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Background: FKBP51 (FKBP5 Official Symbol) is a large molecular weight component of the family of FK506
binding proteins (FKBP). In recent years, research studies from our laboratory highlighted functions for FKBP51 in
the control of apoptosis and melanoma progression. FKBP51 expression correlated with the invasiveness and
aggressiveness of melanoma. Since a role for TGF-3 in the enhanced tumorigenic potential of melanoma cells is
widely described, we hypothesized a cooperative effect between FKBP51 and TGF- in melanoma progression.

Methods: SAN and A375 melanoma cell lines were utilized for this study. Balb/c IL2y NOD SCID served to assess
the ability to colonize organs and metastasize of different cell lines, which was evaluated by in vivo imaging.
Realtime PCR and western blot served for measurement of mRNA and protein expression, respectively.

Results: By comparing the metastatic potential of two melanoma cell lines, namely A375 and SAN, we confirmed
that an increased capability to colonize murine organs was associated with increased levels of FKBP51. A375
melanoma cell line expressed FKBP51 mRNA levels 30-fold higher in comparison to the SAN mRNA level and
appeared more aggressive than SAN melanoma cell line in an experimental metastasis model. In addition, A375
expressed, more abundantly than SAN, the TGF-3 and the pro angiogenic TGF-3 receptor type Il (TRRIII) factors.
FKBP51 silencing produced a reduction of TGF-3 and TRRIIl gene expression in A375 cell line, in accordance with
previous studies. We found that the inducing effect of TGF- on Sparc and Vimentin expression was impaired in
condition of FKBP51 depletion, suggesting that FKBP51 is an important cofactor in the TGF- signal. Such a
hypothesis was supported by co immunoprecipitation assays, showing that FKBP51 interacted with either Smad2,3
and p300. In normal melanocytes, FKBP51 potentiated the effect of TGF-f on N-cadherin expression and conferred
a mesenchymal-like morphology to such round-shaped cells.

Conclusions: Overall, our findings show that FKBP51 enhances some pro oncogenic functions of TGF-B3, suggesting
that FKBP51-overexpression may help melanoma to take advantage of the tumor promoting activities of the cytokine.

Background

FK506 binding protein 51 (FKBP51) [1] is an immu-
nophilin physiologically expressed in lymphocytes and
several other tissues [2]. FKBP51 structure includes
C-terminal TPR domains, responsible for protein protein
interactions with heat shock proteins HSP90 and HSP70,
and N-terminal domains with peptidyl-prolyl isomerase
activity [1]. Due to its multifunctional domains, FKBP51
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regulates several biological processes in the cell, through
protein-protein interaction [1]. Very recently, we found
an aberrant expression of this protein in melanoma
[3,/4]. We demonstrated that FKBP51 promotes acti-
vation of epithelial-to-mesenchymal transition (EMT)
genes and improves melanoma cell migration and in-
vasion [4]. Consistent with this finding, FKBP51-
targeting prevented melanoma colonization of liver and
lungs in a mouse model of experimental metastasis [4].
The pleiotropic cytokine TGF-p plays a relevant role in
EMT [5]. Notably, TGF-$ acts as an early tumor sup-
pressor, but functions later as a tumour promoter and a
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pro-metastatic agent [6]. In normal melanocytes, TGF-f3
acts as a potent inhibitor of proliferation and differen-
tiation [7,8]; in advanced melanoma, TGF-p favors cell
proliferation and dissemination, peri-tumoral angio-
genesis, EMT and tumor escape from immune surveil-
lance [9-11]. The mechanism underlying evasion from a
cytostatic response to TGF-f in tumor cells remains
somewhat elusive. Our previous results showed that
FKBP51 positively regulates the expression of TGF-f, in
melanoma [4]. We hypothesized a role for FKBP51 in
potentiating the tumour promoting activities of TGE-f,
in melanoma.

Methods

Cell culture and transfection and reagents

The melanoma cell lines SAN and A375 were cultured as
described [3]. For siRNA transfection, 24 hours before
transfection, cells were seeded into six-well plates at
a concentration of 2x10° cells/ml to obtain 30-60% con-
fluence at the time of transfection. Then, cells were trans-
fected with specific short-interfering oligoribonucleotide
(siRNA) or with a non silencing oligoribonucleotide (NS
RNA) as control, at a final concentration of 50 nM using
Metafectene according to the manufacturers’ recommen-
dations. NS RNA (AllStars neg control siRNA) and siRNA
for FKBP51 (5'-ACCUAAUGCUGAGCUUAUA-3) were
purchased from Qiagen (Germantown, Philadelphia, USA).
ShRNA transfection was performed using the Expression
ArrestTM shRNA system (Open Biosystem, AL, USA).
Expression ArrestTM shRNAs are cloned into the incom-
petent replication pSHAG-MAGIC2 (pSM2) retroviral
vector. This vector has a Murine Stem Cell Virus (MSCV)
backbone combined with packaging extract for mamma-
lian cell infection, a PGK- Puro selection for transfection
stability in mammalian cells and a chloramphenicol/kana-
mycin bacterial selection marker. The stable transfectants
were obtained after a 1 month selection of positive clones.
The selection was performed by adding puromycin (Sigma
Aldrich, Saint Louis, Missouri, USA) to cell culture
medium every 48 hours. For a first stronger selection
puromycin was used at a dose of 800 ng/ml; after a week
it was used a dose of 200 ng/ml to complete and maintain
the selection. To create FKBP51 over expressing SAN
melanoma cells, a p3XFLAG-CMV™-14 expression vector
(Sigma Aldrich, S. Louis, Missouri, USA) carrying the
FKBP51 gene was transfected using Metafectene (Biontex,
Munich, Germany), according to manufacturer’s recom-
mendations. A void p3xFlag-CMV vector was also trans-
fected to generate control cells. To generate stable
populations, cells were selected using 500 ug/ml G418
(GIBCO, Invitrogen, Carlsbad, CA) at 24 h post-trans-
fection and grown until colony formation. TGF-$ (Sigma
Aldrich) was used at the dose of 10 ng/ml.
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Animal studies

After the approval of the local institutional animal
research committee, animal studies were performed fol-
lowing detailed internal regulations devised according to
the U.S. Public Health Service Policy on Humane Care
and Use of Laboratory Animals, available from the Office
of Laboratory Animal Welfare, National Institutes of
Health, Department of Health and Human Services, RKLI,
Suite 360, MSC 7982, 6705 Rockledge Drive, Bethesda,
MD 20892-7982 and the United Kingdom Coordinating
Committee on Cancer Prevention Research's Guidelines
for the Welfare of Animals in Experimental Neoplasia
(published online 25 May 2010). Melanoma cells (1.5x10°
SAN or A375 in 100 ul PBS) were injected systemically
into the lateral tail vein of 4- to 6-week-old Balb/c
[L2y NOD SCID (null) mice (Charles River Laboratory,
Wilmington, MA). After 3 weeks, imaging was performed
using a dedicated animal PET/CT scanner (eXplore Vista,
GE Healthcare). A dose of 8.3 mCi/kg (307.1 MBq/kg)
of "8JF-FDG was administrated in a bolus in a total vo-
lume of 100 pl. Animals were maintained at a temperature
of 23°C during the biodistribution of "®F-FDG. After 45
minutes, mice were anesthetized with ketamine 50 mg/kg
and xylazine 40 mg/kg and symmetrically positioned on a
warm bed with micropore tape. Then, a 20-min static
PET (two bed position with a 4.8-cm axial field-of-view;
energy window 250-700 keV) scan was performed.
PET images were processed using a 2D-OSEM iterative al-
gorithm (voxel size of 0.3875 x 0.3875 x 0.7750 mm®)
including random scatter correction, dead time, decay,
and attenuation correction using CT data (eXplore Vista
Software).

Western blot and immunoprecipitation

Whole cell lysates were homogenized in modified RIPA
[12] buffer as described and assayed in Western blot as
described [3]. Primary antibodies against FKBP51 (F-13;
goat polyclonal; Santa Cruz Biotechnology, CA, USA);
Smad 2/3 (H465, rabbit polyclonal; Santa Cruz Biotech-
nology); SPARC (H-90, rabbit polyclonal; Santa Cruz
Biotechnology); N-Cadherin (5D5, mouse monoclonal;
Abcam, Cambridge, UK); G3PDH (D16H11, rabbit mono-
clonal; Cell Signaling, Danvers, USA); were used diluted.
1:500. For immunoprecipitation (IP), 500 ug of total lysate
was precleared for 1 hour. Three pg anti-KAT3B/p300
(Novus Biologicals, Littleton, CO, USA) or anti-FKBP51
(H100, rabbit polyclonal, Santa Cruz Biotechnology), was
added to total lysate, kept in rotation, at 4°C over night.
After, 25 uL protein A Agarose (Santa Cruz Biotech-
nology) was added to the mixture and precipitation took
place for 4 h, with rotation at 4°C. Samples were then
washed in RIPA and separated by 10% SDS-PAGE. Anti-
KAT3B/p300 (Novus Biologicals), anti-FKBP51 (mouse
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polyclonal; Abnova, Taipei, Taiwan) were used for detec-
tion of pulled down proteins.

Real-time PCR

Total RNA was isolated from cells using Trizol (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s
instructions. One microgram of each RNA was used for
c¢DNA synthesis with Moloney Murine Leukemia Virus
Reverse Transcriptase (M-MLV RT, Invitrogen, Carlsbad,
CA, USA). Gene expression was quantified by Real-time
PCR using iQ"SYBR’Green Supermix (Biorad, CA, USA)
and specific Real-time validated QuantiTect primers for
FKBP51 (QT00056714: NM_001145775 800 e 900 bp;
NM_001145776 650 and 750 bp; NM_001145777 650 and
750 bp; NM_004117 600 and 700 bp); TGE-B (QT00
000728: NM_000660 1200 and 1300 bp), TPRII (QTO
0013335: NM_000118 600 and 750 bp; NM_001114753
600 and 750 bp), N-cadherin (QT00063196: NM_001792
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Figure 1 High FKBP51 expression is accompanied by increased
metastatic potential. A, Real-time PCR measurement of FKBP51,
TBRINl, and TGF-3 mRNAs in A375 melanoma cells, which were silenced
(FKBP51 siRNA) or not (NS RNA) for FKBP51. The relative change of
expression in A375 samples was estimated relative to SAN samples
(expression = 1). Reduced mRNA levels in FKBP51-silenced A375
confirmed that the immunophilin regulated the expression of T@RIII,
and TGF-B in melanoma. B, FDG PET coronal views of mouse models
of melanoma metastasis, 21 days after iv injection of two different cell
lines: A375 (left) and SAN (right). FDG PET imaging show a diffuse and
more prominent FDG uptake (mostly at lung and liver level, yellow
squares) in the left mouse, suggesting that A375 have enhanced
tumorigenic potential compared with SAN.
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2800 and 2900 bp) (Qiagen, Germantown, Philadelphia,
USA), cyclin B (QT00006615: NM_031966 1250 and 1350
bp), vimentin (QT00095795: NM_003380 900 e 1000 bp),
slug (QT00044128: NM_003068200 e 350 bp). Relative
quantitation of the transcript was performed using co-
amplified ribosomal 18S as an internal control for nor-
malization. Ribosomal 18S primers Fw 5'-CGATGCGG
CGGCGTTATTC-3" and 18S Rev 5'-TCTGTCAATCCT
GTCCGTGTCC-3".

Flow cytometry

Vimentin expression was measured in flow cytometry.
Briefly, after centrifugation for 5 min at 400x g, 1x10°
cells were fixed with 2% paraformaldehyde in Tris Buff-
ered Saline solution (TBS) for 20 min and permeabilized
with 0.1%TRITON-X-100 and 0.1% Sodium Citrate in
TBS for 3 min in ice. Cells were, then, incubated with
the mouse monoclonal antibody anti-Vimentin, IgG1
clone-V9; 1:100 (Novocastra™, Milan, Italy) or a control
IgG, for 30 min at 4°C. After incubation, cells were
washed and stained with a secondary FITC-conjugated
anti-mouse antibody and analyzed in flow cytometry.

Primary melanocyte cultures

Human melanocytes were isolated from an acquired mela-
nocytic naevus, surgically excised, which was obtained
after informed consent of the subject, and grown in
Melanocyte Medium BulletKitTM - 500 ml CloneticsTM
MGMTM-4 BulletKitTM (CC-3249) containing the fol-
lowing growth supplements: CaCl2, 1.0 ml; BPE, 2.0 ml;
rhFGF-B, 1.0 ml; rh-Insulin, 1.0 ml; Hydrocortisone,
0.5 ml; PMA, 0.5 ml; GA-1000, 0.5 ml; FBS, 2.5 ml (Gibco,
Grand Islands, NY, USA). Briefly, the naevus was placed
in sterile phosphate buffered saline (PBS) solution. Sub-
cutaneous fat and deep dermis were excised from the
sample, and the remaining tissue was cut into smaller
pieces, followed by trypsinization (0.25% trypsin, Gibco) at
37°C for 30 min. Trypsin activity was neutralized with
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Figure 2 FKBP51 interacts with the general transcriptional
co-activator p300 and the TGF-f transcription factor Smad2/3.
Left; FKBP51 co immunoprecipitates with p300. Right; p300 co
immunoprecipitates with FKBP51. Total cell lysates were prepared by
SAN melanoma cells transfected with FKBP51/Flag. Cell lysates were
immunoprecipitated with anti-Kat3B/p300 (IP p300) or anti-Flag

(IP FKBP5T1). Immunoprecipitated and total lysates were then subjected
to Western blot with anti-FKBP51, anti-p300 or anti-Smad 2/3. Smad
2/3 co immunoprecipitate with either p300 (left) and FKBP51 (right).




Romano et al. Clinical and Translational Medicine 2014, 3:1
http://www.clintransmed.com/content/3/1/1

FBS. Each piece was placed under a sterile glass in order
to press the tissue and favor cells leaking. Cells isolated
from melanocytic naevus started to growth out of the tis-
sue pieces after a couple of weeks. Thenafter, tissues were
eliminated and contaminating fibroblasts were selectively
killed by treating the cultures with 100 pg/ml G418 for
3—4 days. Melanocytes were subsequently isolated from
keratinocytes by gentle trypsinization and passed at a
ratio of 1:3 once every 7—14 days. After 1 month, mela-
nocytes were transfected with a p3XFLAG-CMV™-14
expression vector (Sigma Aldrich, S. Louis, Missouri,
USA) carrying the FKBP51 gene, or a void vector
as control, Metafectene (Biontex, Munich, Germany).
After a 3day culture, 25 ng/ml TGE-f for further 3 days;
then a picture from different melanocyte cultures was
captured and cells were harvested and processed for
Real time-PCR assay.

Results and discussion

The enhanced tumorigenic potential of melanoma cells is
accompanied by increased levels of FKBP51 and TGF-8
We have previously shown that SAN melanoma cells
injected into the tail vein of immunosuppressed mouse
produced significant liver and lung colonization within 4
weeks, and such invasive potential was strictly dependent
on the expression of FKBP51 [4]. In the present study, we
compared the expression of FKBP51 in two different
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melanoma cell lines, namely A375 and SAN, and the cap-
ability of these cell lines to form in vivo metastasis. A375
melanoma cell line expressed FKBP51 mRNA levels
30-fold higher in comparison with the SAN cell line
(Figure 1A). In addition, A375 expressed, more abundantly
than SAN, the TGF-p and the pro angiogenic TGF-p re-
ceptor type III (TPRII) factors [4]. FKBP51 silencing pro-
duced a reduction of TGF-p and TPRIII gene expression
in A375 cell line (Figure 1A), which is in accordance with
the upregulation of these genes by FKBP51 [4]. Injection
of SAN and A375 cells into the tail vein of immuno-
suppressed mice showed an increased capability of A375
to colonize murine organs, in comparison with SAN. In
fact, FDG PET imaging performed after 21 days after iv,
showed a diffuse and more prominent FDG uptake, mostly
at lung and liver level (yellow squares) in mouse injected
with A375 (Figure 1B). These results confirm previous
findings of an association of the aggressive behaviour and
high FKBP51 [4] and TGF-f [7] levels, in melanoma.

FKBP51 positively regulates the TGF-B signal in

melanoma

The induction of components and receptors of the TGF-3
family, can occur through the action of TGF-p factors
themselves [13]; we hypothesized a positive regulation of
the TGF-B signal by FKBP51. Consistent with this
hypothesis, type I TGF-f receptor (TPRI), a direct
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Figure 3 FKBP51 enhances expression of pro oncogenic factors in SAN melanoma cells stimulated with TGF-B. A, upper Western blot
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assay of Sparc levels in cell lysates obtained from the melanoma cell line SAN transfected with a specific FKBP51 shRNA (SH-FKBP51), or a non-silencing
(SH-NS) shRNA as control, in the absence or the presence of 10 ng/ml TGF-B. After a 18 h culture, cell was harvested for lysates preparation. A, lower
Flow cytometric histograms of Vimentin expression in SH-FKBP51 or SH-NS, in the absence or the presence of 10 ng/ml TGF-B. Cell was harvested after
a 18 h culture. Vimentin was measured by indirect immunofluorescence, in fixed and permeabilized cells. B Effect of FKBP51 siRNA on VIM and SLUG
expression levels. Normalized expression rates (means. d.) of VIM (upper), SLUG (intermediate) and FKBP51 (lower) mRNA levels. NS RNA-treated sample
expression=1 (N=2). Melanoma cell line SAN was transfected with a specific FKBP51 siRNA, or a non-silencing (NS) RNA as control. After 24 h from
transfection 10 ng/ml TGF-B was added to the cultures. Cell was harvested after further 18 h and total RNA was extracted.
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transcriptional target of TGF-, [13]- was found increased  assays to investigate whether Smad 2/3 participated to
as a consequence of FKBP51-overexpression (Additional the FKBP51/p300 complex. As shown in Figure 2, we
file 1: Figure S1). As known, TBRI, or activin receptor-like ~ confirmed that FKBP51 co immunoprecipitated with
kinase, phosphorylates, hence activates, the transcriptional ~ p300, and, conversely, p300 co immunoprecipitated
factors Smad2 and Smad3 enabling them to translocate = with FKBP51, in line with previous study [4], and pro-
into the nucleus [14]. The cellular context is central in de-  vided evidence that this interaction involved also Smad
termining which genes will respond to an activated Smad  2/3 that co immunoprecipitated with either p300 and
complex as it arrives in the nucleus [14]. Several proteins FKBP51 (Figure 2).

are described that facilitate Smad ability to recruit coacti- To address whether FKBP51 may promote a pro-
vators [14]. We have previously shown that FKBP51 inter-  oncogenic signal, we, evaluated the TGF-B-induced expres-
acts with p300 [4], one of the major coactivators of Smad  sion of two typical markers of melanoma aggressiveness,
2,3 [15]. To address whether FKBP51 can modulate the under TGF-B-transcriptional control, namely Sparc [16],
TGEF-p signal, we, performed co immunoprecipitation and Vimentin [17], in melanoma cells stably silenced
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Figure 4 FKBP51 enhances expression of pro oncogenic factors in A375 melanoma cells stimulated with TGF-f. A Normalized expression
rates (mean#s. d.) of SLUG (upper), and FKBP51 (lower) mRNA levels. SH-NS sample expression=1 (N=2). RNA was extracted from the melanoma
cell line A375 stably transfected with a specific FKBP51 shRNA (SH-FKBP51), or a non-silencing (SH-NS) shRNA as control, in the absence or the
presence of 10 ng/ml TGF-B. After a 18 h culture, cell was harvested. B Western blot assay of vimentin expression in whole cell lysates prepared
from SH-NS and SH-FKBP51 cells cultured in the absence or the presence of 10 ng/ml TGF- for 18 h. TGF-B stimulated an increase in vimentin
level in SH-NS but not SH-FKBP51 cells. Reduced basal levels of vimentin were observed in SH-FKBP51 cells.
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for FKBP51 with short hairpin RNA (SH-FKBP51) or
transfected with a non silencing short hairpin as control
(SH-NS). As known, Sparc is the secreted protein acidic
and rich in cysteine, that is regulated in tissues undergoing
remodeling, during normal development, tissue repair,
and in cancer [18]. Increased expression of Sparc is asso-
ciated with aggressive tumor phenotype in melanomas
and gliomas [19]. Vimentin is a major constituent of the
intermediate filament family of proteins, is ubiquitously
expressed in normal mesenchymal cells. Vimentin's over-
expression in cancer correlates well with accelerated
tumor growth, invasion, and poor prognosis [20]. Levels
of Sparc and Vimentin were measured in western blot
(Figure 3A, upper) and flow cytometry (Figure 3A, lower),
respectively. Such levels appeared higher in control cells,
compared to FKBP51 knocked down cells. Our data
showed TGEF-p increased expression of Sparc and Vimentin
in SH-NS cells, but not SH-FKBP51 cells. These results
suggest a role for FKBP51 in promoting some pro-onco-
genic activity of TGF-P. Expression and activation of the
EMT regulatory factor SLUG is driven by SPARC [21]. We
used SAN melanoma cells that were in transient trans-
fected with FKBP51 siRNA or a non silencing (NS) RNA
as control, and measured by QPCR levels of SLUG and
VIM mRNA, in the absence or the presence of TGF-f. A
representative result of two independent experiments is
shown in Figure 3B. Reduced levels of SLUG and VIM
were measured in FKBP51-downmodulated melanoma,
either in the absence and the presence of TGE- f3, in com-
parison with levels measured in non silenced cells. Similar
results have been obtained with A375 melanoma cell line
(Figure 4). Figure 5 represents schematically the proposed

Page 6 of 8

mechanism for FKBP51 regulation of the TGE-p signaling.
FKBP51 can guide the choice of Smad cofactor on p300
(Figure 5, left). In melanoma, the increased expression of
FKBP51 creates a positive feed-back of the TGF-f signal
which in turn promotes tumoral progression (Figure 5,
right).

FKBP51 upregulates EMT features in TGF-B-cultured nor-
mal skin melanocytes

We then used primary melanocytes isolated from epider-
mis that express no or low levels of FKBP51 [3], to investi-
gate the effect of exogenous FKBP51 on TGF- response.
Melanocytes were transfected with FKBP51 and, after
3 days, TGF-B was added to the cultures. After further
3 days, cell was harvested, and RNA was extracted.
Figure 5A shows that melanocytes transfected with
FKBP51 plasmid contained FKBP51 transcript level in-
creased by more than 3-fold, in comparison with mela-
nocytes transfected with empty vector. TGF-f produced a
7-fold decrease of cyclin-B expression, in accordance with
the notion that this cytokine exerts anti-proliferative effect
on normal melanocytes [7]. In FKBP51 overexpressing
melanocytes, cyclin B remained suppressed in the pre-
sence of the cytokine, although to a lesser extent, in com-
parison with EV-melanocytes. Differently, TGF-f induced
a 2-fold increase of N cadherin levels in melanocytes
transfected with the empty vector, and an 8-fold increase
in condition of FKBP51 overexpression. Morphological
examination of melanocyte cultures in phase contrast
microscopy showed rounded/polygonal melanocytes
(Figure 6, upper) in unstimulated cultures. In TGF-f
cultures, melanocytes transfected with empty vector

Smad-interaction with cofactors

Figure 5 Mechanism proposed for FKBP51 enhancement of TGF-f3 pro-oncogenic signal. Left, FKBP51 facilitates Smad recruitment to
coactivators. Right, FKBP51 takes part to the transcriptional complex formed by P300 and Smad 2,3 Increase in FKBP51, as it occurs in melanoma,
generates an auto regulatory loop of TGF-B signaling, which in turn promotes tumour progression.
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Figure 6 FKBP51 modulates the TGF-B signal in normal melanocytes. A, left Real-time PCR measurement of FKBP51, mRNAs in melanocytes,
which were transfected with FKBP51 plasmid or the empty vector (EV) as control. The enhancement of FKBP51 transcript validated the efficacy of
transfection. A, right Real-time PCR measurement of Cyclin B and CDH2 mRNAs in melanocytes, FKBP51- or EV-transfected, cultured in the absence or
the presence of 10 ng/ml TGF-B for 3 days. The relative change of expression in different samples was estimated relative to EV sample (expression = 1).
B, Phase contrast microscopy of melanocytes FKBP51- or EV-transfected, cultured in the absence or the presence of 10 ng/ml TGF-3 for 3 days. Upper;
EV- or FKBP51-melanocytes presented rounded/polygonal morphology. Lower left; EV- melanocytes cultured with TGF- presented slender spindle
shape with multiple dendritic extensions. Lower right; FKBP51-melanocytes cultured with TGF-3 displayed elongated shape and bipolar
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presented slender spindle shape with multiple dendritic
extensions (Figure 6, lower left). FKBP51-transfected
melanocytes displayed elongated shape and bipolar
spindle, i.e. mesenchymal morphology, which is in line
with increased N cadherin levels (Figure 6, lower right).
These results suggested that FKBP51, in TGEF-B-
stimulated normal melanocytes can promote some
EMT traits, that are related to a de differentiation
process [7]. Such a mechanism may assume a pathogen-
etic significance during melanocyte transformation.

Conclusions

In melanoma, several models of resistance to TGEF-f
growth suppressor signals have been suggested, also in
view of the dysregulation of fundamental cellular effec-
tors and signaling pathways [9,22]. We propose FKBP51

may represent an element, within melanoma cell con-
text, that allows the tumour to take advantage of
tumour-promoting activities of the TGF-B. Our findings
suggested that FKBP51 increases melanoma sensitivity to
TGE-B, and, particularly, the tumour promoting activities
of the cytokine, possibly mediated by a mechanism involv-
ing recruitment of Smad to p300 coactivator. The differ-
ential expression of FKBP51 in normal melanocytes, in
which the immunophilin is hardly detectable [3], and mel-
anoma, in which the protein is overexpressed, might in
part account for differential functions exerted by TGF-
in normal and malignant melanocytes. In addition, the
concept that FKBP51 expression increases with melanoma
progression, is also in accordance with the notion that
TGE-p acts as an early tumor suppressor and late tumour
promoter [5,6,14].
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Additional file

Additional file 1: Figure S1. Increased TPRI expression in FKBP51
overexpressing melanoma. Left, normalized expression of TRRI and FKBP51
mMRNA in WT, EV-, or FKBP51-stably transfected SAN melanoma cells. WT
sample expression=1. (N=3). Right, normalized expression of TRRI and
FKBP51 mRNA in SAN melanoma cells transfected with FKBP51 siRNA or
a non silencing RNA as control. NS sample expression=1. (N=3).

Abbreviations

FKBP51: FK506 binding protein 51; TGF-(3: Transforming growth factor-@3;
TRRIIl: TGF- receptor type Ill; TRRI: TGF- receptor type I; EMT: Epithelial to
mesenchymal transition; siRNA: Short-interfering RNA; NS RNA: Non silencing
RNA; SHRNA: Short-hairpin RNA.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SR.and MFR. planned the project. SR, AD, P.D, RB, and IS. carried out
experimental work. AG. and AB. performed animal studies and imaging. S.S.
and M.M. provided clinical information, human tissues and microscopy
studies, M.F.R. wrote the paper. All authors discussed the results and
commented on the manuscript. All authors read and approve the final
manuscript.

Acknowledgements
Work was supported by ltalian Association for Cancer Research (AIRC, project
10452), and the Cardiovascular Service SRL.

Author details

'Department of Molecular Medicine and Medical Biotechnologies, Federico Il
University, via Pansini, Naples 5. 80131, Italy. *Department of Advanced
Biomedical Sciences, Federico Il University, Naples, Italy. *CEINGE
Biotecnologie Avanzate, Naples, Italy. 4D(—:*partmerwt of Clinical Medicine and
Surgery, Dermatology Section, University Federico Il of Naples, Naples, Italy.
°Department of Medical and Translational Sciences, Pediatrics Section,
University Federico Il of Naples, Naples, Italy.

Received: 4 November 2013 Accepted: 26 December 2013
Published: 27 January 2014

References

1. Romano S, Sorrentino A, Di Pace AL, Nappo G, Mercogliano C, Romano MF:
The emerging role of large immunophilin FK506 binding protein 51 in
cancer. Curr Med Chem 2011, 18:5424-5429.

2. Baughman G, Wiederrecht GJ, Chang F, Martin MM, Bourgeois S: Tissue
distribution and abundance of human FKBP51, an FK506-binding protein
that can mediate calcineurin inhibition. Biochem Biophys Res Commun
1997, 232:437-443.

3. Romano S, D'Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni R,
Eskelinen EL, Mascolo M, Cali G, Arra C, Romano MF: Role of FK506-binding
protein 51 in the control of apoptosis of irradiated melanoma cells.

Cell Death Differ 2010, 17:145-157.

4. Romano S, Staibano S, Greco A, Brunetti A, Nappo G, llardi G, Martinelli R,
Sorrentino A, Di Pace A, Mascolo M, Bisogni R, Scalvenzi M, Alfano B,
Romano MF: FK506 binding protein 51 positively regulates melanoma
stemness and metastatic potential. Cell Death Dis 2013, 4:578.

5. Romano MF: Targeting TGFbeta-mediated processes in cancer. Curr Opin
Drug Discov Devel 2009, 12:253-263.

6.  Bierie B, Moses HL: Tumour microenvironment: TGF3: The molecular
Jekyll and Hyde of cancer. Nat Rev Cancer 2006, 6:506-520.

7. Rodeck U, Bossler A, Graeven U, Fox FE, Nowell PC, Knabbe C, Kari C:
Transforming growth factor beta production and responsiveness in
normal human melanocytes and melanoma cells. Cancer Res 1994,
54:575-581.

8. Yang G, Li Y, Nishimura EK, Xin H, Zhou A, Guo Y, Dong L, Denning MF,
Nickoloff BJ, Cui R: Inhibition of PAX3 by TGF-beta modulates melanocyte
viability. Mol Cell 2008, 32:554-563.

22.

Page 8 of 8

Lasfar A, Cohen-Solal KA: Resistance to transforming growth factor -mediated
tumor suppression in melanoma: are multiple mechanisms in place?
Carcinogenesis 2010, 31:1710-1717.

Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE:
Elevated plasma levels of transforming growth factor (TGF)-beta1 and
TGF-beta2 in patients with disseminated malignant melanoma.

Br J Cancer 1998, 77:1492-1494.

Reed JA, McNutt NS, Prieto VG, Albino AP: Expression of transforming
growth factor-beta 2 in malignant melanoma correlates with the depth
of tumor invasion. Implications for tumor progression. Am J Pathol 1994,
145:97-104.

Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A,
Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G,
Quinto I: Human immunodeficiency virus-1 Tat activates NF-kB via
physical interaction with IkB-a and p65. Nucleic Acids Res 2012,
40:3548-3562.

Miyazono K: Positive and negative regulation of TGF-f signaling. J Cell Sci
2000, 113:1101-1109.

Massagué J: How cells read TGF signals. Nat Rev Mol Cell Biol 2000,
1:169-178.

Pouponnot C, Jayaraman L, Massagué J: Physical and functional
interaction of SMADs and p300/CBP. J Biol Chem 1998, 273:22865-22868.
Shibata S, Ishiyama J: Secreted protein acidic and rich in cysteine (SPARC)
is upregulated by transforming growth factor (TGF)-B and is required for
TGF-B-induced hydrogen peroxide production in fibroblasts. Fibrogenesis
Tissue Repair 2013, 6:6.

Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E,
Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL: Blockade of
TGF-beta inhibits mammary tumor cell viability, migration, and metastases.
J Clin Invest 2002, 109:1551-1559.

Chiodoni C, Colombo M, Sangaletti S: Matricellular proteins: from
homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis
2010, 29:295-307.

Robert G, Gaggioli C, Bailet O, Chavey C, Abbe P, Aberdam E, Sabatié E,
Cano A, Garcia De Herreros A, Ballotti R, Tartare Deckert S: SPARC represses
E-cadherin and induces mesenchymal transition during melanoma
development. Cancer Res 2006, 66:7516-7523.

Satelli A, Li S: Vimentin in cancer and its potential as a molecular target
for cancer therapy. Cell Mol Life Sci 2011, 68:3033-3046.

Fenouille N, Tichet M, Dufies M, Pottier A, Mogha A, Soo JK, Rocchi S,
Mallavialle A, Galibert MD, Khammari A, Lacour JP, Ballotti R, Deckert M,
Tartare-Deckert S: The epithelial-mesenchymal transition (EMT) regulatory
factor SLUG (SNAI2) is a downstream target of SPARC and AKT in
promoting melanoma cell invasion. PLoS One 2012, 7(7)40378.

Javelaud D, Alexaki VI, Mauviel A: Transforming growth factor-beta in
cutaneous melanoma. Pigment Cell Melanoma Res 2008, 21:123-132.

doi:10.1186/2001-1326-3-1

Cite this article as: Romano et al: FKBP51 increases the tumour-
promoter potential of TGF-beta. Clinical and Translational Medicine
2014 3:1.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.biomedcentral.com/content/supplementary/2001-1326-3-1-S1.pptx

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cell culture and transfection and reagents
	Animal studies
	Western blot and immunoprecipitation
	Real-time PCR
	Flow cytometry
	Primary melanocyte cultures

	Results and discussion
	The enhanced tumorigenic potential of melanoma cells is accompanied by increased levels of FKBP51 and TGF-β
	FKBP51 positively regulates the TGF-β signal in melanoma
	FKBP51 upregulates EMT features in TGF-β-cultured normal skin melanocytes

	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

