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ETS‑targeted therapy: can it substitute 
for MEK inhibitors?
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Abstract 

Background:  The RAS/MAPK pathway has been intensively studied in cancer. Constitutive activation of ERK1 and 
ERK2 is frequently found in cancer cells from a variety of tissues. In clinical practice and clinical trials, small molecules 
targeting receptor tyrosine kinases or components in the MAPK cascade are used for treatment. MEK1 and MEK2 
are ideal targets because these enzymes are physiologically important and have narrow substrate specificities and 
distinctive structural characteristics. Despite success in pre-clinical testing, only two MEK inhibitors, trametinib and 
cobimetinib, have been approved, both for treatment of BRAF-mutant melanoma. Surprisingly, the efficacy of MEK 
inhibitors in other tumors has been disappointing. These facts suggest the need for a different approach. We here 
consider transcription factor ETS1 and ETS2 as alternate therapeutic targets because they are major MAPK down-
stream effectors.

Main text:  The lack of clinical efficacy of MEK inhibitors is attributed mostly to a subsequent loss of negative feed-
back regulation in the MAPK pathway. To overcome this obstacle, second-generation MEK inhibitors, so-called 
“feedback busters,” have been developed. However, their efficacy is still unsatisfactory in the majority of cancers. 
To substitute ETS-targeted therapy, therapeutic strategies to modulate the transcription factor in cancer must be 
considered. Chemical targeting of ETS1 for proteolysis is a promising strategy; Src and USP9X inhibitors might achieve 
this by accelerating ETS1 protein turnover. Targeting the ETS1 interface might have great therapeutic value because 
ETS1 dimerizes itself or with other transcription factors to regulate target genes. In addition, transcriptional cofactors, 
including CBP/p300 and BRD4, represent intriguing targets for both ETS1 and ETS2.

Conclusions:  ETS-targeted therapy appears to be promising. However, it may have a potential problem. It might 
inhibit autoregulatory negative feedback loops in the MAPK pathway, with consequent resistance to cell death by 
ERK1 and ERK2 activation. Further research is warranted to explore clinically applicable ways to inhibit ETS1 and ETS2.
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Transcriptional co-activators, CBP/p300, BRD4
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Introduction
Mitogen-activated protein kinases (MAPKs) are serine 
(Ser) or threonine (Thr) protein kinases that respond to 
stimulation from extracellular growth factors through 
specific cell surface receptors [1–4]. They are a part of 
major signaling cascades. Among MAPKs, extracellu-
lar signal-regulated kinases 1 and 2 (ERK1 and ERK2) 

have been most characterized (Fig.  1). Activated recep-
tor tyrosine kinases (RTKs) recruit adaptor proteins and 
guanine nucleotide exchange factors (GEFs: SOS1 and 
SOS2) to trigger RAS (HRAS, KRAS, or NRAS), which 
drives the formation of high-activity homo- or heterodi-
mers of RAF (also known as MAPKKK: ARAF, BRAF, 
or CRAF), causing phosphorylation and activation of 
MEK1 and MEK2 (MAPKK) with consequent ERK1 
and ERK2 (classical MAPK) stimulation. Numerous 
proteins are identified as their substrates, among which 
transcription factors ETS1, ETS2, and AP-1 are particu-
larly important [1, 4]. They regulate expression of matrix 
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metalloproteases, BCL-2 family members, and D-type 
cyclins to mediate cellular invasion and migration, cell 
survival and anti-apoptosis, and entry into the S phase 
from the G1 phase in the cell cycle [5–12].

The RAS/MAPK pathway has been intensively stud-
ied [1–4], with constitutive activation of ERK1 and ERK2 
found frequently in human cancer cells from a variety of 
tissues (e.g., lung, pancreas, colon, ovary, kidney, skin, 
and thyroid) [13]. Amplification, overexpression, or muta-
tions in RTKs and genetic alterations in upstream com-
ponents of the MAPK pathway, including KRAS, NRAS, 
HRAS, CRAF, BRAF, MEK1, and MEK2, alter cell signal-
ing in tumors. In clinical practice and clinical trials, small 
molecules targeting RTKs or components in the MAPK 
cascade are used to treat cancer [1, 3, 4]. MEK1 and 
MEK2 are ideal targets; not only do they play a key role 
in tumor development and progression [3, 4], they have 
narrow substrate specificities and distinctive structural 
characteristics.

MEK activation through the MAPK signaling cascade 
is necessary for mammalian cell transformation, and con-
stitutively active MEK mutants promote transformation 
of fibroblast cells [14, 15]. Furthermore, MEK inhibitors 
inhibit growth of xenografted human and murine colon 
carcinomas [16], a mechanism we have studied [11]. 
Treating colon cancer cells with small-molecule MEK 
inhibitors blocked both CDK4 and CDK2 kinase activ-
ity and arrested G1 growth. MEK1 and MEK2 also have 
a crucial role in inhibition of apoptosis [17, 18]: their 
downstream effectors ERK1 and ERK2 phosphorylate a 

BH3-only protein Bim at Ser69, targeting it for degrada-
tion via the proteasome-ubiquitin pathway.

ERK1 and ERK2 are the only known physiological sub-
strates of MEK1 and MEK2 [1–4]—a narrow specific-
ity that allows the development of MEK inhibitors with 
fewer off-target side effects. MEK1 and MEK2 are dual-
specificity protein kinases and phosphorylate both tyros-
ine (Tyr) and Thr residues of ERK1 and ERK2—Tyr204 
and Thr202 in ERK1 and Tyr187 and Thr185 in ERK2—
rendering them active [19]. On the other hand, MEK1 
and MEK2 themselves are phosphorylated and activated 
by RAF in two key Ser residues in the regulatory loop—
Ser218 and Ser222 in MEK1 and Ser222 and Ser226 in 
MEK2 [20].

MEK inhibitors are divided into two groups, ATP-com-
petitive and -noncompetitive [21], although most of the 
known MEK inhibitors are the latter [21]. By not compet-
ing directly for the ATP-binding site, they avoid compe-
tition with high intracellular ATP levels [22]. Structural 
analysis of MEK1 and MEK2 with PD184352, a putative 
non-competitive inhibitor, has revealed that the mole-
cules possess a unique allosteric inhibitor-binding pocket 
adjacent to, but separate from, the ATP-binding site [23]. 
Once the MEK inhibitor binds the pocket, several con-
formational changes follow, causing MEK1 and MEK2 to 
be locked into a catalytically inactive state. These facts 
may provide an explanation for why this class of MEK 
inhibitors has shown keen specificity and high potency.

However, despite promising drug targets and suc-
cess in pre-clinical testing, only two MEK inhibitors, 
trametinib (Mekinist) and cobimetinib (Cotellic), have 
been approved, both for the treatment of BRAF-mutant 
melanoma [3, 4, 24, 25]. The efficacy of MEK1/2 inhibi-
tors in other tumors has been more disappointing [3, 4]. 
These facts suggest the need for an alternative approach. 
To this end, we present our perspective on ETS-targeted 
therapy.

Most MEK inhibitors have limited clinical efficacy
Numerous potent, selective allosteric MEK inhibi-
tors have been developed and have undergone clini-
cal evaluation of their ability to inhibit tumor growth 
[3, 4]. Preclinical studies showed efficient inhibition of 
phosphorylation of ERK1 and ERK2, which correlates 
with potent growth inhibition in cancer cell lines with 
mutant BRAF or RAS with elevated phosphorylation 
of MEK1 and MEK2 [3, 4, 26, 27]. However, most MEK 
inhibitors have demonstrated limited clinical efficacy as 
single-agent therapies [3, 4]. Only trametinib (see above) 
showed improved progression-free and overall survival 
both as a single agent and in combination with the BRAF 
inhibitor, dabrafenib [28–30]. More recently, another 
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Fig. 1  Negative feedback regulates the RAS/MAPK pathway. 
Although MAPK signaling was previously considered linear, autoregu-
latory negative feedback loops precisely control signaling output. 
MEK inhibitors reduce activity of ERK1 and ERK2 and then relieve the 
feedback inhibition of RAF, resulting in enhancement of RAF kinase 
activity. Likewise, ETS1-targeted therapy may activate ERK1 and ERK2 
by inhibiting DUSP6, which is an ETS1 transcriptional target
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MEK inhibitor, cobimetinib—when used in combination 
with the BRAF-inhibitor, vemurafenib—was reported to 
improve progression-free survival among patients with 
BRAF V600-mutated metastatic melanoma [25]. These 
facts underscore the challenge of bringing MEK inhibi-
tors from bench to bedside.

Loss of negative feedback regulation may reduce the 
clinical efficacy of MEK inhibitors
Loss of negative feedback regulation in the MAPK path-
way after MEK inhibition could be a major cause for the 
lack of clinical efficacy [3, 4]. MAPK signaling was once 
considered a linear and relatively simple receptor-to-
nucleus pathway [31–33]. However, we now know that 
autoregulatory negative feedback loops in the MAPK 
pathway precisely control signaling output (Fig. 1) [33]. 
In cancer, both inhibition and hyperactivation of ERK 
1 and ERK2 cause growth inhibition or senescence 
[34]. Thus, their activity is maintained within a narrow 
threshold range. For example, ERK1 and ERK2 feedback 
phosphorylates CRAF and BRAF, which impairs their 
ability to bind to RAS in the plasma membrane and/
or disrupts heterodimeric association of BRAF with 
CRAF, causing attenuation of RAF protein kinase activ-
ity [33]. In contrast, MEK inhibitors reduce the activity 
of ERK1 and ERK2 and then relieve the feedback inhi-
bition of RAF, resulting in enhancement of RAF kinase 
activity [35]. Consequently, RAF’s downstream effec-
tors MEK1 and MEK2, and then ERK1 and ERK2, are 
paradoxically activated. This was recently identified as 
adaptive drug resistance, a subtype of primary (intrinsic 
or innate) drug resistance [36]. Targeted therapy inhib-
its the oncogenic pathway but also relieves the negative 
feedback [37]. Consequently, the targeted cell signaling 
is paradoxically activated. This rebound effect appears 
immediately after exposure of cancer cells to the inhibi-
tor, which enables them to survive showing little primary 
response [38].

Second‑generation MEK inhibitors are feedback busters
To overcome adaptive drug resistance, second-genera-
tion MEK inhibitors, so-called “feedback busters,” were 
developed: trametinib, GDC-0623, and RO5126766 
(CH5126766) [3, 4]. The compounds inhibit not only the 
ability of MEK1 and MEK2 to elevate ERK1 and ERK2, 
but also impair the ability of RAF to phosphorylate 
MEK1 and MEK2 by disrupting the conformation of the 
activation loop of MEK1 and MEK2. Among them, only 
trametinib (see above) has been approved. Other MEK 
inhibitors, including GDC-0623 and RO5126766, require 
further study to support their safety and efficacy [3, 39, 
40]. In BRAF-mutated melanoma, CRAF and RAS activi-
ties are diminished by activated BRAF [3, 4]. Thus, the 

combination of BRAF and MEK inhibitors (dabrafenib 
and trametinib) is remarkably effective [28–30]. Likewise, 
although cobimetinib is a first-generation MEK inhibitor, 
its addition to the BRAF inhibitor vemurafenib signifi-
cantly increases the durable response rate over single-
agent BRAF-inhibitor therapy in patients with BRAF 
V600-mutated metastatic melanoma [25].

Previous studies have uncovered MEK-independent 
but kinase-dependent functions of CRAF. For example, 
CRAF was found directly to phosphorylate and inactivate 
retinoblastoma protein (RB), leading to cell-cycle pro-
gression [41]. Likewise, phosphorylated-CRAF at Ser338 
was reported to localize to the mitotic spindle to promote 
mitosis in cancer cells [42]. Thus, a combination of MEK 
and CRAF inhibitors may also prevent the non-MAPK 
pathways downstream of CRAF. Although the biological 
phenomena are less relevant to RAF protein kinase acti-
vation after MEK inhibition, CRAF was reported to have 
kinase- and MEK-independent functions in cancer cells 
[43].

Cyclin D1 plays a critical role as a downstream effector 
molecule in the MAPK pathway
Cyclin D1 is a major transcriptional target of ERK1 and 
ERK2. Given the importance of the MAPK signaling 
pathway for G1 to S cell-cycle transition [11, 12, 44], it 
could serve as a biomarker to determine the clinical effi-
cacy of MAPK-targeted therapy.

The critical role of cyclin D1 for MAPK-mediated 
oncogenesis was established first in the murine model 
for skin cancer [45] and later for breast cancer [46]. In 
HER2-driven or oncogenic HRAS-driven breast cancer 
in mice, tumor development was specifically protected by 
depleting cyclin D1 or CDK4 or expressing the CDK4- or 
CDK6-specific inhibitor INK4A or a dominant-negative 
mutant form of K112E cyclin D1 [46–50].

This finding led to a new therapeutic opportunity target-
ing the cyclin D1-CDK4/6 complex by a CDK4/6 inhibitor, 
palbociclib (PD0332991) [51–53]. This inhibits proliferation 
of estrogen receptor (ER)-positive luminal breast cancer 
cell lines in the presence or absence of HER2 amplification 
[51]. In fact, ER-positive breast cancer cells highly elevate 
the activity of ERK1 and ERK2 through HER2- and PKCδ-
mediated RAS activation [52]. Consistent with the preclini-
cal study, patients with ER-positive breast cancer showed 
the best clinical responses to palbociclib in combination 
with endocrine therapy [54]. Although other clinical trials 
have shown single-agent activity in mantle-cell lymphoma, 
liposarcoma, and teratoma with a manageable toxicity pro-
file [53], expanding the use of CDK4/6 inhibitors beyond 
ER-positive breast cancer is challenging—a circumstance 
that may be attributable to redundancy in function among 
different CDKs [11].
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Mouse embryonic fibroblasts can proliferate with 
CDK1 as the sole cell cycle-associated CDK [55, 56]. 
Likewise, most cell types from CDK4 and CDK6 dou-
ble-knockout mice proliferate normally [57]. Moreover, 
D-cyclins can associate with CDK2 to drive G1-S cell-
cycle transition [57]. These facts may suggest redun-
dancy among CDKs, and that selection of appropriate 
target groups for CDK4/6 inhibition relies on success-
ful identification of the tumor type [53]. Thus, tumors 
that do not depend on CDK4/6 for G1-S transition and/
or can rescue CDK4/6 inhibition by the activity of other 
CDKs may require alternative approaches, including the 
use of compounds that affect cyclin D1 transcription or 
protein turnover and combination therapies that target 
multiple endpoints of cyclin D1 action simultaneously 
[50].

ETS1 and ETS2 transcription factors are major downstream 
effectors of RAS/MAPK signaling and cooperate with AP‑1 
transcription factor to regulate target genes
Studies with the polyomavirus enhancer region revealed 
that ETS family transcription factors are major down-
stream effectors of RAS/MAPK signaling [58]. The RAS/
MAPK response sequence in the polyomavirus enhancer 
region consists of adjacent binding sites for ETS and 
AP-1 family transcription factors [59–61]. Also, ETS1 or 
ETS2 cooperates with c-Fos and c-Jun (components of 
AP-1) to activate transcription from the polyomavirus 
enhancer domain [62]. Likewise, downstream target genes 
of RAS/MAPK in humans often have AP-1 DNA binding 
sequence adjacent to ETS binding sites in the promoter 
regions. For example, ETS1, which autoregulates its tran-
script, has ETS and AP-1 binding sites in the ETS1 pro-
moter regulatory region [63, 64]. Similarly, the minimum 
5′ sequence of CCND1 (encoding cyclin D1) that retains 
responsiveness to RAS has both ETS and AP-1 binding 
sites [9, 10, 44].

There are 28 characterized ETS family members in 
humans [65]. Among them, 21 are phosphorylated by 
ERK2 in  vitro [66], although not all equally. For exam-
ple, ERG, FLI1, ETV1 and ETV4 are barely expressed 
in normal epithelial cells and most of RAS-transformed 
cells [58, 66, 67]. In contrast, ETS1 and ETS2 are par-
ticularly important, and their deletion has been shown to 
inhibit transformation caused by G12V HRAS in mouse 
embryonic fibroblasts [68]. ETS1 and ETS2 are respec-
tively phosphorylated by ERK1/2 at Thr38 and Thr72; 
this enhances association with p300 or CREB binding 
protein (CBP) transcriptional co-activator, resulting in 
an increase in the transactivational activity of their tar-
get genes [69–71]. These observations suggest that ETS1 
and ETS2 are major effectors of RAS/MAPK signaling, 
and thus can be alternative targets for the RAS/MAPK 

pathway. In support of this, because the inhibition of 
ERK1/2 by MEK inhibitors triggers an adaptive drug 
response, we may, by targeting ETS1 and ETS2—the 
downstream effectors of ERK1/2—avert this limitation.

ETS1 and ETS2 have both distinct and redundant roles
ETS1 and ETS2 expression is ubiquitous, although cell-
type-dependent [67]. ETS1 is expressed at higher levels 
in the spleen and thymus; ETS2 is elevated in the brain, 
fetal liver, muscle, and uterus. In the lung, both genes are 
expressed at the same elevated level. In mice ETS2 gene 
manipulation causes embryonic death before 8.5  days’ 
gestation owing to defects in extraembryonic tissue 
rather than to a major embryonic anomaly [72]. In con-
trast, ETS1-deficient mice are viable, but demonstrate 
abnormalities in the differentiation of all lymphoid line-
ages [73, 74]. These observations suggest that ETS1 and 
ETS2 have distinct roles.

Likewise, a recent study demonstrated that ETS1, but 
not ETS2, is necessary for cell migration after RAS/
MAPK activation in DU145 prostate cancer cells [58]. 
Similar observations were reported in ETS1-mediated 
epithelial cell morphogenesis after activation of MET-
RAS-MAPK signaling by hepatocyte growth factor [75].

However, ETS1 and ETS2 depletion synergistically 
inhibits the RAS-induced cellular transformation in 
mouse embryonic fibroblast cells [68]. Thus, ETS1 and 
ETS2 would have a redundant role for the transforming 
effects of oncogenic RAS.

Inhibiting or modulating ETS1 transcription factor
Phosphorylated Tyr283 protects ETS1, but not ETS2, 
from proteolysis, which may allow the development of 
ETS1-specific small-molecule inhibitors [76, 77].

ETS1 protein is destabilized after phosphorylation at 
Ser276 and Ser282 by calcium/calmodulin-dependent 
protein kinase II (CAMK2) (Fig.  2) [78, 79]. The phos-
phorylation enhances an association with ring finger and 
WD repeat domain 2 protein (RFWD2 or COP1), which 
is an E3 ubiquitin ligase [80]. Subsequently, phosphoryl-
ated-ETS1 is degraded through the ubiquitin–proteas-
ome pathway. Conversely, c-Src or YES1 phosphorylates 
ETS1 at Tyr283, which reverses CAMK2-dependent 
destabilization of ETS1 protein [79]. Thus, Src inhibitors 
such as dasatinib and saracatinib may accelerate rapid 
turnover of ETS1 protein and might prevent transacti-
vation of ETS1 target genes (Fig. 2). WP1130 is a partly 
selective deubiquitinase inhibitor for USP9X, USP5, 
USP14, and UCH37 [81]. A recent report demonstrated 
that USP9X prevents ETS1 ubiquitination and thereby 
stabilizes the protein [77]. Thus, WP1130 may accelerate 
ETS1 protein degradation (Fig. 2) and inhibit transacti-
vation of ETS1 target genes.
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Targeting the ETS1 interface might be another 
approach [82]. One of the early attempts was an inhibi-
tion of ETS1-DNA binding interaction by the use of oli-
gonucleotides that mimic the ETS1-binding sites [83]. 
However, the core ETS binding sequence is shared by 
various ETS family members, and thus this strategy may 
not be specific for ETS1 inhibition. In contrast, targeting 
ETS1 protein–protein interaction might be. ETS1 dimer-
izes itself or other transcription factors [84–88]. Homodi-
meric interactions through the ETS domain may play a 
role in cooperative binding to repeated DNA elements 
[86], whereas heterodimeric interactions might regulate 
tissue-specific gene expression [87, 88]. Although ETS1 
protein–protein Interactions have great therapeutic 
promise, further studies are warranted to develop small-
molecule inhibitors targeting them.

Targeting transcriptional co‑factors of ETS1 and ETS2
Transcriptional cofactors might represent fascinating 
therapeutic targets for both ETS1 and ETS2 [76]. These 
assemble on transcription-binding DNA sequences 
with transcription factors to influence RNA polymer-
ase II activity (Fig.  3). ERK1/2-phosphorylated ETS1 at 
Thr38 and Ser41, and ETS2 at Thr72 and Ser75, directly 
interact with two closely related transcriptional co-acti-
vating proteins, CBP and p300 (Fig. 3) [89]. The associa-
tion promotes the assembly of RNA polymerase II and 
the basal machinery at the initiation of transcription. 
Indeed, the recruitment of CBP or p300 enhances trans-
activation of ETS1 and ETS2 target genes more than 
20 times [89]. Thus, the RAS/MAPK signaling pathway 
activates ETS1 and ETS2 by promoting a unique bind-
ing interface with p300 or CBP. Conversely, inhibition of 

ERK1/2 by a MEK inhibitor disrupts the interface with 
p300/CBP, decreasing transcriptional activity of ETS1 
and ETS2 (Fig. 3).

Likewise, AKT might activate the ETS1- or ETS2-con-
taining transcription factor-enhancer complex by phos-
phorylating its co-activator p300 or CBP (Fig.  3) [44, 
90–94]. In fact, AKT phosphorylates p300 at Ser1834, 
which is essential for its transcription from the pro-
moter of intercellular adhesion molecule-1 [95], whose 
transcription is also activated by ETS1 and ETS2 [96, 
97]. This possibility was supported by our protein motif 
analysis [44]. CBP has highly stringent potential AKT 
phosphorylation sites at Ser381, Ser1733 and Thr1833, 
all of which are in CBP’s CH1 and CH2/CH3 domains, 
which interact with ETS1 [98]. Thus, inhibition of AKT 
might attenuate CBP/p300 activity, resulting in reduction 
of transactivation of ETS1 and ETS2 target genes (Fig. 3).

CBP and p300 are not only transcriptional co-acti-
vators but also histone acetyl-transferases (HAT) that 
acetylate both histone and non-histone proteins (Fig.  3) 
[99, 100]. Moreover, they possess bromodomain (BRD), 
which recognizes acetylated-lysine residues on proteins 
(Fig. 3) [100]. Thus, if we could decrease the HAT activity 
of CBP/p300 or perturb BRD-mediated protein–protein 
interactions, this might prevent chromatin remodeling 
and ETS1/2 binding to DNA and transcriptional regula-
tory complexes (Fig. 3). Recently, highly selective small-
molecule inhibitors for CBP/p300, including SGC-CBP30 
and PF-CBP1, were developed with a structure-based 
design to inhibit CBP BRD [101, 102].

Likewise, a recent study demonstrated that BRD-con-
taining protein 4 (BRD4) is highly enriched at enhancers 
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associated with genes involved in multiple profibrotic 
pathways, where BRD4 is co-localized with profibrotic 
transcription factors, including ETS1, SRF, SMAD3, and 
NF-κb/p65 (Fig.  3) [103]. Thus, it may be possible to 
target ETS1/2 by inhibiting BRD4 with small-molecule 
inhibitors such as JQ1 and OTX015 [104, 105].

Hormonal therapy may augment ETS‑targeted therapy
Given that selection of appropriate target groups for 
ETS1/2 inhibition relies on successful identification of 
tumor type, ETS-targeted therapy may have a synergistic 
benefit with standard therapies.

The transcriptional function of the androgen recep-
tor (AR) is essential for the genesis and development 
of prostate cancer [106]. A recent report demonstrated 
that ETS1-binding sequences were specifically enriched 
in AR-targeted genes [107]. Likewise, estrogen recep-
tor α (ERα) associates directly with ETS1 to stimulate 
estradiol-dependent growth in breast cancer and neu-
roblastoma cells [108, 109]. These observations sug-
gest that simultaneous treatments of these cancers 
with ETS1 and hormonal therapy may enhance clinical 
outcomes.

A potential problem of ETS‑targeted therapy
As described above, the ETS1-containing transcription 
factor-enhancer complex could be disrupted with small-
molecule inhibitors by specifically targeting ETS1 for 
proteolysis. However, the redundancy between ETS1 and 
ETS2 is a possible drawback of an ETS1-specific therapy, 
as ETS2 might subsequently compensate for ETS1. Like-
wise, it is possible that ETS1/2-targeted therapy may 
inhibit autoregulatory negative feedback loops, causing 
paradoxical activation of ERK1 and ERK2.

We recently studied the mechanism of ERK1/2 activa-
tion after EGFR inhibition in non-small cell lung cancer 
(NSCLC) harboring EGFR mutations [44, 90–94]. Our 
study demonstrated that EGFR inhibition in lung cancer 
cells generates a drug-tolerant subpopulation by block-
ing AKT activity and thus inactivating ETS1 function. 
The remaining cells enter a dormant, non-dividing state 
because of the inhibited transactivation of ETS1 target 
genes, cyclins D1, D3, and E2. Moreover, ETS1 inactiva-
tion inhibits transcription of dual specificity phosphatase 
6 (DUSP6), a negative regulator specific for ERK1/2. The 
resulting activation of ERK1/2 combines with c-Src to 
renew activation of the RAS/MAPK pathway, causing 
increased cell survival by accelerating BIM protein turno-
ver. By analogy, ETS-targeted therapy may activate ERK1 
and ERK2 by inhibiting DUSP6.

However, conflicting data exist regarding the impact of 
ETS1 inhibition on MAPK signaling. A recent report has 

shown that ETS1 knockdown in DU145 prostate cancer 
cells activates dual specificity phosphatase 4 (DUSP4), 
DUSP6, and sprouty RTK-signaling antagonist 4 (SPRY4) 
[58]. Because DUSP4/6 and SPRY4 are negative regula-
tors for ERK1/2 and RTK, respectively [31, 61, 110], 
these observations may suggest that ETS1 is required for 
robust RAS/ERK pathway activation, and reducing its 
activity would attenuate the activity of ERK1 and ERK2. 
This is an area where further study is warranted.

Conclusions
Efficacy of MEK inhibitors has been unsatisfactory in 
most tumors, despite successful pre-clinical testing. This 
fact has prompted us to develop an alternative approach. 
In this article, we have proposed transcription factor 
ETS1 and ETS2 as alternate therapeutic targets because 
they are major effectors of RAS/MAPK signaling. Chem-
ical targeting of ETS1 for proteolysis would be among 
the few curative strategies in cancer therapeutics. Src 
and USP9X inhibitors might accomplish this by accel-
erating ETS1 protein turnover. Likewise, targeting ETS1 
interface might have great therapeutic promise because 
ETS1 dimerizes itself or other transcription factors to 
regulate transcriptional target genes. Also, transcrip-
tional cofactors of ETS1 and ETS2, including CBP/p300 
and BRD4, may represent the other fascinating thera-
peutic targets around the transcription factor-enhancer 
complex. However, there exists a potential issue in ETS-
targeted therapy. The remedy may inhibit autoregula-
tory negative feedback loops in the MAPK pathway, 
which might cause resistance to cell death by paradoxi-
cally activating ERK1 and ERK2. Further research is 
warranted to explore ways to inhibit ETS1 and ETS2 for 
clinical application.
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