly affected (or even caused) by deregulated
Hippo signalling?

There are different reasons that may help to address
these questions and also explain the lack of direct muta-
tions in Hippo components. The first explanation could
be the deregulated crosstalk of Hippo signalling with
oncogenic pathways, such as WNT or mTOR [3]. A sec-
ond possibility is that Hippo signalling might be affected
by cumulative haploinsufficiency combined with triplo-
sensitivity [18], although this type of analysis would have
to be expanded to take redundancies into account. Third,
perhaps the main defects in the Hippo signalling core can
be attributed to altered post-translational modifications
(PTMs) at the protein level, in which case genomic data
cannot be used. In this context, we believe that it is time
that regulatory phosphorylations of MST1/2, LATS1/2,
MORBI, and YAP/TAZ [6] are to be carefully examined in
the clinic. In addition, novel regulatory PTMs of YAP
[22-24] should be included in a clinical setting to define
the role of methylation and acetylation in the regulation of
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YAP/TAZ. Future clinical research into YAP/TAZ regula-
tion may also need to consider circadian cycles, since the
SCF B-TRCP E3 ligase promoting YAP/TAZ degradation
[25,26] is known to play a role in circadian rhythms [27].

Another point worth mentioning is that YAP does not
always function as a proto-oncoprotein [28,29]. Current
evidence suggests that YAP performs oncogenic or tumour
suppressive functions dependent on the breast cancer sub-
type [28,30]. This is not only valid for human breast cancer
but has also been observed in colon cancer. Camargo and
colleagues described a growth suppressive function of YAP
in the mouse intestine and a silencing of YAP in a sub-
set of human colorectal carcinomas [31,32]. In contrast,
other studies observed an upregulation of YAP in sam-
ples of human colon cancers [4], as well as the need for
YAP in B-catenin driven human colon cancer cell line
survival and transformation [33]. Therefore, future studies
should aim to define the tumour suppressive and/or proto-
oncogenic functions of YAP (and possibly also TAZ) based
on cancer subtype profiling. Most likely, Hippo signalling
dependent- and independent mechanisms of YAP/TAZ
regulation involving mechanical and cytoskeletal changes
[34-38] will also need to be examined to fully understand
the clinical situation.

Finally, in the context of Hippo signalling and cancer,
the recent progress on deciphering the Hippo pathway
protein-protein interactome should be mentioned [39].
Five independent studies systematically examined protein-
protein interactions (PPIs) within the conserved Hippo-
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YAP/TAZ pathway [40-44]. These studies overwhelmingly
illustrate that Hippo signalling represents a signalling net-
work rather than a clear cut signal transduction cascade.
For example, the scaffolding factors RASSF1-4 interact
with MST1/2 [43], while RASSFS8 is associated with YAP/
TAZ [40,43]. Furthermore, two additional Ste20-like ki-
nases, namely MST3 and MAP4K4, have been linked to
the Hippo interactome in addition to MST1/2 [39], il-
lustrating that different RASSF proteins and Ste20-like
kinases will need to be considered in future studies.
However, the endpoint of these multiple and diverse
PPIs has remained the regulation of YAP/TAZ. There-
fore, these studies have provided novel insight into pu-
tative functional modules (e.g. the NEK4, PLK1 and/or
Citron kinases) that could be exploited for novel thera-
peutic approaches to manipulate YAP/TAZ activities, in
addition to establishing a vast playground for mechanis-
tic studies of Hippo signalling upstream of YAP/TAZ.

Hippo signalling in non-cancer pathologies

While the role of Hippo signalling in tumour development
is gaining more and more attention [3,12], non-cancer ab-
normalities involving Hippo components have only been
studied to a limited extent. Similar to studies of Hippo sig-
nalling in cancer [3], our current understanding of Hippo
signalling in non-cancer pathologies is mainly based on
animal studies (summarised in Tables 1 and 2). Before
discussing these disease links in more detail, we would
like to stress two points. First, since MST1/2 and YAP/

Table 1 Summary of non-cancer mammalian pathologies in which MST1/2 kinases are involved

Tissue  Protein Model Pathology References
Liver MST1/2  MST1/2 mutant conditional mouse Hepatomegaly [16,45,46]
Heart MST1 Mouse model of Arrhythmogenic Arrhythmogenic Cardiomyopathy [47]
Cardiomyopathy and human samples
Neonatal rat ventricular myocytes Heart failure, ischemic heart disease, dilated cardiomyopathy and [48-50]
cardiomyocyte apoptosis
Dominant negative MST1 mice and Cardiac dysfunction [51]
MST1 —/— mice
Muscle  MST1 MST1 deficient mice Neurogenic muscle atrophy [52]
Brain MST1 Mouse model of Amyotrophic Lateral ~ Amyotrophic lateral sclerosis (ALS) [53]
Sclerosis
Pancreas MST1/2 MST1/2 mutant conditional mouse Reduction of pancreatic mass, exocrine pancreas disorganization and [54,55]
pancreatitis-like autodigestion
Thymus ~ MST1 MST1 deficient patients or with Immunodeficiency, T and B cells lymphopenia [21,56]
homozygous mutations
MST1 deficient mice Defective lymphocyte trafficking and thymocyte egress. Autoimmune-like  [57-60]
disorders. Impaired development and function of regulatory T cells. Low
numbers of mature naive T cells.
MST1/2  MST1 and MST2 deficient mice Autoimmune disease (skin lesions around the eyes, lymphocytes infiltration, [17,61]
colitis)
Lung MST1/2  MST1/2 mutant conditional mouse Respiratory distress syndrome [62]
MST1 Rat model of Hypoxic pulmonary Pulmonary arterial hypertension [63]

vascular remodelling
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Table 2 Summary of non-cancer mammalian pathologies in which YAP/TAZ proteins are involved
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Tissue  Protein Model Pathology References
Liver YAP Mouse models of inducible active YAP1 in the Increase in liver size [64,65]
liver
Heart YAP/TAZ SCA-1-/— human cardiac progenitor cell line Infarct [66]
Cardiac-specific YAP or TAZ knockout mice. Loss of function results in impaired neonatal heart [67]
Mouse model of inducible active YAP1 in the regeneration and lethal cardiomyopathy. Activated YAP
heart enhances cardiac regeneration and improves function of
ischemic hearts
YAP Mouse models of arrhythmogenic Arrhythmogenic Cardiomyopathy [47]
cardiomyopathy and human samples
Mouse models of cardiomyocyte-specific homozy- Increased myocyte apoptosis and fibrosis, dilated [68]
gous inactivation of YAP in the postnatal heart cardiomyopathy, and premature death.
Muscle  YAP Mouse models of inducible active YAP in the Loss of body weight, gait impairments and kyphosis. Skeletal [69]
skeletal muscle cells muscle atrophy.
Brain YAP/TAZ Rat model of chronic constriction sciatic nerve Neuropathic pain [70]
injury
YAP/TAZ Mammalian cell lines Alzheimer's disease [71]
Pancreas YAP MST1/2 mutant conditional mouse Reduction of pancreatic mass, exocrine pancreas [54,55]
disorganization and pancreatitis-like autodigestion
Mouse models of inducible active YAP1 in the Pancreas increased in total size and acinar cells showed [64]
pancreas penetrant ductal metaplasia
Skin YAP/TAZ Mice model of wound healing Wound healing [72]
YAP Mouse models of inducible active YAP1 in the Thickening of the epidermis and increased number of [64]
skin proliferating cells
Eye YAP/TAZ  Primary human trabecular meshwork cells Glaucoma [73]
Ovary YAP/TAZ Mouse model of ovarian fragmentation, ovarian Primary ovarian insufficiency and polycystic ovarian syndrome  [74]

explant and follicle cultures. Primary ovarian
insufficiency patients

TAZ models have been studied the most exhaustively,
we will focus on mainly reviewing these two signalling
hubs. Second, we wish to bring to the reader’s attention
that mice and humans tend to develop a different range
of disease subtypes [3], hence one has to be careful
when extrapolating information about Hippo signalling
from animal models to human diseases. In this context,
we would like to draw the reader’s attention to the fact
that actual non-cancer human pathologies involving
Hippo core components have only been described in
the immune system, Alzheimer's disease, and glaucoma,
while all other conditions described below are a result
of experimentally induced disease in animals (Tables 1
and 2), awaiting confirmation of their existence in human
diseases.

Human patients with MST1 deficiency have an im-
paired immune system, hence suffering from immuno-
deficiency and lymphopenia [21,56]. Accordingly, MST1
deficient animals display a range of lymphocyte associated
defects, ranging from defective lymphocyte trafficking to
impaired development and function of regulatory T cells
(summarised in Table 1). MST1 and MST1/2 conditional
knock-out animals consequently exhibit features of auto-
immune disease. Cumulatively, these reports strongly

support the notion that MST1/2 kinases are important
players in the mammalian immune system, while YAP/
TAZ have not been associated with any thymus/im-
mune system related roles (compare Tables 1 and 2).

Using mouse genetics, MST1/2 and YAP/TAZ have
also been implicated in pathologies of the brain (Tables 1
and 2). MST1 deletion in an amyotrophic lateral sclerosis
(ALS) mouse model delayed disease onset and prolonged
survival of mice, thereby linking MST1 to neurodegenera-
tion in ALS [53]. YAP/TAZ nuclear accumulation (which
can be indicative of increased YAP/TAZ activities) was
elevated upon peripheral nerve injury in a chronic nerve
injury animal model [70]. It was further reported that
YAP/TAZ function together with the amyloid-beta pro-
tein precursor, which is implicated in Alzheimer's disease
(AD) [71]. Specifically, amyloid-beta protein precursor ac-
tivates gene transcription through Mint3-TAZ and Mint3-
YAP interactions [71]. These findings suggest that Hippo
signalling might also play a role in ALS, neuropathic pain
and AD.

Altered MST1 and YAP/TAZ activities have also been
associated with heart defects (Tables 1 and 2). More-
over, mice with heart specific deletion of MST1/2 or
YAP during embryonic development display defective
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heart development [75-77]. LATS1/2 or SAV loss also
affect heart development [75,78], supporting the notion
that Hippo signalling is required for normal heart forma-
tion. YAP overexpression results in increased proliferation
of cardiomyocytes [67,68,76,77]. SAV deletion in the adult
mouse heart also causes increased cardiomyocyte prolifer-
ation with elevated YAP expression [79], suggesting that
cardiomyocyte proliferation is under the tight control of
Hippo signalling. Furthermore, these results indicate that
deregulating Hippo signalling might be beneficial for heart
regeneration upon injury. In support of this, mice with
heart specific YAP depletion were defective in heart regen-
eration [67], while LATS1/2 or SAV conditional knock-out
animals displayed increased regenerative capacities [79].
In summary, these studies strongly indicate that the status
of mammalian Hippo signalling modulates the potential of
myocardial regeneration after injury.

Intriguingly, YAP is not only a regulator of cardio-
myocyte proliferation, but also plays a significant role in
skeletal muscle. Overexpression of YAP interferes with
the differentiation of myoblasts into myotubes in vitro
[80] and prevents the differentiation of satellite cells
(stem cells of skeletal muscle) and myoblasts in vivo
[81]. Therefore, it was speculated that YAP overexpression
might be sufficient to drive excessive skeletal muscle for-
mation. However, prolonged YAP overexpression resulted
in skeletal muscle degeneration resembling human centro-
nuclear myopathy [69]. In support of this finding, MST1
deletion also results in muscle atrophy [52]. Thus, inacti-
vation of Hippo signalling (hyperactivation of YAP) seems
to have detrimental effects on skeletal muscle homeostasis
by causing atrophy and muscle deterioration (Tables 1
and 2).

Loss of MST1/2 function and overexpression of YAP
have additionally been linked to pancreatic abnormalities
(Tables 1 and 2). YAP overexpression results in ductal
metaplasia in the pancreas besides causing severe abnor-
malities in the colon, skin, and liver [64,65]. Unexpectedly,
conditional deletion of MST1/2 in the pancreas did not
cause the same phenotype, but rather phenocopied pan-
creatitis in mice [54,55]. However, this phenotype was still
connected with the regulation of YAP by MST1/2 signal-
ling, since loss of MST1/2 resulted in a smaller pancreas
due to postnatal reactivation of YAP expression, triggering
undesired postnatal de-differentiation of pancreatic cells
[54,55]. In summary, these studies show that the MST1/2-
YAP axis of mammalian Hippo signalling is required to
maintain postnatal homeostasis in the pancreas.

In other tissues the picture is different, since MST1/2
and YAP appear to function independently of each
other. In the epidermis, YAP, but not MST1/2, play roles
in the skin (compare Tables 1 and 2). Camargo and col-
leagues initially observed that YAP1 overexpression is
sufficient to cause severe abnormalities in the skin of
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mice [64], and later reported that YAP is essential for
normal skin homeostasis by regulating the epidermal
stem cell pool, while MST1/2 are dispensable for normal
skin biology [82]. Moreover, YAP/TAZ nuclear accumu-
lation was markedly increased upon wound healing of
epidermal injury, and YAP/TAZ depletion was sufficient
to impair the rate of wound closure [72]. These observa-
tions suggested that Hippo signalling is also important
for skin wound healing, although the MST1/2-LATS1/2
axis does not seem to play a key role [82].

MST1/2 signalling further regulates normal lung func-
tionality (Table 1). Mice specifically lacking MST1/2 in the
respiratory epithelium exhibited phenotypes that are very
reminiscent of peripheral lung immaturity and respiratory
distress syndrome (RDS) which is the leading cause of
mortality in preterm babies [62]. Another study found that
microRNA miR-138 regulates MST1 expression, thereby
linking MST1 to hypoxic pulmonary vascular remodelling
in rats [63], thereby suggesting MST1 supports normal
lung development/homeostasis in rodents. Importantly,
YAP does not seem to play a major role in lung develop-
ment [62] but rather has been reported to play a signifi-
cant part in diseases affecting the eye and ovary
(Table 2). On the one hand, YAP/TAZ might be relevant
as mechanotransducers in patients suffering from glau-
coma, an eye disease that damages the optic nerve
which impairs vision and sometimes leads to blindness
[73]. On the other hand, disruption of Hippo signaling
(hyperactivation of YAP/TAZ) has been linked to in-
creased success rates in infertility treatments [74], sug-
gesting that transient overactivation of YAP/TAZ can
increase fertility.

Taken together, components of the MST1/2-SAV-MOB1-
LATS1/2-YAP/TAZ axis are required to prevent patho-
logical conditions that are not related to tumour formation
(Tables 1 and 2). In some tissues, such as skeletal muscle
or the pancreas, loss of Hippo signalling (hyperactivation
of YAP/TAZ) is detrimental to the affected tissue, while in
other organs, such as the heart or brain, inhibition of
Hippo signalling is beneficial for injury response and dis-
ease delay. Therefore, selective manipulation of the Hippo
pathway could be suitable for targeted therapy approaches
in selected patient populations.

Hippo signalling as a therapeutic target

Hippo signalling as an anti-cancer target

As already mentioned, the core components of Hippo
signalling are essentially unaffected by genetic aberrations
[3], suggesting that reactivation of the Hippo pathway in
cancer cells might restore the proper inhibition of YAP/
TAZ by Hippo signalling. This reactivation might involve
different routes [12,37,83], some of which we will sum-
marise here.
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In the context of the recently mapped Hippo PPI net-
work [40-44], the identification of cancer-enabling PPIs
as potential therapeutic targets could provide a platform
for the development of novel anti-cancer drugs. While
the development of PPI inhibitors is a challenging task, it
is still a feasible option as inhibitors of cancer-enabling
PPIs have already entered clinical trials [84]. However,
when considering Hippo signalling upstream of YAP/
TAZ, the Hippo community will first have to define
whether loss or gain of specific PPIs can act as major
drivers of cancer before PPIs upstream of YAP/TAZ can
be exploited for the development of novel therapeutics.

Currently, the only pre-clinical lead compound targeting
a cancer driving PPI in Hippo signalling comes from stud-
ies addressing the YAP/TAZ interaction with the TEAD
transcription factors. Since YAP/TAZ are the key down-
stream effectors of mammalian Hippo signalling [3,4] and
their oncogenic actions can depend on their PPI with
TEADs [82,85-90], the Pan laboratory examined the role
of the YAP-TEAD interaction in murine liver tumours
[91]. Significantly, they found that expression of dominant
negative TEAD2 prevents YAP-driven cancer [91] without
causing severe liver abnormalities [92]. More importantly,
Pan and colleagues showed that verteporfin (VP), a FDA
approved photosensitizer in the treatment of macular de-
generation, interferes with formation of the YAP/TEAD
complex, blocking YAP-driven liver overgrowth [91]. Re-
cently, a naturally occurring antagonist of YAP-TEAD
complex formation has provided a further lead for poten-
tial pharmacological intervention with YAP/TAZ activities
[93,94]. The Tondu domains of vestigial-like family
member 4 (VGLL4) interact directly with YAP, thereby
preventing YAP-TEAD interactions [93,94], and a VGLL4-
mimicking peptide disrupting YAP-TEAD interaction
suppressed tumour growth in mice [93]. Cumulatively,
these studies indicate that pharmacological intervention
with YAP/TAZ-TEAD complex formation could be a
feasible therapeutic approach with limited side effects.
Co-crystal structures of YAP-TEAD are available [12],
enabling the rationale design of small molecule inhibi-
tors and the integration of findings indicating YAP and
TAZ interact through different residues with TEAD
[95]. Given that in mouse models reduced YAP activity
negatively interferes with tumour growth [12] and that
YAP depletion reduces the metastatic potential of hu-
man breast cancer cells [86,96], the development of an
antagonist of the YAP-TEAD interaction could have sig-
nificant therapeutic potential in the treatment of YAP/
TAZ-driven cancers. Furthermore, since increased YAP/
TAZ activities can trigger epithelial-mesenchymal tran-
sition (EMT) [97-101], a YAP/TAZ antagonist might in-
fluence the cellular plasticity in carcinomas, thereby
decreasing therapeutic resistance, tumour recurrence
and metastatic progression [102,103]. However, in this
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context one should note that the anti-tumour activity of
compounds, such as VP or VGLL4 peptides, is yet to be
examined in the setting of established tumours.

Another approach for the reactivation of Hippo sig-
nalling could be by increasing the activities of MST1/2
and/or LATS1/2 kinases functioning upstream of YAP/
TAZ. Since MST1/2 and LATS1/2 kinases are regulated
by multiple PPIs, which directly or indirectly affect their
kinase activities [1,6,8,9,104], an in-depth characterisa-
tion of their main regulatory PPIs should provide valuable
information for the development of novel drugs targeting
the Hippo-YAP/TAZ pathway [83]. For example, by stimu-
lating the activating PPI between MOB1 and LATS1/2 [9],
an efficient decrease of YAP/TAZ activities might be ob-
tained. We envision that this could be achieved by either
increasing MOB1 phosphorylation by MST1/2, known to
increase LATS1/2-MOBI1 interactions [105], or by gener-
ating a MOBI1-independent active LATS variant. In this
sense, modified LATS kinases functioning independent of
MOBI1 and MST1/2 signalling maybe can be designed as
recently described for the LATS-related NDR1 kinase
[106]. Subsequently, using CRISPR-Cas9-mediated gen-
ome editing these kinase versions could be introduced
into selected cancer tissues, similar to the recently re-
ported restoration of Fah wild-type function to repair
liver disease [107]. Nevertheless, the transient treatment
with selective modulators of PPIs will most likely repre-
sent the safer option over permanent genome editing in
this LATS1/2-MOB1 setting.

Alternatively, one should consider pharmacological
inhibition of inhibitors of MST1/2 and/or LATS1/2 ki-
nases functioning upstream of YAP/TAZ. Intriguingly,
Dedhar and colleagues recently reported that integrin-
linked kinase (ILK) plays a role in suppressing the Hippo
pathway [108]. More specifically, they showed that ILK
inhibition in human tumour cells results in MST1 and
LATS1 activation with concomitant inactivation of YAP/
TAZ activities. Even more importantly, Serrano et al. pro-
vided evidence indicating that pharmacological inhibition
of ILK suppresses YAP activation and tumour growth
in an animal model [108]. Thus, ILK is an attractive
target for cancer therapy in patients with intact Hippo
signalling.

As another alternative to the reactivation of Hippo sig-
nalling approach, one could consider stimulators of YAP/
TAZ activities as drug targets. Homeodomain interacting
protein kinases (HIPKs) [109] and salt-inducible kinases
(SIKs) [110] represent possible drug targets to blunt YAP
(and possibly also TAZ) activity, as both kinases promote
YAP activity in human cells. However, the molecular
mechanism(s) of how these kinases promote YAP activity
in human cells are to be understood in detail before ra-
tional drug design approaches can be initiated. Another
alternative to restrain YAP/TAZ activities could be based
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on the recently established link between the Hippo-YAP/
TAZ pathway and G-protein coupled receptor (GPCR)
signalling [111-114]. Since many currently used thera-
peutic compounds target GPCR signalling directly or
indirectly [115,116], GPCR-Hippo signalling represents
an attractive druggable target [83]. However, the suit-
ability of GPCR agonists and antagonists for clinical
applications in YAP/TAZ-driven human cancers has
yet to be determined.

Intriguingly, YAP/TAZ regulation involves more than
the Hippo core kinases, MST1/2 and LATS1/2, which
has the potential to open novel routes for therapeutic
intervention [37]. For example, a recent report showed
that YAP/TAZ activities are controlled by the mevalonate
pathway [117], suggesting that FDA-approved cholesterol
biosynthesis inhibitors, such as Statins, have the potential
to target YAP/TAZ in malignant cancer cells. The FDA-
approved broad-acting tyrosine kinase inhibitor dasatinib
might also be used to treat B-catenin/YAP-driven colon
cancer cells [33]. Moreover, YAP expression levels affect
the response to tamoxifen in specific breast cancer sub-
types [30]. YAP depletion further sensitizes human cancer
cells to anti-cancer agents, such as cisplatin or the EGFR
tyrosine kinase inhibitor erlotinib [118], and increased
YAP/TAZ levels correlate with taxol and cisplatin resist-
ance [100,119,120]. Therefore, pharmacological inhib-
ition of YAP/TAZ might be achieved through already
available FDA-approved clinical compounds or combi-
nations therewith.

Hippo signalling as a target in non-cancer settings

While the inhibition of YAP/TAZ activities is desirable
for cancer treatments, the opposite is considered true
for heart regeneration, where YAP is needed for neonatal
heart regeneration in mice [67,79] and YAP overexpres-
sion promotes heart regeneration after myocardial injury
[67]. Therefore, pharmacologically elevated YAP activity
could accelerate tissue repair following injuries such as
myocardial infarcts [12]. Since MST1 overexpression in
the heart resulted in cardiac dysfunction [121] and overex-
pression of dominant-negative MST1 or LATS2 improved
cardiac function after injury [122,123], the elevation of
YAP activity could be achieved by transiently inhibiting
MST1/2 and/or LATS1/2 kinases through direct kinase
inhibition or by interfering with activating PPIs such as
LATS1/2-MOBL1 interactions. Taken together, MST1/2
and LATS1/2 kinases should be considered as potential
drug targets for regenerative medicine, applied transiently
in conditions such as recovery from myocardial injury.

Challenges for future therapeutic approaches

Pharmacological inhibition of MST1/2 and/or LATS1/2 is
of interest in the clinical setting of recovery from myocar-
dial injury as transient YAP activation in cardiomyocytes
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could expand the cardiomyocyte cell pool during thera-
peutic heart regeneration [12]. In this context, transiently
amplified YAP/TAZ activities might also help to mobilise
and increase stem and progenitor cell populations and
maybe even be beneficial for the re-programming of differ-
entiated human cells. However, while increased YAP/TAZ
activities are desirable for tissue regeneration, the effects
of prolonged YAP/TAZ hyperactivation should not be
underestimated. On the one hand, increased YAP activity
can result in severe abnormalities of the liver, colon, skin,
and pancreas [64,65]. On the other hand, constitutively ac-
tive YAP can result in muscle atrophy and deterioration
[69]. In general, prolonged elevation of YAP/TAZ activities
has the potential to trigger uncontrolled expansion of
stem cell pools, cellular transformation of epithelial cells,
and undesired dedifferentiation of functional units such as
muscle fibres.

Along this line, prolonged decrease of YAP/TAZ activ-
ities is most likely detrimental to normal stem cell pools
in patients. While we currently do not understand the
long term consequences of sustained YAP/TAZ inhib-
ition, the central role of YAP/TAZ in mammalian stem
cells is undeniable [31]. YAP and TAZ are critical regula-
tors of stem cell pluripotency in murine [124] and human
cells [125,126]. Thus, although YAP/TAZ depletion has
the potential to inhibit cancer stem cell expansion in a
clinical setting [97], it is very likely that YAP/TAZ inhib-
ition would also negatively affect essential stem cell pools
in non-cancerous tissues. In summary, increased YAP/
TAZ activities are associated with stem cell expansion that
is coupled with inhibition of differentiation, while reduc-
tion of YAP/TAZ activities results in the opposite effect.
Therefore, all clinical approaches aiming to manipulate
Hippo-YAP/TAZ signalling activities will have to be finely
balanced in order to effectively manage undesirable long
term side effects.

Conclusions

Members of the Hippo pathway are emerging targets
in anti-cancer treatments and regenerative medicine.
In particular, interference with YAP/TAZ-TEAD inter-
actions is of central interest in the development of novel
anti-cancer agents. In this context, already FDA-approved
drugs might serve as tool compounds to develop selective
inhibitors blocking YAP/TAZ-TEAD interactions. Further
FDA-approved agents, initially designed to target enzym-
atic activities in GPCR signalling or the mevalonate path-
way, have also the potential to interfere with YAP/TAZ
activities indirectly. Since the Hippo pathway is regulated
by many PPIs which potentially could serve as targets
for intervention, selective PPIs might also be used to de-
sign pharmacological modulators of Hippo signalling.
Therefore, the recent dissection of the Hippo pathway
protein-protein interactome could be instrumental for
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the discovery of novel therapeutic approaches to manipu-
late YAP/TAZ activities directly or indirectly. Potentially
by deciphering the key regulatory and disease-relevant
PPIs functioning upstream of YAP/TAZ, future studies
will provide novel insights into functional modules that
might be exploitable for novel therapeutic approaches to
manipulate YAP/TAZ activities.

Based on the organ and cell-type specific benefits or
detrimental consequences of diminished Hippo signal-
ling (Tables 1 and 2), tissue specific and whole organism
side effects always need to be considered in any upcom-
ing clinical application. For example, transient inhibition
of MST1 kinase activity is desirable when recovering
from myocardial injury, while prolonged MST1 deficiency
is detrimental to the human immune system. In general,
any manipulation of the Hippo-YAP-TAZ pathway will
have to be addressed very cautiously to ensure that the
stem cell and progenitor pools in vital organs and tissues
of patients are not significantly altered upon drug treat-
ment. Nevertheless, considering the very promising pro-
gress in our understanding of Hippo signalling with
respect to many human-associated diseases, such as
cancer, hearts defects, brain-related pathologies, and
immune deficiencies, we are confident that intensive re-
search efforts over the coming years will reveal the full
potential of manipulations of the Hippo pathway in the
prevention and treatment of a broad range of human
diseases.
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