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Abstract 

Background and Aim: To develop and validate radiomic prediction models using contrast‑enhanced computed 
tomography (CE‑CT) to preoperatively predict Ki‑67 expression in gastrointestinal stromal tumors (GISTs).

Method: A total of 339 GIST patients from four centers were categorized into the training, internal validation, and 
external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute 
Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant poten‑
tial of GISTs. Individual nomograms of Ki‑67 expression incorporating the radiomic signature or clinical factors were 
developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical 
usefulness.

Results: The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 
0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki‑67 expression in 
the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the 
radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% 
CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and 
external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to 
be clinically significant and useful.

Conclusions: The radiomic signature from CE‑CT was significantly associated with Ki‑67 expression in GISTs. A nomo‑
gram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki‑67 expression in 
GISTs. Results from our study provide vital insight to make important preoperative clinical decisions.
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Introduction
Gastrointestinal stromal tumors (GISTs) are the most 
commonly diagnosed subepithelial tumors in the gas-
trointestinal tract, histologically heterogeneous, biologi-
cally diverse, and challenging to predict their malignant 
potential [1, 2].

Recently, a number of risk classification systems have 
been developed to predict biological behaviors, includ-
ing National Institutes of Health (NIH) modified criteria 

Open Access

*Correspondence:  renjixujr@163.com; zhizheng_ge@163.com
†Qing‑Wei Zhang, Yun‑Jie Gao and Ran‑Ying Zhang contributed equally 
to the article
1 Division of Gastroenterology and Hepatology, Key Laboratory 
of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, 
School of Medicine, Shanghai Jiao Tong University, Shanghai Institute 
of Digestive Disease, Shanghai, China
6 Department of Radiology, Renji Hospital, School of Medicine, 
Shanghai Jiao Tong University, No. 1630, Dongfang Road, Pudong, 
Shanghai 200120, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-020-0263-4&domain=pdf


Page 2 of 11Zhang et al. Clin Trans Med            (2020) 9:12 

[2], National Comprehensive Cancer Network (NCCN) 
criteria [3], and the Armed Forces Institute of Pathology 
(AFIP) criteria [4]. Although NIH modified criteria and 
AFIP criteria are the most commonly used tools to assess 
the risk of malignant potential in GISTs, a significantly 
risk is associated with poor survival chances in patients 
with GISTs [5]. Also, the clinical behaviors and outcomes 
are very dynamic, especially among GISTs, and fall under 
the high-risk category.

Ki-67 nucleoprotein, a key marker associated with cell 
growth and tumor heterogeneity, has increased expres-
sion from the G1 phase to mitosis with a sudden decline 
in the in the expression level in the G0 phase [6]. Instead 
of reflecting only during the M phase of the cell cycle. As 
measured by the mitotic count, Ki-67 is highly expressed 
in most of the proliferating cells except in G0 cells and 
is considered as a universal risk factor of malignancy in 
GISTs [7]. Multiple studies have demonstrated the asso-
ciation of Ki-67 higher expression with larger tumor size, 
higher mitotic rate, higher risk of malignancy and poor 
disease prognosis [7–12]. Previous studies have shown 
that high Ki-67 expression was an independent risk fac-
tor for high malignant potential and could help clas-
sify GISTs with a combination of mitotic rate and Ki-67 
expression [10–12]. Also, independent of the NIH clas-
sification, the Ki-67 index has shown its prediction effi-
cacy in the prediction of survival of patients with GISTs 
after treatment, including disease-specific survival and 
recurrence [7, 8, 10]. More importantly, it was found that 
Ki-67 expression was significantly associated with KIT 
mutation or PDGFRA mutation [13, 14]. Patients with 
PDGFRA mutation responded more poorly to the adju-
vant imatinib and may not be considered for adjuvant 
imatinib. Therefore, Ki67 expression can also be used as a 
reference tool to predict whether patients are suitable for 
adjuvant imatinib administration or not.

The conventional method to detect the expression level 
of Ki-67 utilizes samples from either pre-operative fine-
needle aspiration biopsy [15, 16] or from surgical proce-
dures. Regardless, due to relatively smaller sample size 
and heterogeneity in the tumor samples, Ki-67 expres-
sion assessment based on invasive biopsy may not be a 
true representative of entire GISTs [15, 16] and limites 
its use in preoperative assessment of GISTs. Also, immu-
nohistochemistry examination of Ki-67 expression in 
the surgical specimen for patients receiving presurgical 
adjuvant imatinib therapy may be underestimated and 
not accurate [15, 16]. Therefore, an accurate and a non-
invasive tool is required to assess the preoperative Ki-67 
expression status in patients with GISTs more accurately 
and comprehensively. In addition, a new tool will poten-
tially help physicians not only in making right decision 
on the adjuvant imatinib administration, but also in 

developing a follow up post-operative plan for patients 
with large and unresected GISTs. In this paper we have 
developed a Radiomics prediction model, a novel tool 
that extracts hundreds of quantitative features based 
on shape, intensity, size or volume of the target lesions. 
Recently Radiomics prediction model has gained atten-
tion in the diagnosis of cancers [17, 18]. Previous studies 
have shown high accuracy of radiomics in the assessment 
of biological behavior of GISTs comprehensively, includ-
ing malignant potential [19, 20], mitotic rate [19], recur-
rence [21]. However, to the best of our knowledge, this 
is the first ever study that investigates whether radiom-
ics can be used as a tool to assess Ki-67 expression status 
in GISTs. In this study, we aimed to develop and validate 
a radiomic signature and radiomics based nomogram to 
predict the Ki-67 expression label in patients with GISTs.

Patients and methods
Patients
With the ethical approval obtained from all 4 partici-
pating hospitals, a total of 339 patients with GIST were 
enrolled in this retrospective study. Patients fulfilling 
the following inclusion criteria were included for analy-
sis as follows: (1) patients who underwent surgery or 
endoscopic resection; (2) standard contrast-enhanced 
computed tomography (CE-CT) was performed within 
15 days before the treatment; (3) GISTs were diagnosed 
with histology and immunohistochemistry examina-
tions; (4) patients with possession of previously analyzed 
clinical and pathological variables. The exclusion criteria 
included patients, with a history of imatinib administra-
tion before surgery or with multiple detected GISTs.

Participants were divided into three independent 
cohorts: the training cohort, the internal validation 
cohort and external validation cohort. One hundred 
eighty-nine patients from the Renji hospital diagnosed 
between January 2011 and December 2018 were ran-
domly assigned to either the training cohort (148 
patients) and internal validation cohort (41 patients) in 
a 8:2 ratio. External validation cohort consisted of the 
remaining 150 patients diagnosed with GIST from the 
other three hospitals (Zhongshan Hospital, Sir Run Run 
Shaw Hospital and First Affiliated Hospital of Wenzhou 
Medical University) between January 2017 and Decem-
ber 2018.

CT examination
The detailed information of the CT protocol was avail-
able in Additional file 1: A1 and Table S1.

Immunohistochemistry
The Ki67 index was evaluated by immunohistochem-
istry within 7 days after surgical monoclonal mouse 
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antihuman Ki-67 antibody was used to detect Ki-67 
according to the manufacturer’s protocol. According to 
50-fold microscopy, in each section, 1000 cells were ran-
domly selected, and the Ki-67 positive cells were counted. 
According to the previous studies, the cut-off value 
for determining high Ki-67 expression was considered 
as ≥ 10% of positive cells [10–12, 22]. GISTs were classi-
fied into two groups: high Ki-67 expression (Ki-67 ≥ 10%) 
and low Ki-67 expression (Ki-67 < 10%).

Clinical variable, and the primary outcome
Clinical and pathological data were collected, including 
age, gender, tumor location, tumor size and Ki67 index. 
Tumor size was recorded as clinical tumor size measured 
by the largest diameter on axial CT. The primary end-
point in the study was efficacy in prediction of high Ki-67 
expression.

Radiomic signature building
All non-contrasted CT images were collected from Pic-
ture Archiving and Communication System for each 
GIST and then exported to the ITK-SNAP software (ver-
sion 2.2.0; http://www.itksn ap.org) for manual segmenta-
tion of the region of interest (ROI). For each patient, all 
slices of non-contrasted CT images were reviewed and 
the slice with the largest tumor area was selected. After 
that, 2D ROI for non-contrasted CT of the tumor was 

then delineated on the selected slice for each patient. Fig-
ure 1 shows the workflow of our study.

Radiomic features were extracted from the ROI of 
each GIST, including features of first order statistics, 
features of shape, features of grey-level co-occurrence 
matrix (GLCM), features of grey-level run-length 
matrix (GLRLM), features of grey-level size-zone matrix 
(GLSZM), features of gray-level dependence matrix 
(GLDM) using PyRadiomics on Python (version 3.7) 
[23]. The details of radiomic features extraction were 
described in Additional file  1: A2. As outlined in Addi-
tional file 1: A3, radiomic features selection and radiomic 
signature building were performed as follows: (1) fea-
ture reproducibility assessment using intra-/inter-class 
correlation coefficients (ICCs) was established [24]; (2) 
reservation of top features using minimum redundancy 
maximum relevance (mRMR) were ploted [25]; (3) sig-
nature building with least absolute shrinkage and selec-
tion operator (LASSO) algorithm was completed [26]. By 
following these three steps, the radiomic signature based 
on radiomic features of non-contrasted CT were built as 
predictors of high-malignant potential GISTs.

Development of the radiomic nomogram
A multivariate logistic model was utilized to develop the 
radiomic nomogram. While developing the radiomic sig-
nature in the training cohort, potential risk factors for 

Fig. 1 Schematic showing the workflow of the study. Based on the Ki67 expression profile, the tumor area were segmented and features were 
extracted. GIST patients were categorized into three different groups (training, internal validation, and external validation cohort), and the data from 
the training cohort were subjected to further downstream processing and clinical characterizations

http://www.itksnap.org
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high Ki-67 expression, including age, tumor location, and 
tumor size were included. The backward step-wise selec-
tion was applied by using the likelihood ratio test with 
Akaike’s information criterion as the stopping rule [27]. 
To provide an easy and personalized quantitative tool to 
predict the probability of high Ki-67 expression, we built 
the radiomic nomogram based on the variable that were 
statistically significant in the multivariate logistic model.

Statistical analysis
Statistical analysis was performed with R software (ver-
sion 3.5.0) and Python (version 3.7) with P value less than 
0.05 considered as statistical significance.

For development of a prediction model based on the 
logistic regression, a minimum of 10 events per predictor 
variable (EPV) is required for development [28]. In this 
study, five potential risk factors for high Ki-67 expres-
sion, including age, tumor location, tumor size, and our 
developed radiomic signature, were included for the 
development of radiomic nomogram. Therefore, at least 
40 patients with high Ki-67 expression were required for 
the development cohort. About 25% of GISTs were diag-
nosed as GISTs with high Ki-67 expression and totally 
160 patients were required to be included for the devel-
opment cohort.

Predictive accuracy of the radiomic signature and radi-
omic nomogram was evaluated by the receiver oper-
ating characteristic (ROC) curve, and the area under 
ROC curve (AUC) was calculated in the same way as 

previously reported [29, 30]. To correct overfitting bias, 
a corrected AUC was calculated using bootstrapping vali-
dation (1000 bootstrap resamples) in the training cohort. 
Calibration of the radiomic nomogram was assessed by 
the calibration curve with Hosmer–Lemeshow test [27]. 
In addition, decision curve analysis was performed to 
evaluate clinical usefulness of the radiomic signature and 
radiomic nomogram by quantifying the net benefit at dif-
ferent threshold probabilities. An optimal cutoff value 
with the largest Youden index for classifying the patients 
into low- and high-risk groups based on the risk of high 
Ki67 expression was calculated. During the calculation, 
we used data from the training cohort, and applied to the 
internal validation, and external validation cohorts [31]. 
Accuracy, sensitivity, specificity, negative predictive value 
(NPV), and positive predictive value (PPV) were also cal-
culated for the training cohort, internal validation and 
external validation cohorts using the respective defined 
optimal cutoff values.

Results
Patient characteristics
According to the Ki67 expression level, patients with 
GISTs were divided into two groups: GISTs with high 
Ki67 expression and GISTs with low Ki67 expression. As 
shown in the Table 1, we observed a positive correlation 
between the tumor size, and Ki67 expression. The tumor 
size was significantly associated with expression level of 
Ki67 in the univariate analysis model. In addition, only 

Table 1 Clinical characteristics of patients in the training cohort and validation cohort

* P value is calculated for difference of clinical characteristics between patients with low expression of Ki67 and patients with high expression of Ki67 by using the 
univariate analysis

Training cohort Internal validation cohort External validation cohort

Low 
expression

High 
expression

P* Low 
expression

High 
expression

P* Low 
expression

High 
expression

P*

N = 100 N = 48 N = 29 N = 12 N = 116 N = 34

Age, 
mean ± SD, 
years

62.2 ± 12.66 63.08 ± 12.03 0.683 63 ± 13.1 60.17 ± 12.76 0.53 61.81 ± 10.30 59.91 ± 9.99 0.649

Sex 1.000 0.629 0.960

 Female 47 (47.00%) 22 (45.83%) 14 (48.28%) 4 (33.33%) 71 (61.21%) 20 (58.82%)

 Male 53 (53.00%) 26 (54.17%) 15 (51.72%) 8 (66.67%) 45 (38.79%) 14 (41.18%)

Location 0.662 0.184 0.007

 Intestine 37 (37.00%) 21 (43.75%) 10 (34.48%) 7 (58.33%) 20 (17.24%) 14 (41.18%)

 Stomach 63 (63.00%) 27 (56.25%) 19 (65.52%) 5 (41.67%) 96 (82.76%) 20 (58.82%)

Size (cm) < 0.001 < 0.001 < 0.001

  ≤ 2 13 (13.00%) 1 (2.08%) 4 (13.79%) 0 (0%) 21 (18.1%) 1 (2.94%)

  2–5 54 (54.00%) 13 (27.08%) 14 (48.28%) 1 (8.33%) 68 (58.62%) 11 (32.35%)

  5–10 28 (28.00%) 19 (39.58%) 8 (27.59%) 4 (33.33%) 27 (23.28%) 15 (44.12%)

  > 10 5 (5.00%) 15 (31.25%) 3 (10.34%) 7 (58.33%) 0 (0) 7 (20.59%)



Page 5 of 11Zhang et al. Clin Trans Med            (2020) 9:12 

tumor location was significantly associated with expres-
sion level of Ki67 in the external validation data.

Feature selection and radiomic signature building
Fourty patients in the training cohort were randomly 
selected for segmentation by radiologist and re-seg-
mented by the same radiologist 2 weeks after the initial 
segmentation to calculate the intra-/inter-class corre-
lation coefficients for each extracted radiomic feature. 
These cases were then segmented by another radiologist 
for calculating of the intra-/inter-class correlation coef-
ficients of each extracted radiomic feature. Using ICC 
of 0.80 (both intra-and inter ICC) as a cut-off for deter-
mining good reproducibility, a total of 423 radiomic fea-
tures with good reproducibility were selected for next 
assessment. This was followed by calculating the mutual 
information (MI) for each included radiomic features. 
Radiomic features were ranked using the minimum 
redundancy maximum relevance (mRMR) algorithm and 
the only top 30 highest-ranking features were considered 
in our study. After application of LASSO logistic algo-
rithm (Fig.  2), six out of the 30 radiomic features were 
finally used to develop the radiomic signature (Additional 
file 1: A4). As shown in the Fig. 3, AUC of the radiomic 
signature, developed by our group were found to be 0.787 
[95% confidence interval (CI): 0.632–0.943], 0.765 (95% 
CI 0.683–0.847), 0.754 (95% CI 0.666–0.842) in the train-
ing cohort, internal validation cohort and external valida-
tion cohort, respectively.

Development and validation of the radiomic nomogram
In this study, the multivariate logistic model identified 
the tumor size and our developed radiomic signature 
as independent risk factors for high Ki67 expression 
(Table 2). These two factors were included to develop the 
radiomic nomogram, which was shown in the Fig. 4.

AUC (Fig.  3a) of the radiomic nomogram were 0.801 
(95% CI 0.726–0.876) in the training cohort. We found 
a decent calibration curve, which demonstrated a good 
agreement between prediction and observation in the 
training cohort (Fig. 5a). In addition, the Hosmer–Leme-
show test demonstrated no statistical significance in the 
training cohort (P = 0.464). Results indicated no depar-
ture from perfect fit.

The nomogram that was developed in this study was 
validated both in the internal validation cohort and exter-
nal validation cohort. AUC of the radiomic nomogram 
were recorded as 0.828 (0.681–0.974), 0.784 (0.701–
0.868) in internal validation cohort (Fig. 3b) and external 
validation cohort (Fig.  3c), respectively. The Hosmer–
Lemeshow test showed no significance in the training 
cohort (P = 0.464, Fig. 5a), the internal validation cohort 

(P = 0.444, Fig.  5b) and the external cohort (P = 0.215, 
Fig. 5c).

Based on the risk of high Ki67 expression for each 
patient according to our developed nomogram, a cut-off 
value of 0.27 was used to classify patients into high Ki67 
expression group, and low Ki67 expression group. Based 
on the cut-off value, the nomogram was able to evaluate 
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Ki67 expression status in about 70% patients, accurately 
(Table  3). In the validation cohort, PPV was more than 
85% for prediction of high Ki67 expression.

Clinical significance
In this study, benefits of the radiomic signature and 
radiomic nomogram were compared with all patients 

considered to have high Ki67 expression pattern and 
no patients considered to have high Ki67 expression 
profile by using the decision curve. Based on the result, 
we speculate that patients would benefit more from the 
radiomic signature and the radiomic nomogram if the 
threshold probability in the clinical decision was set 
at < 40% (Fig. 6).

Rad score

Rad nomogram

AUC

0.828 (0.681-0.974)

0.765 (0.683-0.847)Rad score

Rad nomogram

AUC

0.801 (0.726-0.876)

0.787 (0.632-0.943)

Rad score

Rad nomogram

AUC

0.784 (0.701-0.868)

0.754 (0.666-0.842)
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Fig. 3 AUC of the Rad score and the Rad nomogram in prediction of high Ki67 expression presence in the development cohort (a), internal 
validation cohort (b), and external validation cohort (c), respectively. AUC: areas under the receiver operating characteristic curve
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Discussion
This study is the first-ever study, where we have devel-
oped and validated an effectively preoperative radiomic 
nomogram using CT images to predict the Ki-67 expres-
sion status in GISTs patients. In this study, radiomic 

signature and tumor size was included in the nomogram, 
to identify GISTs with high Ki-67 expression using a rela-
tively large database from four different hospitals. The 
constructed nomogram provided a noninvasive, preoper-
ative tool to assess Ki-67 expression in GISTs. Our results 
suggest that this radiomic nomogram can potentially be 
used to identify the Ki-67 expression status in the etiol-
ogy of GIST.

Radiomics can extract hundreds of quantitative fea-
tures from medical images and is promising in prediction 
the biological behavior on the onset of tumor. In a num-
ber of previous studies, radiomics has been implicated in 
the predictions of the biological behaviors in GISTs [19–
21]. Two studies used radiomic features extracted from 
CE-CT to build prediction models for predicting malig-
nant potential with promising accuracy [19, 20]. Moreo-
ver, one study also built a prediction model for mitotic 
count with AUC of 0.820, 0.769 in the training cohort and 
the validation cohort, respectively [19]. This suggests that 
radiomic features may predict Ki-67 expression status in 

Table 2 Variable and  coefficients of  the  radiomic 
nomogram

OR odds ratio, CI confidence interval

Variable β OR (95% CI) P

Intercept 0.307 – –

Radiomic signature (per 
0.1 increase)

0.308 1.36 (1.1–1.68) 0.004

Size

 ≤ 2 0 Reference

 2–5 1.304 3.68 (0.41–32.76) 0.242

 5–10 1.631 5.11 (0.58–45.32) 0.143

 > 10 2.442 11.5 (1.03–128.73) 0.048

Points
0 10 20 30 40 50 60 70 80 90 100

Radiomic signature
−1.4 −1 −0.6 −0.2 0.2 0.6 1 1.2 1.6

Size (cm)
≤ 2 5-10

2-5  ≥10

Total Points
0 10 20 30 40 50 60 70 80 90 100 110 120

Risk of high Ki67 
      expression 0.05 0.1 0.2 0.30.40.50.6 0.7 0.8 0.9 0.95 0.99

Fig. 4 Development of the Radiomic nomogram. The range, radiomic signature, size, and Ki67 expression profiles were used to build the Radiomic 
nomogram. The probability of individual predictor were converted into scores according to the first scale Points. To use the nomogram, find the 
position of each variable on the corresponding axes, and a line was drawn to the points axis for the number of points, add the points from all of the 
variables, and draw a line from the total points axis to determine probability of high Ki67 expression at the lower line of the nomogram
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the etiology of GISTs because of positive association of 
Ki-67 expression and malignant potential [7–12].

Association between radiomic features and Ki-67 
expression in various tumors is well documented [32–
38]. Most studies focused on MRI texture features to 
predict the Ki-67 expression in thyroid cancer [37], 
breast cancer [36], liver cancer [34], and glioma [35] 
with AUC higher than 0.75. It is noteworthy that only 
two studies have focused on the CE-CT texture fea-
tures for the prediction of Ki-67 expression in lung 
cancer [32, 38]. Results from the above preliminary 

studies indicated feasibility of radiomic signatures in 
prediction of Ki-67 expression but none of studies have 
validated the feasibility and application of radiomic 
signatures in external validation datasets. In addition, 
no study has ever investigated whether it is feasible to 
predict the expression level of Ki-67 based on radiomic 
signature. To the best of our knowledge, the present 
study is the first study to develop a radiomic nomogram 
in the prediction of high Ki-67 expression. In addition, 
our study also validated predictive efficacy of the radi-
omic nomogram in the internal validation cohort and 
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Fig. 5 Validity of the predictive performance of the nomogram in estimating the risk of high Ki67 expression presence in the training cohort (a, 
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Page 9 of 11Zhang et al. Clin Trans Med            (2020) 9:12 

external validation cohort from another 3 hospitals 
with similar results to that of the training cohort.

Ki-67 is expressed in the proliferating cells in the 
G1, S and G2 phases of the cell cycle, and is a suitable 
marker to predict the proliferating status compared to 
the mitotic count, representing proliferating cells dur-
ing the M stage [6, 7]. Previously, Ki-67 expression levels 
have been implicated in the clinical set up in predicting 
malignant potential of GIST [11, 39–41]. In addition, 
Ki-67 expression could also precisely sub-divide high-risk 
GISTs effectively with different outcomes and GISTs with 
high Ki-67 expression also showed poorer prognosis even 
with imatinib therapy [42]. As an effective complemen-
tation of modified NIH criteria, preoperative assessment 
of Ki-67 expression could provide additional information 
for clinical decision-making. In the present study, the 
radiomic nomogram incorporated tumor size and radi-
omic signature consisted of six radiomic features and had 

a AUC of more than 0.75 for predicting the high Ki-67 
expression in the three independent datasets. This obser-
vation indicated the feasibility of preoperative, noninva-
sive assessment of Ki-67 in GISTs. In addition, developed 
nomogram in this study potentially can predict the high 
Ki-67 expression with PPV more than 85% in the valida-
tion cohort. About 70% of accuracy could be achieved 
in the three independent cohorts. With application of 
our built radiomic nomogram for prediction of Ki-67 
expression and radiomic models for prediction of malig-
nant potential or mitotic count [19, 32], comprehensive 
preoperative assessment could be performed for sequent 
choice of treatment, including follow-up, endoscopic 
resection or surgery.

Our study accounts for a number of limitations that 
we would like to highlight.. All data were collected retro-
spectively and thus bias could not be avoided. However, 
subsequent patients were enrolled to reduce selection 
bias in this study. Further prospective study is needed to 
validate our radiomic signature and the radiomic model. 
In this study, CT parameter varied among participat-
ing hospitals, leading to data heterogeneity. To address 
this discrepancy, all selected CT slices were normalized 
and resampled to adjust for bias by different CT param-
eters setting in different hospitals before extraction of all 
radiomic features. In addition, we also applied z-score 
method to standardize the radiomic features using mean 
and standard deviation calculated from the training 
cohort. In our study, AUC also did not differ significantly 
among different hospitals, which indicated reliable nor-
malization method. In our study, gene mutations were 
not included for development of the predictive model 
of high-malignant potential GISTs in the present study. 
However, these variables could not be obtained by pre-
operative clinical examination and thus were not taken 
into consideration. Further study is required to investi-
gate the relationship between radiomic features and gene 
mutation.

Conclusion
In conclusion, a radiomic nomogram on the basis of radi-
omic signature from CE-CT and tumor size was built for 
prediction of Ki-67 expression in GISTs. The proposed 
nomogram provides an ideal model and reference for the 
future preoperative assessment of cell proliferation on 
the onset of GISTs. However, we must attest that even 
though our data are promising, being the very study of its 
kind, these results are preliminary and further studies are 
required to validate our findings, primarily to assess the 
potential for clinical translation.

Table 3 Diagnostic efficacy of  the  developed radiomic 
nomogram in  assessment of  high Ki67 expression 
of gastrointestinal stromal tumors

PPV positive predictive value, NPV negative predictive value

Development 
cohort (%)

Internal 
validation cohort 
(%)

External 
validation 
cohort (%)

Accuracy 75.00 68.29 73.33

Sensitivity 75.00 83.33 58.82

Specificity 75.00 62.07 77.59

PPV 59.02 90.00 86.54

NPV 86.21 52.38 56.52
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Fig. 6 Decision curve analysis for the radiomic signature and 
radiomic nomogram in prediction of high Ki67 expression in patients 
with gastrointestinal stromal tumors
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