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EGFR‑vIII downregulated H2AZK4/7AC 
though the PI3K/AKT‑HDAC2 axis to regulate 
cell cycle progression
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Abstract 

Background:  The EGFR-vIII mutation is the most common malignant event in GBM. Epigenetic reprogramming 
in EGFR-activated GBM has recently been suggested to downregulate the expression of tumour suppressor genes. 
Histone acetylation is important for chromatin structure and function. However, the role and biological function of 
H2AZK4/7AC in tumours have not yet been clarified.

Results:  In our study, we found that EGFR-vIII negatively regulated H2AZK4/7AC expression though the PI3K/AKT-
HDAC2 axis. Because HDAC1 and HDAC2 are highly homologous enzymes that usually form multi-protein complexes 
for transcriptional regulation and epigenetic landscaping, we simultaneously knocked out HDAC1 and HDAC2 and 
found that H2AZK4/7AC and H3K27AC were upregulated, which partially released EGFR-vIII-mediated inhibition of 
USP11, negative regulator of cell cycle. In addition, we demonstrated in vitro and in vivo that FK228 induced G1/S 
transition arrest in GBM with EGFR-vIII mutation. FK228 could enhance anti-tumour activity by upregulating expres-
sion of the tumour suppressor USP11 in GBM cells.

Conclusions:  EGFR-vIII mutation downregulates H2AZK4/7AC and H3K27AC, inhibiting USP11 expression though 
the PI3K/AKT-HDAC1/2 axis. FK228 is an effective and promising treatment for GBM with EGFR-vIII mutation.
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Background
Histone modifications are closely related to the regulation 
of gene expression and genome function by changing the 
global chromatin structure. Among these various modi-
fications, histone acetylation is an important component 
of chromatin decondensation, which greatly influences 

chromatin structure and function. This acetylation pro-
cess disturbs histone/DNA interactions and changes 
histone/histone interactions in the nucleosome, which 
is relatively stable and plays an important role in regu-
lating gene transcription by providing binding sites for 
the recruitment of transcription factors [1]. In contrast, 
histone deacetylation changes the electrostatic proper-
ties of chromatin and tends to gene suppression [2]. The 
acetylation and deacetylation of histones are dynamically 
regulated by histone acetyltransferases (HATs) or histone 
deacetylases (HDACs) [3, 4]. Abnormal histone acety-
lation or deacetylation is closely related to a variety of 
tumours: acute myeloid leukaemia [5], T cell lymphoma 
[6], acute promyelocytic leukaemia [7], B-cell lympho-
mas [8], ovarian carcinoma [9], gastric cancer [10], colo-
rectal tumours [11], gliomas [12], prostate cancer [13], 

Open Access

*Correspondence:  kang97061@tmu.edu.cn; Liangzeng209@yahoo.com
†Hongyu Zhao and Yunfei Wang contributed equally to this work as first 
authors
1 Department of Neurosurgery, Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, Wuhan, Hubei, China
2 Department of Neurosurgery, Tianjin Medical University General 
Hospital, Laboratory of Neuro‑Oncology, Tianjin Neurological Institute, 
Key Laboratory of Post‑trauma Neuro‑repair and Regeneration in Central 
Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, 
Variations and Regeneration of Nervous System, Tianjin 300052, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3255-3369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-020-0260-7&domain=pdf


Page 2 of 15Zhao et al. Clin Trans Med            (2020) 9:10 

lung cancer [14], breast carcinoma and medulloblastoma 
[15], oesophageal squamous cell carcinomas [16], and 
pancreatic cancer [17]. H2AZ, the most conserved vari-
ant of H2A, is associated with chromatin integrity and 
transcriptional regulation [18, 19]. In the yeast Saccharo-
myces cerevisiae, acetylated H2AZ is enriched in the pro-
moter regions of active genes [20]. The role and biological 
function of H2AZK4/7AC in tumours have not yet been 
clarified. The results of our study, provide deep insight 
into the role of H2AZK4/7AC in glioma with EGFR vari-
ant III (EGFR-vIII) overexpression.

Glioblastoma (GBM), the most common brain tumors 
in adults, is one of the most lethal tumours and has a 
poor prognosis. The traditional treatment for GBM is 
surgical excision followed by concurrent chemoradio-
therapy and adjuvant chemotherapy. However, the ben-
efits of this treatment have been limited. EGFR-vIII, the 
result of EGF receptor mutation, is mostly involved in 
GBM; EGFR-vIII occurs in the classic subtype of GBM 
and is found in approximately one-third of GBMs [21]. 
The EGFR-vIII mutation was found to continuously acti-
vate downstream pathways to promote proliferation, 
survival, invasion, and angiogenesis [22]. The PI3K-AKT 
pathway, one of the main downstream signalling path-
ways of EGFR, is continuously activated when EGFR 
is mutated [12]. Previous researchers found that PI3K-
AKT pathway activation could promote HDAC2 tran-
scription and translation, accelerating the progression 
of hepatocellular carcinoma [23]. In our study, we found 
that HDAC2 expression was upregulated in EGFR-vIII-
expressing cells and that HDAC2 may be a target for 
EGFR-activated GBM.

Epigenetic reprogramming in EGFR-activated GBM 
has recently been suggested to downregulate the expres-
sion of tumour suppressor genes [24]. In this study, we 
confirmed that EGFR-vIII epigenetically silenced ubiq-
uitin-specific protease 11 (USP11) in  vitro and in  vivo, 
which mediated tumour suppression though blocking 
cell cycle progression [25]. EGFR-vIII activated the PI3K-
AKT pathway to upregulate HDAC2 expression, which 
then reduced H2AZK4/7AC level to silence USP11. 
Recent studies showed that the recruitment of HDAC1 
and HDAC2 to chromatin in complexes repressed tran-
scription [26–28]. Therefore, FK228 might be a novel 
therapeutic option to target EGFR-vIII GBM.

Methods
Glioma samples datasets and bioinformatics analysis
Two large glioma cohorts with gene expression profiles 
and the corresponding clinical information from the Chi-
nese Glioma Genome Atlas (CGGA, n = 301) and the 
Cancer Genome Atlas (TCGA, n = 702) were enrolled 
in our study. The cohort whose data was derived from 

CGGA comprised 23 classical subtype cases, 111 mes-
enchymal subtype cases, 81 neural subtype cases, 86 
proneural subtype cases, 122 grade II cases, 51 grade III 
cases, and 128 GBM cases. We used data from 690 gli-
oma samples from TCGA, collected from 256 grade II 
cases, 269 grade III cases and 165 GBM cases. The UCSC 
was used to determine H2AZ-, H3K27AC-, H3K4me3- 
binding sites in the human genome.

Cell culture and lentivirus transfection
The U87 and U251 human GBM cell lines were obtained 
from the American Type Culture Collection (ATCC, 
Manassas, VA, USA). N9 primary glioblastoma cells were 
kindly provided by Professor Xiaolong Fan (Beijing Key 
Laboratory of Gene Resource and Molecular Develop-
ment, Laboratory of Neuroscience and Brain Develop-
ment, Beijing Normal University). U87, U251 and N9 
cells encoding mutant EGFR (U87-vIII, U251-vIII and 
N9-VIII cells, respectively) were produced through the 
stable transfection of EGFR-vIII lentivirus (GeneChem, 
Shanghai, China) and selected with puromycin for at 
least 7  days before use. U87 and U251 cells were cul-
tured in Dulbecco’s modified Eagle medium (DMEM) 
with 10% foetal bovine serum (FBS, HyClone), while N9 
cells were cultured in DMEM/Nutrient mixture F-12 
Ham (DMEM:F-12, 1:1 mixture) containing 10% FBS 
(HyClone). All cells were cultured at 37 °C in 5% CO2.

Transient transfection
SiRNA against HDAC1 or HDAC2 was transfected into 
cells for 48  h when cells had reached at approximately 
70% confluence. Lipofectamine 3000 (Invitrogen) was 
used according to the manufacturer’s instructions. siR-
NAs with the following sequences, which were reported 
in a previous study, were used: siRNA-HDAC1, 5′-CCC 
GGA​GGA​ AAG UCU GUU A-3′; and siRNA-HDAC2, 
5′-CCC AUA ACU UGC UGU UAA A-3′ [29]. We used 
scrambled siRNA as a control.

RNA extraction and real‑time quantitative PCR (RT‑qPCR)
Total RNA was extracted using TRIzol reagent (Life 
Technologies). Then, cDNA was synthesized using the 
GoScriptTM reverse transcription system (Promega, 
USA). Amplification was performed using a QuantS-
tudio™ 3 real-time PCR system (Thermo Fisher Scien-
tific, USA) according to the manufacturer’s instructions. 
Relative gene expression levels were analysed by the 
2∆∆−Ct method [30]. The following primers were used: 
HDAC1-F: CAC​ATC​AGT​CCT​TCC​AAT​A, HDAC1-
R: GCA​GCA​TTC​TAA​GGT​TCT; HDAC2-F: CAC​CTC​
CGA​TTC​CGA​GCT​TT, HDAC2-R: TCC​AAT​ATC​ACC​
GTC​GTA​GTAGT; USP11-F: TGT​AGA​AGA​GAA​CGG​
ACG​GC, USP11-R: TCT​CCA​CAA​GGA​ACC​AGC​TT; 
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and GAPDH-F: GGT​GGT​CTC​CTC​TGA​CTT​CAACA, 
GAPDH-R: GTT​GCT​GTA​GCC​AAA​TTC​GTTGT.

Chromatin immunoprecipitation (ChIP) and ChIP‑qPCR 
assays
ChIP assays were performed using a Millipore ChIP kit 
(Magna ChIP™ A/G kit, catalogue # 17-10085) according 
to the manufacturer’s instructions. Anti-H2AZK4/7AC 
(Cell Signaling Technology, USA), anti-H3K27AC (Cell 
Signaling Technology, USA) and anti-H3K4me3 (Cell 
Signaling Technology, USA) antibodies were used for 
ChIP assays. The following primers for USP11 were used 
for ChIP-qPCR: Primer 1-F: TTT​GAT​TCT​GGC​GGA​
AGC​CT, Primer 1-R: AGA​TGC​AAC​TCG​GCG​AGA​AA; 
Primer 2-F: TAA​TGC​AAC​TTT​TGG​GGG​CG, Primer 
2-R: GGC​GCG​TCA​TAA​ACT​TTG​CT; Primer 3-F: GGG​
CGG​ACA​GCT​AGT​TTA​GTT, Primer 3-R: AGC​CTG​
ATC​AGA​ATG​CCC​TT; Primer 4-F: TCG​CAA​CGT​CTG​
GAA​AAG​GG, Primer 4-R: CTC​CAG​GAC​CGA​AAC​
TGG​TC; Primer 5-F: AAT​ATG​GCA​GTA​GCC​CCG​
C, Primer 5-R: CCA​CTT​CCG​GAT​TCT​GGT​CC; and 
Primer 6-F: AAC​GAG​GCG​AGC​TTT​GTG​A, Primer 6-R: 
GAA​GGC​TTC​CGC​CAG​AAT​CA.

Western blotting
Western blotting was carried out as described previ-
ously [31]. Anti-EGFRvIII, anti-P-AKT, anti-H3K27AC, 
anti-H2AZK4/7AC, anti-H3K4me3, anti-H3, anti-H2AZ 
(1:1000, Cell Signaling Technology), anti-HDAC1, anti-
HDAC2, anti-USP11, anti-GAPDH, anti-P21 (1:1000, 
Proteintech), anti-CDK6 (1:1000, ABclonal), anti-CDK4 
(1:500, AbSci) and anti-Cyclin D1 (1:500, Absin) primary 
antibodies were used.

Co‑ immunoprecipitation (Co‑IP) assays
Cells were resuspended in 1  ml of ice-cold RIPA buffer 
and incubated at 4 °C for 30 min after washing with cold 
PBS and collection and then centrifuged at 14,000 r/min 
for 15 min to remove the precipitate. The lysate was pre-
cleared by the addition of 1.0 µg of the appropriate con-
trol IgG with a 20 µl volume of resuspended protein A/G 
agarose (Santa Cruz Biotechnology, Protein A/G PLUS-
Agarose; sc-2003). The lysate and beads were incubated 
at 4 °C for 30 min. After centrifugation at 2500 r/min for 
5 min at 4  °C, the cell lysates were collected and mixed 
with rabbit IgG or primary antibodies together with a 
20 µl volume of resuspended protein A/G agarose over-
night at 4  °C. Then, the beads were washed using RIPA 
buffer and collected. After boiling, the samples were 
assessed by Western blotting.

Flow cytometry assays
After FK228 treatment for 24  h, cells were harvested 
and fixed in 70% ethanol at 4 °C for 12 h. Then, the cells 
were transferred to − 20 ℃. Before measurement, cells 
were centrifuged at 1500 r/min for 5 min to remove the 
ethanol and then washed twice with D-PBS. Cell debris 
was collected by centrifugation at 1500 r/min for 5 min. 
Each sample was incubated at room temperature for 
30  min with 300  µl of a 0.05  mg/µl propidium iodide 
(PI) dye solution.

Immunofluorescence assays and confocal imaging
The immunofluorescence assay was carried out as 
described previously [32].

Nude mouse intracranial model development
Approximately 4-week-old BALB/cA nude mice were 
purchased from the Animal Center at the Cancer 
Institute at the Chinese Academy of Medical Science 
(Beijing, China) and used to establish an intracranial 
glioma model. A total of 4 × 105 U87 cells transfected 
with negative control or U87-vIII cells were implanted 
stereotactically into each mouse using cranial guide 
screws [33]. FK228 (1 μg/g) in 1% DMSO in PBS was 
intraperitoneally injected into each mouse in the treat-
ment group every 3 days. The control group received an 
equal amount of 1% DMSO in PBS through intraperito-
neal injection as previously reported [34]. Tumour size 
was monitored using the IVIS Lumina imaging system 
(Xenogen, USA) every 7 days. After sacrifice, the brains 
were carefully removed and immersed in 10% formalin 
for 24  h. Then, haematoxylin-eosin (H&E) and immu-
nohistochemical (IHC) staining were performed.

H&E and IHC staining
H&E and IHC staining was performed as previously 
described [12]. The following primary antibodies were 
used: anti-EGFR-vIII (1:200, Cell Signaling Technol-
ogy), anti-P-AKT (1:100, Cell Signaling Technology), 
anti-H3K27AC (1:50, Cell Signaling Technology), 
anti-H2AZK4/7AC (1:50, Cell Signaling Technology), 
anti-HDAC1 (1:100, Proteintech), anti-HDAC2 (1:100, 
Proteintech), anti-USP11 (1:50, Proteintech), anti-P21 
(1:400, Proteintech), anti-CDK6 (1:100, ABclonal), and 
anti-CDK4 (1:100, AbSci).

Statistical analyses
GraphPad Prism 7.0 was used to analyse the statisti-
cal significance of differences. A two-tailed t-test was 
performed to compare different groups. Kaplan–Meier 
plots were used for survival analysis, and the log-rank 
test was performed to test differences in survival. The 
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two-sided Pearson correlation was used for correlation 
analysis. Heat maps were produced using Cluster 3.0 
and Tree View. Experimental data are presented as the 
means ± SEMs or means ± SDs, and experiments were 
performed in triplicate. P < 0.05 indicated a statistically 
significant difference.

Results
The EGFR pathway negatively regulated H2AZK4/7AC 
expression
Mass spectrometric analysis revealed that the lysine 
residues of H2AZK4/7AC at positions 4, 7, 11 and 13 
in U87 and U87-vIII cells were acetylated. U87-vIII cells 
presented lower levels of H2AZ acetylation at positions 
4 and 7 than U87 cells (Fig.  1a). To determine whether 
H2AZK4/7AC is negatively regulated by EGFR-vIII, 
we performed Western blot and immunofluorescence 
assays. The results showed that the protein level of 
H2AZK4/7AC was lower in U87, U251, and N9 cells 
when EGFR-vIII was overexpressed (Fig.  1b, d). Wild-
type EGFR (EGFRwt) and EGFR-vIII have similar down-
stream signalling molecules, and stimulating EGFRwt 
caused the same downstream changes observed after 
EGFR-vIII stimulation [35]. To investigate whether 
H2AZK4/7AC can be downregulated by EGFRwt stim-
ulation, like EGFR-vIII stimulation, EGF was used to 
stimulate U87 cells, following which H2AZK4/7AC was 
downregulated (Fig. 1c). EGFR-vIII is important for pro-
moting tumorigenesis and progression, so we hypoth-
esize that H2AZK4/7AC downregulation is associated 
with malignant GBM progression.

HDAC2 bound H2AZ and regulated the deacetylation 
of H2AZK4/7AC
First, we used trichostatin A (TSA), a specific HDAC 
class I/II inhibitor, to treat U87-vIII, U251-vIII, and 
N9-vIII cells and found that H2AZK4/7AC was signifi-
cantly upregulated (Fig. 2a). This suggested that HDACs 
play an important role in regulating H2AZK4/7AC. 
HDAC1 and HDAC2, which are class I HDACs, exhibit 
a wide range of expression in tumours and strong enzy-
matic activity for many histone substrates. To deter-
mine whether HDAC1 and/or HDAC2 can specifically 
regulate H2AZK4/7AC levels, we first performed Co-IP 
assays and found an endogenous interaction between 
H2AZ and HDAC1/2 in U87-vIII cells (Fig.  2b). Then, 
HDAC2 knockdown, the effect of which was verified by 
using RT-qPCR, in U87-vIII, U251-vIII and N9-vIII cells 
(Fig. 2c) up-modulated H2AZK4/7AC in U87-vIII, U251-
vIII and N9-vIII cells (Fig.  2d). Although HDAC1 can 
bind H2AZ, HDAC1 and HDAC2 do not have the same 
enzyme activity against H2AZK4/7AC (Fig.  2d). Immu-
nofluorescence co-staining and a plot profile of HDAC2 

and H2AZ expression in U87-vIII cells also showed their 
co-localization in the nucleus (Fig.  2e). Generally, these 
data showed that HDAC2 can specifically downregulate 
H2AZK4/7AC at the protein level in GBM (Fig. 2f ).

Activation of the EGFR‑vIII signal transduction pathway 
upregulated HDAC2 expression through the PI3K/AKT 
pathway
Class I HDACs are highly expressed in a variety of human 
tumours [36–40] and play an important role in the malig-
nant progression of cancer. The EGFR signal transduc-
tion network is highly complex and consists of multiple 
signalling pathways. Activation of EGFR in cancer cells 
can activate several linear pathways, and the PI3K/AKT 
axis, one of the major downstream pathways, participates 
in regulating  tumour  cell  proliferation,  growth,  sur-
vival  and  angiogenesis. EGFR-vIII can continuously 
activate the PI3K/AKT pathway without EGF stimula-
tion [12]. Activation of the PI3K-AKT pathway upregu-
lated HDAC2 expression at the mRNA and protein levels 
in hepatocellular carcinoma [23]. To determine whether 
EGFR-vIII can upregulate the expression of HDAC2 by 
continuous PI3K/AKT pathway activation, RT-qPCR 
was performed. The results showed that EGFR-vIII could 
upregulate the expression of HDAC2 at the mRNA level 
in U87, U251, and N9 cells (Fig.  3a). The activation of 
EGFR-vIII also upregulated HDAC1 transcription in U87 
and N9 cells but not in U251 cells (Fig. 3a). Western blot-
ting showed that HDAC2 expression was upregulated 
at the protein level in U87, U251, and N9 cells and that 
HDAC1 translation was increased in U87 and N9 cells 
upon EGFR-vIII activation (Fig.  3b). This finding was 
consistent with the RT-qPCR results. Then, we treated 
U251-vIII cells with LY294002, a PI3K inhibitor, which 
induced a dose-dependent increase in HDAC2 expres-
sion (Fig. 3c). To investigate whether PI3K/AKT pathway 
inhibition would have the same effect on HDAC2 in U87-
vIII and N9-vIII cells, LY294002 (40  μm) was adminis-
tered. Inhibition of the PI3K/AKT pathway inhibited 
HDAC2 expression in U87-vIII and N9-vIII cells (Fig. 3c). 
These results indicated that EGFR-vIII upregulates 
HDAC2 transcription and translation through activating 
the PI3K/AKT pathway.

Simultaneous knockout of HDAC1 and HDAC2 upregulated 
H2AZK4/7AC and H3K27AC
HDAC1 and HDAC2 are highly homologous enzymes 
and usually form multi-protein complexes together with 
transcription factors and co-repressors for transcriptional 
regulation and epigenetic landscaping. The HDAC1–
HDAC2 dimer has been reported in the CoREST, NuRD 
and Sin3 complexes, and HDAC1 and HDAC2 may be 
complementary in terms of their functions in regulating 
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Fig. 1  EGFR-vIII negatively regulated H2AZK4/7AC expression. a Mass spectrometric analysis revealed that U87-vIII cells presented lower levels of 
H2AZ acetylation at positions 4 and 7 than U87 cells. b Western blotting showed decreased H2AZK4/7AC expression in U87, U251, and N9 cells 
when EGFR-vIII was overexpressed. c U87 cells were stimulated with EGF, following which H2AZK4/7AC was downregulated. d Immunoluorescence 
showed decreased H2AZK4/7AC expression in U87, U251, and N9 cells when EGFR-vIII was overexpressed
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Fig. 2  HDAC2 specifically bound H2AZ and regulated the deacetylation of H2AZK4/7AC. a U87-vIII, U251-vIII, and N9-vIII cells were treated with 
TSA (0.2 μm), following which H2AZK4/7AC was significantly upregulated. b The endogenous interaction between H2AZ and HDAC1/2 in U87-vIII 
cells. c RT-qPCR showed the efficiency of HDAC1 and HDAC2 siRNA knockout. d HDAC2 knockout upregulated H2AZK4/7AC but not HDAC1. e 
Immunofluorescence co-staining and plot profile of HDAC2 and H2AZ expression in U87-vIII cells showed their co-localization in the nucleus. f The 
mechanism by which HDAC2 may downregulate H2AZK4/7AC
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cell proliferation, apoptosis, and differentiation [41]. 
Deletion of both HDAC1 and HDAC2 leads to severe 
phenotypes. HDAC1 and HDAC2 have been known to 
deacetylate histone H3K27 [42, 43]. We inhibited both 
HDAC1 and HDAC2 and found that H2AZK4/7AC 
and H3K27AC were upregulated in U87-vIII, U251-vIII 
and N9-vIII cells (Fig.  3d), while there was no change 
in H3K27me3 levels (Fig.  3d). We performed single 
silencing of HDAC1 and 2 and found there was no sig-
nificant change with H3K27AC. In contrast with double 

silencing of HDAC1 and HDAC2 (Additional file 1: Fig-
ure S1). These results indicated that H2AZK4/7AC and 
H3K27AC may have a synergistic effect on the malignant 
progression of GBM.

PI3K/AKT pathway blockade released 
the EGFR‑vIII‑mediated inhibition of H2AZK4/7AC
To investigate whether activation of the PI3K/AKT path-
way participated in the downregulation of H2AZK4/7AC, 
LY294002 was used to treat U87-vIII, U251-vIII, 

Fig. 3  EGFR-vIII upregulated HDAC2 expression through the PI3K/AKT pathway. a EGFR-vIII upregulated HDAC2 mRNA levels in U87, U251, N9 cells 
and HDAC1 mRNA levels in U87 and N9 cells. b HDAC2 expression was upregulated at the protein level in U87, U251, and N9 cells, and HDAC1 
translation was increased in U87 and N9 cells when EGFR-vIII was activated. c HDAC2 expression was decreased in LY294002-treated U87-vIII, 
U251-vIII, and N9-vIII cells. d Simultaneous HDAC1 and HDAC2 knockout upregulated H2AZK4/7AC and H3K27AC expression. e PI3K/AKT pathway 
blocked removed EGFR-vIII-mediated inhibition of H2AZK4/7AC
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and N9-vIII cells; we found that H2AZK4/7AC and 
H3K27AC expression was increased. Conversely, the 
expression of H3K27me3 was decreased. We found no 
change in H3K4me3 levels (Fig. 3e).

Bioinformatics analysis showed that EGFR negatively 
regulated USP11, SELK, HIP1R, CYFIP2, and ALAD 
expression
We subjected the total proteins of U87-vIII and U87 
cells to mass spectrometry analysis. Data in the CGGA 
and TCGA public databases were analysed to search for 
genes negatively regulated by EGFR-vIII. Cluster analy-
sis of data from the CGGA and TCGA databases (106 
genes) and the results of Pearson correlation analysis 
showed that USP11, SELK, HIP1R, CYFIP2 and ALAD 
expression levels were negatively correlated with EGFR 
(Fig.  4a–c, Additional file  2: Figure S2A–C). These 106 
genes were shown by mass spectrometry analysis to be 
expressed at lower levels in U87-vIII cells than in U87 
cells. Grade-related analysis showed that the expres-
sion levels of USP11, SELK, HIP1R, CYFIP2 and ALAD 
were negatively correlated with grade (Fig. 4d, Additional 

file  2: Figure S2D) and that high expression levels of 
USP11, SELK, HIP1R, CYFIP2 and ALAD were sig-
nificantly associated with a better prognosis (Fig.  4e, 
Additional file  2: Figure S2E). Cluster analysis of gene 
expression with data from different subtypes of GBM 
from the CGGA showed that USP11, SELK, HIP1R, 
CYFIP2 and ALAD were expressed mainly in the neural 
and proneural subtypes of GBM, while EGFR was prin-
cipally expressed in the classic subtype of GBM [12] 
(Fig. 5a, b, Additional file 3: Figure S3a, b). These results 
indicated that activation of EGFR/EGFR-vIII might pro-
mote the malignant progression of GBM through down-
regulating USP11, SELK, HIP1R, CYFIP2 and ALAD.

EGFR‑vIII activation inhibited USP11 expression 
through a PI3K/Akt‑mediated epigenetic pathway
USP11 is a deubiquitinase that binds several substrates 
maintains their stability though their deubiquitination 
[44]. Evidence has indicated that USP11 has anti-tumour 
activity in lung adenocarcinoma [45] and glioma [46]. To 
demonstrate that USP11 is downregulated upon EGFR-
vIII activation, Western blotting and RT-qPCR were 

Fig. 4  EGFR negatively regulated USP11 expression. a, b Cluster analysis of data from the CGGA and TCGA databases (106 genes). c Pearson 
correlation analysis showed that USP11 expression was negatively correlated with EGFR. d The expression levels of USP11 were negatively 
correlated with GBM grade. e High expression levels of USP11 were associated with a better prognosis in glioma
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Fig. 5  EGFR-vIII enhanced USP11 promoter silencing through the PI3K/AKT-HDAC1/2 axis. a, b Cluster analysis of data from the CGGA showed 
that USP11 were expressed mainly in the neural and proneural subtypes of GBM, while EGFR was principally expressed in the classic subtype of 
GBM. c, d EGFR-VIII downregulated USP11 at the mRNA and protein levels in U87-vIII, U251-vIII and N9-vIII cells. e, h PI3K/AKT pathway inhibition 
upregulated the transcription and translation of USP11 in U87-vIII, U251-vIII and N9-vIII cells. f, i The knockout of both HDAC1 and HDAC2 
upregulated USP11 at the mRNA and protein levels in U87-vIII, U251-vIII and N9-vIII cells
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performed and showed that USP11 expression was down-
regulated at the mRNA and protein levels in U87, U251 
and N9 cells upon the activation of EGFR-vIII (Fig.  5c, 
d). Emerging evidence has shown that the PI3K/AKT 
pathway can inhibit USP11 transcription and transla-
tion. LY294002 was used to treat U87-vIII, U251-vIII and 
N9-vIII cells, and PI3K/AKT pathway inhibition resulted 
in the transcriptional and translational upregulation 
of USP11 (Fig.  5e, h). The USP11 promoter-associated 
increase in H3 acetylation and decrease in H3K27 tri-
methylation were reported to result in the transcriptional 
activation of USP11 [46]. Bioinformatics analysis showed 
a significant negative correlation between HDAC1 and 
USP11 (Fig.  5  g). The knockout of both HDAC1 and 
HDAC2 upregulated USP11 at the mRNA and protein 
levels in U87-vIII, U251-vIII and N9-vIII cells (Fig. 5f, i).

We have proven that the simultaneous knockout of 
HDAC1 and HDAC2 upregulated H2AZK4/7AC and 
H3K27AC. Analysis of data from the UCSC website 
revealed that the USP11 promoter area was enriched 
in H3K4me3, H3K27AC and H2AZ (Fig.  6a). Predicted 
primers (primers 1, 2, 3, 4, 5, and 6) distributed around 
USP11 transcription start sites (TSSs) are shown in 
Fig.  6b. The three primers with the highest degree of 
enrichment for each histone were selected for ChIP-
qPCR. The results showed that the USP11 promoter 
area specifically bound H3K4me3, H3K27AC and 
H2AZK4/7AC. The enrichment of the USP11 promoter 
area for H3K27AC and H2AZK4/7AC was decreased in 
U87 cells upon EGFR-vIII activation (Fig. 6c). We found 
no change in the enrichment of the USP11 promoter area 
for H3K4me3 (Fig. 6c). These results demonstrated that 
H3K27AC and H2AZK4/7AC synergistically enhanced 
USP11 expression in U87 cells. In addition, EGFR-vIII 
enhanced silencing of the USP11 promoter through the 
PI3K/AKT-HDAC1/2 axis.

FK228 induced G1/S transition arrest in vitro
A dynamic balance between histone acetylation and 
deacetylation is maintained to regulate gene expression 
appropriately; a disturbance in this balance in cancer 
though altered gene expression can accelerate cell cycle 
progression [47]. FK228, which is a specific HDAC1 and 
HDAC2 inhibitor, was confirmed to induce cell cycle 
arrest in the G1/S phase in hepatocellular carcinoma 
[29]. To investigate whether FK228 can block the cell 
cycle, we analysed the cell cycle distribution. A decrease 
in the proportion of cells in S phase and a correspond-
ing increase in the proportion of cells in G1 phase were 
found in U87-vIII, U251-vIII and N9-vIII cells after treat-
ment with FK228 (Additional file  4: Figure S4A). We 
also examined the levels of cell cycle-related protein in 
FK228-treated cells. We found that the levels of cyclin 

D1, CDK4 and CDK6, all of which were expressed in 
cells in G1 phase, were reduced in U87-vIII, U251-vIII 
and N9-vIII cells treated with FK228. In contrast, P21, 
which negatively regulates the cell cycle, was significantly 
upregulated after FK228 treatment (Additional file 4: Fig-
ure S4B).

FK228 suppressed GBM xenograft growth in nude mice
We used U87 and U87-vIII cells to construct an in vivo 
GBM model. To further evaluate the therapeutic efficacy 
of FK228 in GBM with EGFR-vIII, we treated U87-vIII 
cell xenograft GBM intracranial model mice with FK228 
(1 µg/g) every 3 days. Bioluminescence imaging showed 
the degree of tumour growth in DMSO-treated U87 cell 
xenograft mice, DMSO-treated U87-vIII cell xenograft 
mice and FK228-treated U87-vIII cell xenograft mice 
(Fig.  7a). The FK228-treated group showed significantly 
inhibited tumour growth compared with the DMSO-
treated groups (Fig.  7b, d). In addition, the FK228-
treated mice exhibited significantly longer survival times 
(Fig.  7c). IHC staining showed that EGFR-vIII activa-
tion significantly upregulated the expression of P-AKT, 
HDAC1 and HDAC2 and downregulated H2AZK4/7AC, 
H3K27AC and USP11 expression (Fig.  7e). In addition, 
FK228 treatment decreased the expression of CDK4 and 
CDK6 and increased P21 expression (Fig.  7f ). Further-
more, FK228 treatment upregulated H2AZK4/7AC and 
H3K27AC expression and enhanced USP11 expression 
(Fig.  7f ). These results indicated that FK228 suppressed 
U87-vIII cell tumour growth and induced cell cycle arrest 
in vivo and that EGFR-vIII epigenetically silenced USP11, 
while FK228 partially released this inhibition.

Discussion
GBM, the most common brain tumour in adults, has a 
poor prognosis. Surgical excision in combination with 
adjuvant radiotherapy and chemotherapy has limited 
benefits. Therefore, the need to identify the potential 
mechanisms resulting in GBM malignant progression 
and develop corresponding effective targets is urgent. 
The EGFR-vIII mutation is a common malignant event 
in GBM. Deng and his colleagues found that the deubiq-
uitinase USP11 could inhibit cell cycle progression from 
G1 to S phase though stabilizing P21 [25]. In our study, 
we found for the first time that H2AZK4/7AC down-
regulation contributed to GBM malignant progression 
when EGFR-vIII was activated. We demonstrated that 
the EGFR-vIII mutation downregulated H2AZK4/7AC 
and H3K27AC, inhibiting USP11 expression though the 
PI3K/AKT-HDAC1/2 axis. FK228, a specific HDAC1 and 
HDAC2 inhibitor, was shown to have anti-tumour effects 
though inducing G1/S transition arrest in GBM in vitro 
and in  vivo. Our findings provide persuasive evidence 
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that the histone deacetylase inhibitor FK228 can remodel 
the cancer epigenome to induce cell cycle progression 
arrest, affording new insights for the exploration of pro-
spective targets for GBM therapies.

HDAC1 expression was increased at the mRNA and 
protein levels upon EGFR-vIII activation in U87 and N9 
cells but not in U251 cells. This might be the reason for 
the differences in cancer gene expression between U251 
cells and U87 and N9 cells, which are GBM cell lines 

with different subtypes. The concurrent blockade of 
HDAC1 and HDAC2 induced cell cycle arrest, but the 
specific mechanisms of this effect in GBM cells were 
not clear. In our study, the concurrent inhibition of 
HDAC1 and HDAC2 upregulated USP11 and induced 
G1/S transition arrest in GBM cells in vitro and in vivo. 
USP11 was reported to have tumour-suppressive func-
tions in brain tumours [46] and serve as a negative reg-
ulator of the cell cycle [25]. We assume FK228-induced 

Fig. 6  EGFR-vIII enhanced USP11 promoter silencing through downregulating H3K27AC and H2AZK4/7AC in the USP11 promoter area. a 
H3K4me3-, H3K27AC- and H2AZ-binding sites and the locations of six primers. b The locations of the predicted primers based on TSS. c ChIP-qPCR 
results showed that the enrichment of H3K27AC and H2AZK4/7AC in the USP11 promoter area was decreased in U87 cells when EGFR-vIII was 
activated
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Fig. 7  FK228 suppressed GBM cell xenograft growth in nude mice. a The extent of tumour growth in DMSO-treated U87 cell xenografts, 
DMSO-treated U87-vIII cell xenografts and FK228-treated U87-vIII cell xenografts was measured by bioluminescence imaging. b, d The 
FK228-treated group showed significantly inhibited tumour growth compared with the DMSO-treated group. c Survival analysis among the three 
groups. e EGFR-vIII activation significantly upregulated the expression of P-AKT, HDAC1 and HDAC2 and downregulated H2AZK4/7AC, H3K27AC 
and USP11 expression. f FK228 treatment decreased the expression of CDK4 and CDK6 and increased P21 expression. In addition, FK228 treatment 
upregulated H2AZK4/7AC and H3K27AC expression and enhanced USP11 expression. g The mechanism suggested by the results of the study
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G1/S transition arrest had an anti-tumour effect in 
GBM though epigenetic remodelling to upregulate 
USP11 expression. This work will continue in future 
research.

Our present work characterized the functional inter-
actions between HDAC2 and H2AZK4/7AC. Previ-
ous researchers found that H2AZ could be acetylated 
by Esa1 and Gcn5 in yeast [20, 48], but the mechanism 
of human histone H2AZ acetylation is still unclear. We 
demonstrated for the first time that histone H2AZ could 
be acetylated at lysine residues 4 and 7 by HDAC2 in 
human cancer cells. This finding provides new insight 
into the potential role of HDAC2 in tumorigenesis. Since 
Bonenfant and his colleagues observed the acetylation of 
human replacement histone H2AZ at lysine residues 4 
and 7 for the first time [49], the function of H2AZAC has 
received extensive attention. H2AZAC was reported to 
play an important role in active gene expression at pro-
moter regions in cancer, and the deacetylation of H2AZ 
was found to induce gene repression [50]. However, the 
specific function of H2AZK4/7AC in GBM is still poorly 
understood. Our results indicated that H2AZK4/7AC 
combined with H3K27AC bound promoter regions to 
enhance USP11 expression in U87 cells. When EGFR-
vIII was activated, the binding of H2AZK4/7AC and 
H3K27AC at USP11 promoter regions was reduced, 
which led to USP11 inhibition. These findings pro-
vide new insight into the role of H2AZK4/7AC in GBM 
tumorigenesis.

Epigenetic abnormalities have been associated with 
tumour development and progression and are considered 
novel therapeutic targets. Several studies have suggested 
that HDAC inhibitors can inhibit tumour development 
and progression though inducing cell cycle arrest, induc-
ing apoptosis, reducing chemotherapy resistance and 
inhibiting angiogenesis [51–53]. FK228 has been used 
in phase II trials to treat breast cancer (https​://clini​caltr​
ials.gov). The EGFR-vIII mutation is the most common 
malignant event in GBM, and there is no effective treat-
ment for GBM with EGFR-vIII mutation thus far. There-
fore, the need to develop a new treatment strategy for 
EGFR-vIII GBM is urgent. In our study, we demonstrated 
for the first time that FK228 could induce cell cycle arrest 
to treat GBM with EGFR-vIII mutation. FK228 could 
enhance anti-tumour activity against GBM by upregulat-
ing the expression of the tumour suppressor USP11. Our 
results indicate a new therapeutic target and an effective 
treatment for GBM with EGFR-vIII mutation. Signifi-
cant progress has been made in the treatment of gliomas 
with drug combinations [54]. Our study might inspire 
the combination of FK228 and other small molecule 
inhibitors with other drugs, although further studies are 
needed.

Conclusions
In summary, we found for the first time that 
H2AZK4/7AC downregulation contributed to GBM 
malignant progression when EGFR-vIII was activated. 
EGFR-vIII mutation can downregulate H2AZK4/7AC 
and H3K27AC, inhibiting USP11 expression though 
the PI3K/AKT-HDAC1/2 axis. FK228 was shown to 
have anti-tumour effects though inducing G1/S transi-
tion arrest in GBM in  vitro and in  vivo. Our findings 
provide persuasive evidence that the histone deacety-
lase inhibitor FK228 can remodel the cancer epigenome 
to induce cell cycle progression arrest, affording new 
insights for the exploration of prospective targets for 
GBM therapies.
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Additional file 1: Figure S1. Single silencing of HDAC1 and HDAC2 could 
not up-modulated the expression of H3K27AC. (A) Single silencing of 
HDAC1 and HDAC2 showed that there was no significant change with 
H3K27AC in U87-vIII, U251-vIII and N9-vIII cells.

Additional file 2: Figure S2. EGFR negatively regulated SELK, HIP1R, 
CYFIP2, and ALAD expression. (A, B) Cluster analysis of data from the CGGA 
and TCGA databases (106 genes). (C) Pearson correlation analysis showed 
that SELK, HIP1R, CYFIP2 and ALAD expression was negatively correlated 
with EGFR. (D) The expression levels of SELK, HIP1R, CYFIP2 and ALAD 
were negatively correlated with GBM grade. (E) High expression levels of 
SELK, HIP1R, CYFIP2 and ALAD were associated with a better prognosis in 
glioma.

Additional file 3: Figure S3. SELK, HIP1R, CYFIP2 and ALAD were 
expressed mainly in the neural and proneural subtypes. (A, B) Cluster 
analysis of data from the CGGA showed that SELK, HIP1R, CYFIP2 and 
ALAD were expressed mainly in the neural and proneural subtypes of 
GBM, while EGFR was principally expressed in the classic subtype of GBM.

Additional file 4: Figure S4. FK228 induced G1/S transition arrest in vitro. 
(A) FK228 induced G1/S transition arrest in U87-vIII, U251-vIII and N9-vIII 
cells. (B) FK228 reduced cyclin D1, CDK4, and CDK6 expression and 
increased P21 expression.
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