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Abstract

Background: “It’s not what we do, it’s the way that we do it”. Never has this maxim been truer in proteomics than
now. Mass Spectrometry-based proteomics/phosphoproteomics tools are critical to understand the structure and
dynamics (spatial and temporal) of signalling that engages and migrates through the entire proteome. Approaches
such as affinity purification followed by Mass Spectrometry (MS) have been used to elucidate relevant biological
questions disease vs. health. Thousands of proteins interact via physical and chemical association. Moreover, certain
proteins can covalently modify other proteins post-translationally. These post-translational modifications (PTMs)
ultimately give rise to the emergent functions of cells in sequence, space and time.

Findings: Understanding the functions of phosphorylated proteins thus requires one to study proteomes as linked-
systems rather than collections of individual protein molecules. Indeed, the interacting proteome or protein-
network knowledge has recently received much attention, as network-systems (signalling pathways) are effective
snapshots in time, of the proteome as a whole. MS approaches are clearly essential, in spite of the difficulties of
some low abundance proteins for future clinical advances.

Conclusion: Clinical proteomics-MS has come a long way in the past decade in terms of technology/platform
development, protein chemistry, and together with bioinformatics and other OMICS tools to identify molecular
signatures of diseases based on protein pathways and signalling cascades. Hence, there is great promise for
disease diagnosis, prognosis, and prediction of therapeutic outcome on an individualized basis. However, and as a
general rule, without correct study design, strategy and implementation of robust analytical methodologies, the
efforts, efficiency and expectations to make biomarkers (especially phosphorylated kinases) a useful reality in the
near future, can easily be hampered.
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Findings
Overview
Proteomics and phosphoproteomics clinical research
studies imply the comprehensive analysis of the proteins
which are expressed in cells or tissues, and can be
employed at different stages (e.g. healthy vs. disease).
Therefore, comparative proteomics can distinguish
small, but relevant changes in protein modifications in
their structure -post-translational modifications (PTMs)-

at a depth of several thousand proteins to facilitate drug
target identification.
Chemical and Biochemical proteomics can be used to

identify drug-target interactions and subsequently ana-
lyze drug specificity and selectivity. Furthermore, phos-
phoproteomic approaches can be exploited to monitor
changes in phosphorylation events in order to character-
ize drug actions on cell signalling pathways and/or sig-
nalling cascades. In addition, functional proteomic
approaches, can be employed to investigate protein-pro-
tein and protein-ligand interactions in order to: (i)
improve the knowledge or the clarification of the
mechanism of drug action, (ii) achieve relevant protein-
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identifications of disease-related sub-networks and (iii)
reach the important step of innovation of novel drug
targets.
Furthermore, proteins are currently the major drug

targets, and therefore play a critical role in the process
of modern drug design. This typically involves: (1) the
construction of drug compounds based on the structure
of a specific drug target, (2) validation for therapeutic
efficacy of the drug compounds, (3) evaluation of drug
toxicity, and finally, (4) clinical trial.
Finally, tissue imaging MS is being extended as a cur-

rent promising technique for reproductive research.
Advances in MS imaging will inevitably attract biologists
and clinicians as the advantages and power of this tech-
nology become more widely known. We will detail, in a
simple manner, relevant clues of current proteomic,
phosphoproteomic and MS strategies and techniques
useful for clinical advances [1].
Phosphoproteomics relevance in signalling transduction
pathways
It is well known that phosphoproteomics and MS-based
recent advancements have made these approaches the
ideal way by which to study signal transduction
although it implies high speciality and tedious research
studies. In addition, individual protein phosphorylation
events often have important roles and clues in broad
signalling networks within a cell. Unfortunately, while
phosphorylation of kinases frequently, mainly regulates
their own activity, they are commonly under-repre-
sented in phosphoproteomic studies, partly due to their
low expression within the cell. Nevertheless, a viable
solution to this drawback has been successfully proven
via kinase affinity purification techniques. Thus, impor-
tant improvements are helping to achieve relevant data
of phosphorylated kinases - those proteins being the
“key” of signalling pathways and network- connectivity
among different signalling cascades.
Phosphatases are playing equally important roles in

regulating signalling pathways through the removal of
phosphoryl groups from proteins. Indeed, depleting cells
of specific protein phosphatases and employing phos-
phoproteomic approaches, can be used to determine
which proteins are regulated by the phosphatase of
interest, either directly or downstream [2-7].
The best studies of mitogen activated protein kinase

(MAPKs) are the extracellular signal regulated protein
kinases (ERK). ERKs phosphorylate cytoplasmic targets
migrate to the nucleus where they can activate tran-
scription factors involved in cellular proliferation. As a
general view of the orchestrated signalling pathways, it
is important to know that following the communication
of the signal to different cellular compartments are (1)
signal processing and (2) amplification by plasma mem-
brane proximal events.

The activation of multiple signal cascades by (1)
receptors, (2) different protein PTMs, (3) crosstalk
between signalling pathways and (4) feedback loops to
ensure optimal signalling output, are involved in this
process. Also, the binding of receptor Tyrosine (Tyr)
kinases (RTKs) to their cognate ligands at the cell sur-
face results in receptor dimerization and autophosphory-
lation. Phosphorylated Tyr residues subsequently serve
as docking sites to recruit signalling mediators, such as
growth factor receptor-bound protein 2 (GRB2).
Multiple signalling cascades such as (1) the phosphoi-

nositide-3 kinase (PI3K)-AKT, (2) Ras-Raf- extracellular
signal-regulated kinase (ERK) mitogen-activated protein
kinase (MAPK), and (3) signal transducer and activator
of transcription (STAT) pathways are activated by the
assembly of these signalling complexes. On the other
hand, (4) Casitas B-lineage lymphoma (CBL)-mediated
ubiquitylation of RTKs controls their endocytosis and
the duration of receptor signalling. In addition, binding
of tumour necrosis factor-a (TNFa) to its receptor,
TNFR1, induces trimerization of the receptor and
recruitment of the adaptor protein TNFR1-associated
death domain (TRADD). These functions as a hub to
assemble a multi-protein signalling complex containing
TNFR-associated factor 2 (TRAF2), receptor interacting
Ser/Thr protein kinase 1 (RIPK1) and nuclear factor-�B
(NF-�B) essential modulator (NEMO). The result is the
activation of different signalling networks, such as the
ERK MAPK, p38 MAPK and NF-�B pathways. Proteins
in the MAPK signalling pathways are activated by both
RTKs and TNFa, which allows cells to integrate multi-
ple signals [8-20].
Advantages/disadvantages and clues of most used MS-
based tools for the detection of phosphorylated proteins/
peptides
Several analytical techniques exist for the analysis of
phosphorylation, e.g., Edman sequencing and 32P-phos-
phopeptide mapping for localization of phosphorylation
sites, but these methods do not allow high-throughput
analysis or imply very laborious operations [21], while
using MS, high-throughput analysis of phosphorylated
protein residues can be developed [22,23]. On the other
hand, phosphospecific antibodies are routinely used to
immunoprecipitate and therefore to enrich in phos-
phorylated proteins from complex mixtures [24], but,
currently, there are no antibodies available commercially
suitable for enriching all proteins that are phosphory-
lated, and thus, these proteins must be purified or
enriched from complex mixtures using alternative meth-
ods [25].
When carrying out in-gel or in-solution trypsin diges-

tion of protein complex mixtures, the resulting phos-
phopeptides and non-phosphopeptides can be loaded
into different metal ion chromatographies (e.g.
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Immobilized Metal ion Affinity Chromatography IMAC
(Fe3+), and Titanium Dioxide TiO2 [26]) in order to
enrich in phosphopeptides. The enriched solution can
also be submitted into different reverse-phase chromato-
graphies (e.g. Graphite powder [27], POROS R3) [25] in
order to clean and desalt those phosphopeptides pre-
viously eluted. Moreover, all these types of chromatogra-
phies will reduce the suppression of phosphorylated
peptides in the mass spectra.
Using IMAC (Fe3+) and also (TiO2) [26], the nega-

tively charged phosphopeptides are purified by their affi-
nity to positively charged metal ions, but some of these
methods suffer the problem of binding acidic, non-phos-
phorylated peptides. Ficarro and co-workers [22], cir-
cumvented this problem on IMAC (Fe3+) by converting
acidic peptides to methyl esters but increasing the spec-
tra complexity and requiring lyophilization of the sam-
ple, which causes adsorptive losses of especially
phosphopeptides [28]. Ficarro et al., were able to
sequence hundreds of phosphopeptides from yeast,
including Slt2p kinase, but the level of phosphorylated
residues identified from kinases were low compared to
the ones from phosphoproteins highly expressed within
the cell. Fairly recently, TiO2 chromatography using 2,5-
dihydroxybenzoic acid (DHB) was introduced as a pro-
mising strategy by Larsen et al. [26],. TiO2/DHB
resulted in higher specificity and yield as compared to
IMAC (Fe3+) for the selective enrichment of phosphory-
lated peptides from model proteins (e.g. lactoglobulin
bovine, casein bovine, etc).
Another important limitation concerning the phos-

phoenrichment methods is that mainly phosphopeptides
from highly expressed proteins within cells can be puri-
fied, while the ones from phosphorylated proteins with
low level expression (e.g. kinases) do not bind so well to
those resins. This is due to the low proportion of this
kind of proteins, or on the other hand, their available
amount binds to metal ions although it is not sufficient
to be detected by MS. The combination of Strong
Cation Exchange Chromatography (SCX) with IMAC
(Fe3+) has been proven on yeast, resulting in a huge
number of phosphorylated residues identified (over 700,
including Fus3p kinase) [23]. Although more than 100
signalling proteins and functional phosphorylation sites
were identified, including receptors, kinases and tran-
scription factors, it was clear that only a fraction of the
phosphoproteome was revealed [23].
It is evident that methodologies to enrich for phos-

phorylated residues from kinases should be improved.
However, this is not straightforward for several reasons:
(a) the low abundance of those signalling molecules
within cells, and (b) the stress/stimulation time-dura-
tion, as only a small fraction of phosphorylated kinases
are available at any given time as a result of a stimulus.

Also, the time adaptation over signalling pathways is a
relevant and fast factor for kinases phosphorylation [29],
and (c) the current phosphoenrichment methods, which
are mainly successful to purify phosphopeptides from
highly expressed proteins.
In a simple manner, we will detail the manual valida-

tion of the phospho-data (assignments of the phosphate
group on specific amino acids) obtained in an MS
experiment during CID (Collision Induced Dissociation)
operations. When peptide ions are fragmented via CID,
series of y- and b- ions are formed [30,31]. The peptide
sequence is obtained by correlating mass difference
between peaks in the y-ion series or between peaks in
the b-ion series with amino acid residue masses. The
CID fragmentation mainly occurs on the peptide back-
bone, and sequence information is obtained. In relation
to phosphotyrosine residues, partial neutral loss is
observed (HPO3, 80 m/z) in MS2 mode, and the phos-
phate group on tyrosine (Tyr) residues is more stable
than on serine (Ser) and threonine (Thr) residues. Also,
the phospho-finger-print characteristic of phosphotyro-
sine is the phosphotyrosine immonium ion (~216 Da)
[32,33]. Via MS3 mode, the ion originating from neutral
loss (NL) of phosphoric acid (H3PO4) can be selected
for further fragmentation. Then, the selected ion is auto-
matically selected for further fragmentation after neutral
loss fragmentation. Therefore, it is possible to add extra
energy for the fragmentation of peptide backbone.
Nevertheless, the MS3 mode requires that the phos-

phorylation on Ser and Thr residues are labile and con-
ventional fragmentation via CID commonly resulting in
the partial NL of H3PO4, (98 m/z) in MS2 mode. This is
due to the gas phase b-elimination of the phosphor-
ester bond and thus, dehydroalanine (Ser ~69 Da) and
dehydro-2-aminobutyric acid (Thr ~83 Da) are gener-
ated [32,33].
In addition, as alternative phosphopeptide enrichment

strategies, phosphopeptides can be de-protected and col-
lected under acidic conditions and a variety of chemical
methodologies have likewise appeared. BEMA (b-elimi-
nation/Michael addition), takes advantage of the ease of
b-elimination of phosphorylated Ser and Thr residues at
basic pH and the ability to subject the resulting dehy-
droalanine/methyl-dehydroalanine products to Michael
addition with a desired tag for affinity purification
[34-36]. In addition, Calcium phosphate precipitation
(CPP) has been proven to be a fast, economical, and
simple enrichment technique [37] in exchange for
diminished specificity. Moreover, PhosphorAmidate
Chemistry (PAC) is another important approach in
which phosphopeptides are coupled to a solid-phase
support such as an amino-derivatized dendrimer or con-
trolled-pore glass derivatized with maleimide for selec-
tion [38,39].
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Tandem MS Methodology -basic issues useful for
Phosphoproteomics via ElectroSpray Ionization (ESI)
It can be taken as a general rule, that during MS-based
experiments, a phosphopeptide mixture is separated
using capillary liquid chromatography (LC). A typical
separation column is 25 to 100 microns in diameter and
5 to 30 cm in length. The eluent is concurrently intro-
duced into the mass spectrometer via electrospray ioni-
zation (ESI). ESI is a process that generates multiply
protonated gas-phase peptide cations. The mass-to-
charge ratio (m/z) and intensity (I) of the intact peptide
precursors are recorded by an initial MS scan - com-
monly referred to as a full scan MS. Then, m/z values
for peaks (list of masses) with high intensity are automa-
tically selected in order of decreasing abundance for
sequencing by tandem MS (MS/MS). This process of
precursor selection, dissociation, and fragment ion mass
analysis is repetitively performed on analyte species as
they elute from the LC column. Ideally, MS/MS interro-
gation of a phosphorylated peptide generates a series of
fragment ions that differ in mass by a single amino acid,
so that the peptide primary sequence and position of
the phosphorylated modifications can be determined.
This necessitates peptide bond cleavage that is not only
specific to the peptide backbone, but is robust enough
to elucidate differences in peptides whose primary
amino acid sequence are the same, yet vary in the site
of phosphorylation (e.g., positional isomers) [40]
The dominant NL peak in the fragmentation spectra

of phosphopeptides obtained via traditional collisionally
induced dissociation (CID) has received much attention
[41-43]. The NL peak can easily suppress sequence diag-
nostic ion peaks causing identification of the peptide to
become extremely difficult and sometimes impossible.
Since the use of ion traps, currently, as the most com-

mon mass spectrometers of performing phosphopro-
teome analyses, there have been various attempts to
combat this specific problem. Modified fragmentation
regimes have been introduced, such as (a) NL triggered
MS3 or (b) multistage activation (MSA), which alleviate
the neutral loss issue. NL MS3 and MSA methods allow
fragmenting of the NL peak of the precursor ion further,
in order to generate more backbone cleavages. These
“extra” generated backbone cleavages, then form more
diagnostic sources for peptide sequencing [23,44-46].
Alternatively, Electron transfer dissociation (ETD) and

electron capture dissociation (ECD) have also shown
great promise since the phosphate group remains
attached during and after activation. Many detected
phosphopeptides contain multiple Ser/Thr/Tyr (serine,
threonine, and tyrosine) residues representing the likeli-
hood that there is more than one possible location for
the site of phosphorylation within the peptide. The
abundant NL observed in low energy CID can hamper

the correct assignment of the phosphor-sites in such
peptides. Thus, a concerted effort has been made to
understand, in detail, the rules of phosphopeptide frag-
mentation [47-51]. Figures 1 and 2 illustrate the flow-
through to identify proteins via proteomics-MS, and dif-
ferent phosphoproteomic strategies to ensure high effi-
ciency for clinical research study, respectively.
Discovering Biomarkers via OMICS Tools
MS-based proteomics technologies are capable of identi-
fying hundreds to thousands of proteins in cells, tissues,
and biofluids. Proteomics may, therefore, provide the
opportunity to elucidate new biomarkers and pathways
without a prior known association with a specific dis-
ease. However, important obstacles remain.
Additionally, improved biomarkers are of vital impor-

tance for cancer detection, diagnosis and prognosis. Sig-
nificant advances in understanding the molecular basis
of disease are being made in genomics, while proteomics
will ultimately delineate the functional units of a cell:
proteins and their intricate interaction networks and sig-
nalling pathways in health and disease. Much progress
has been made to characterize thousands of proteins
qualitatively and quantitatively in complex biological
systems by use of multi-dimensional sample fractiona-
tion strategies, MS and protein micro-arrays. Compara-
tive/quantitative analysis of high-quality clinical
biospecimen (e.g., tissue and biofluids) of the human
cancer proteome landscape can potentially reveal pro-
tein/peptide biomarkers responsible for this disease by
means of their altered levels of expression, PTMs as
well as different forms of protein variants. Despite tech-
nological advances in proteomics, major hurdles still
exist at every step of the biomarker development pipe-
line [52-63].
The field of proteomics, in the post-genome era,

incited great interest in the pursuit of protein/peptide
biomarker discovery especially since MS demonstrated
the capability of characterizing a large number of pro-
teins and their PTMs in complex biological systems, in
some instances even quantitatively. Technological
advances, such as protein/antibody chips, depletion of
multiple high abundance proteins by affinity columns,
and affinity enrichment of targeted protein analytes, as
well as multidimensional chromatographic fractionation,
have all expanded the dynamic range of detection for
low abundance proteins by several orders of magnitude
in serum or plasma, making it possible to detect the
more abundant disease-relevant proteins in these com-
plex biological matrices [63-71]. Nevertheless, plasma
and cell-extract based discovery research studies aimed
at identifying low abundance proteins (e.g. some kinases)
are extremely difficult. Therefore, it is necessary to
develop significant technological improvements related
to identifying these low abundance, yet high biological
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impact molecules. Furthermore, if these protein kinases
to be studied contain PTMs, it is important to know
that spatial and temporal factors can decrease the effi-
ciency of our study (e.g. many kinases are regulated by
phosphorylation of the activation loop, which then
directly reflects cellular kinase activity).
Moreover, proteomics has been widely applied in var-

ious areas of science, ranging from the deciphering of
molecular pathogenesis of diseases, the characterization
of novel drug targets, to the discovery of potential diag-
nostic and prognostic biomarkers, where technology is
capable of identifying and quantifying proteins associated
with a particular disease by means of their altered levels
of expression [72-74] and/or PTMs [75-77] between the
control and disease states (e.g., biomarker candidates).
This type of comparative (semi-quantitative) analysis
enables correlations to be drawn between the range of
proteins, their variations and modifications produced by
a cell, tissue and biofluids and the initiation, progression,
therapeutic monitoring or remission of a disease state.

PTMs including phosphorylation, glycosylation, acety-
lation and oxidation, in particular, have been of great
interest in this field as they have been demonstrated as
being linked to disease pathology and are useful targets
for therapeutics.
In addition to MS-based large-scale protein and pep-

tide sequencing, other innovative approaches including
self-assembling protein microarrays [78] and bead-based
flow cytometry [79,80] to identify and quantify proteins
and protein-protein interaction in a high throughput
manner, have furthered our understanding of the mole-
cular mechanisms involved in diseases.
Utilities of Matrix-assisted laser desorption/ionization tissue
imaging MS
Matrix-assisted laser desorption/ionization (MALDI) tis-
sue imaging mass spectrometry is particularly promising
among the numerous applications of mass spectrometry.
It is used for testing and analyzing the spatial arrange-
ment of a wide range of molecules including proteins,
peptides, lipids, drugs and metabolites, directly in thin

Figure 1 Identifying proteins via Proteomics-Mass Spectrometry. The mixture of proteins (or just one protein) must be digested to obtain
peptides. The resulting peptides have to be cleaned and desalted via chromatography (e.g. POROS R2) to avoid salts and detergents, which
artefact the MS analysis. Subsequently, the desalted and cleaned peptides are injected into the mass spectrometer. Finally, the matched peptides
allow the identification of the proteins using databases (e.g. Mascot Server).
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slices of tissue. In the field of proteomics, the technol-
ogy avoids tedious and time-consuming extraction and
fractionation steps classically required for sample analy-
sis. Furthermore, MALDI imaging MS is increasingly
recognized as a powerful method for clinical proteomics,
particularly in cancer research. This recent technology
has particular potential for the discovery of new tissue
biomarker candidates, for classification of tumors, early
diagnosis or prognosis, elucidating pathogenesis path-
ways and therapy monitoring. Over recent years,
MALDI imaging MS has been used for molecular profil-
ing and imaging directly in male and female reproduc-
tive tissues.
In summary, the wealth of advances in MS imaging

will inevitably attract experts in OMICS (e.g. genomics,

proteomics, bioinformatics) and clinicians, as the advan-
tages and power of this technology become more widely
known. In addition, it is important to point out for effi-
cient clinical studies, that the identification of protein
biomarkers in easily accessible biological fluids has
potential for the development of minimally invasive pro-
cedures for early diagnostics, but the analysis of body
fluids such as plasma, serum and urine is complicated
by their wide dynamic range of protein expression, the
variation in their composition and their sensitivity to
sample handling [81-83].
Concluding remarks and future needs
Phosphoproteomics is a branch of proteomics that identi-
fies, catalogs, and characterizes proteins containing a phos-
phate group as a PTM. Furthermore, phosphoproteomics

Figure 2 Flow-through of Current Phospho-proteomic Analysis. Using phosphoenrichments (e.g. IMAC, TiO2; SIMAC) we are capable of
isolating phosphorylated peptides and discard un-phosphopeptides. The isolated phosphopeptides have to be cleaned and desalted via
chromatography (e.g. POROS R3, Disks C18 or graphite-, which isolate hydrophilic peptides) before the MS analysis. Finally, the desalted and
cleaned phosphopeptides are injected into the mass spectrometer. Different types of ionization can be used (e.g. Matrix-Assisted Laser
Desorption/Ionization MALDI or ElectroSpray Ionization ESI). Also, different kinds of fragmentations can be used (e.g. CID, ETD, ECD). In addition,
different MS modes can be useful, for example: MS/MS, MSA, MS3NL. As a general rule, positive MS mode is currently more efficient than
negative mode for phosphoproteomic studies. It is always necessary to test and combine different phosphoenrichments together with different
MS strategies to recover and identify the maximum level of phosphopeptides. This will imply a high efficiency for your clinical research study.
The resulting data (phosphorylated proteins identified) must be coupled to bioinformatic tools (software) in order to improve the biological
understanding.
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provides clues on which protein or pathway might be acti-
vated because a change in phosphorylation status almost
always reflects a change in protein activity. Indeed, it can
indicate which proteins might be potential drug targets as
exemplified by the kinase inhibitor. While phosphoproteo-
mics will greatly expand knowledge about the numbers
and types of phosphoproteins, its greatest promise is the
rapid analysis of entire phosphorylation based signalling
networks. Nevertheless, methodologies to enrich for phos-
phorylated residues from kinases should be improved,
especially due to their low abundance of those signalling
molecules within cells.
To summarize, clinical proteomics-MS has come a

long way in the past decade in terms of technology/plat-
form development, protein chemistry, and together with
bioinformatics and other OMICS tools to identify mole-
cular signatures of diseases based on protein pathways
and signalling cascades. Hence, there is great promise
for disease diagnosis, prognosis, and prediction of thera-
peutic outcome on an individualized basis. In addition,
imaging MS will have a major impact in reproductive
research by opening new avenues to the understanding
of various molecular mechanisms and the diagnosis of
reproductive pathologies. However, and as a general
rule, without correct study design, strategy and imple-
mentation of robust analytical methodologies, the
efforts, efficiency and expectations to make biomarkers
(especially phosphorylated kinases) a useful reality in the
near future, can easily be hampered.
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