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Abstract 

Background: Autosomal dominant polycystic kidney disease (ADPKD), a common of monogenetic disorder caused 
by the polycystic kidney disease-1 (PKD1) or PKD2 genes deficiency. In this study, we have re-analyzed a microarray 
dataset to generate a holistic view of this disease.

Methodology: GSE7869, an expression profiling dataset was downloaded from the Gene Expression Omnibus (GEO) 
database. After quality control assessment, using GEO2R tool of GEO, genes with adjusted p-value ≤ 0.05 were deter-
mined as differentially expressed (DE). The expression profiles from ADPKD samples in different sizes were compared. 
Using CluePedia plugin of Cytoscape software, the protein–protein interaction (PPI) networks were constructed and 
analyzed by Cytoscape NetworkAnalyzer tool and MCODE application. Pathway enrichment analysis of clustered 
genes by MCODE with the high centrality parameters in PPI networks was performed using Cytoscape ClueGO plugin. 
Moreover, by Enrichr database, microRNAs (miRNAs) and transcription factors (TFs) targeted DE genes were identified.

Results: In this study to explore the molecular pathogenesis of kidney in ADPKD, mRNA expression profiles of cysts 
from patients in different sizes were re-analyzed. The comparisons were performed between normal with minimally 
cystic tissue (MCT) samples, MCTs with small cysts, and small cysts with large cysts. 512, 7024, and 655 DE genes were 
determined, respectively. The top central genes, e.g. END1, EGFR, and FOXO1 were identified with topology and clus-
tering analysis. DE genes that were significantly enriched in PPI networks are critical genes and their roles in ADPKD 
remain to be assessed in future experimental studies beside miRNAs and TFs predicted. Furthermore, the functional 
analysis resulted in which most of them are expected to be associated with ADPKD pathogenesis, such as signal path-
ways that involved in cell growth, inflammation, and cell polarity.

Conclusion: We have here explored systematic approaches for molecular mechanisms assay of ADPKD as a mono-
genic disease, which may also be used for other monogenetic diseases beside complex diseases to provide suitable 
therapeutic targets.
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Background
The hereditary autosomal dominant polycystic kidney 
disease (ADPKD) is the most common monogenic dis-
order. ADPKD is a multi-systematic disease diagnosed 
by growing multiple cysts on kidneys. liver cysts and 
cerebral aneurysms are also the main clinical findings 
of disease [1]. ADPKD is genetically heterogeneous and 
results from mutations in at least two genes, Polycys-
tic Kidney Disease-1 (PKD1) or PKD-2 [2]. These genes 
encode transmembrane proteins, Polycystin-1 (PC-1) and 
Polycystin-2 (PC-2) which form a functional complex 
[3]. This protein complex, similar to other proteins are 
affected in polycystic kidney diseases locate in primary 
cilia of epithelial and endothelial cells [4]. PC-1 known as 
a cell surface receptor and PC-2 is a cation channel and 
both of them play a critical role in controlling of signal-
ing pathways related to proliferation, apoptosis, and cell 
polarities through Ca2+ homeostasis regulation [5]. In 
spite of numerous studies related to polycystins func-
tions, their roles are poorly understood. Regarding this 
major limitation being sensible to recognize the under-
lying mechanisms, systems biology approaches with 
a holistic view of the molecular mechanisms of disorders, 
have the potential to overcome these limitations. These 
approaches with comprehensive interpretation, using 
high throughput data extracted from omics data, provide 
the opportunity to represent the  behavior  of networks 
and emerge new therapeutic strategies. Therefore, we 
re-analyzed the array dataset deposited by Song X et al. 
which was compared transcription profiling of all sam-
ples from PKD1 patients with normal tissue, and gene set 
enrichment analysis (GSEA) was performed [6]. But here, 
we have shown large-scale protein interaction networks. 
For deeply understanding of central genes that related 
with phenotypes of disease in each step, network and 
clustering analysis were carried out. These revealed some 
of the  key genes, such as EDN1, EGFR, ARF6,  FOXO1, 
and ITGB5 involved during disease. Pathways were iden-
tified with enrichment analysis with the  notice on cysts 
size, from early to late steps. Moreover, for the purpose 
of assay the regulatory mechanisms of DE genes, micro-
RNAs (miRNAs) and transcription factors (TFs) enriched 
with DE genes were predicted.

Methods
Microarray data and DE genes screening
Microarray dataset with accession number “GSE7869” 
from the Gene Expression Omnibus (GEO) database 
was extracted. The quality of transcriptomics dataset 
was measured by principal component analysis (PCA) 
through the ggplot2 package  and prcomp function of R 
[7]. Using GEO2R a web tool of GEO, groups were com-
pared to detect genes that are differentially expressed 

with cysts growth. Samples of normal tissues (n = 3), min-
imally cystic tissues (n = 5), small cysts (n = 5), and large 
cysts (n = 3) were compared based on during the time of 
disease progression, using Student’s t-test, respectively. 
Benjamini–Hochberg false discovery rate (FDR) was used 
for p-value correction. Genes were declared as differen-
tially expressed, had an adjusted p-value less than 0.05.

Protein‑protein interaction networks construction
The protein–protein interaction (PPI) networks were 
built with DE genes. For networks construction, Clue-
Pedia plugin version 1.5.2 [8] of Cytoscape software 
version 3.7.1 [9] was used. STRING database with con-
fidence cutoff 0.80 was provided, for retrieving interac-
tions [10]. Networks topology was investigated using 
the NetworkAnalyzer tool of Cytoscape [11]. “Molecu-
lar  Complex Detection” (MCOD) plugin of Cytoscape 
detected modules, highly connected sub-networks, 
based on default settings [12].

Pathway enrichment analysis
Functional analysis of genes clustered with MCODE 
was done by Cytoscape ClueGO plugin version 2.5.2 
[13]. Reactome [14] and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) [15] databases were chosen for 
retrieving pathways. Bonferroni step down was applied 
for p-value correction, and signaling pathways with 
adjusted p-value ≤ 0.05 were determined.

miRNA and TF enrichment analysis
The microRNAs (miRNAs) and transcription fac-
tors (TFs), key regulators of genes, were predicted by 
Enrichr web server [16]. TargetScan microRNA 2017 
and ChEA 2016 libraries were used for miRNA and TF 
enrichment analysis, respectively. Adjusted p-value less 
than 0.05 was considered as the significant threshold. 
The miRNAs with more targeted genes were selected.

Results
By microarray data analysis, differentially expressed genes 
were identified
The microarray dataset “GSE7869” which includes renal 
cysts in different sizes; small cysts (SC) less than 1 mm, 
medium cysts between 10 and 25 mm, and large cysts 
(LC) greater than 50 mm have been analyzed. Minimally 
cystic tissues (MCT) obtained from healthy parts of the 
renal cortex of PKD1 patients were considered as het-
erozygote samples. In quality assay step except medium 
cysts, the samples were segregated based on their states 
(normal tissue, minimally cystic tissue, small cyst, 
and large cyst), indicate the acceptable quality of this 
dataset (Fig.  1). Using GEO2R tool, we obtained 512, 
7024, and 655 genes which are significantly variably 
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expressed between normal vs. MCT samples, MCT vs. 
SC samples, and SC vs. LC samples, respectively (Addi-
tional file 1). Interestingly, these sets of DE genes have 
few overlapping genes (Fig. 2a). 

Protein–protein interaction networks were constructed
The PPI networks with DE genes were constructed. 
Links between genes were selected based on activation, 
binding, post-translational modification, and inhibition 
interactions. PPI networks are shown small cyst growth 
phase is an important and complex step during the pro-
gression of the disease. 81, 2737, and 155 nodes (genes) 
are in PPI networks (normal vs. MCT, MCT vs. SC, 
and SC vs. LC), respectively (Fig. 2b–d). The MCODE 
application identified protein clusters in networks. 
These protein complexes and modules are highly inter-
connected subnetworks with the most effective genes. 
Network topology were  measured based on  the graph 
theory concepts such as degree, betweenness, and 
closeness centrality. The seed gene with the highest 
centrality is EDN1 in the early stage, normal vs. MCT 

comparison. Seed genes such as EGFR, ARF6, WWTR, 
SMURF2, TGFB2, and HSD17B8 are critical genes in 
the comparison of MCT with SC. FOXO1, EDN1, and 
ITGB5 are introduced as central genes in the late stage, 
SC vs. LC comparison. Some of these genes includ-
ing EGFR and EDN1 have been recognized related to 
ADPKD in previous experimental studies [17, 18] and 
other genes are candidates for future studies. The genes 
are represented in Table 1.

Pathway enrichment analysis was performed
Functional analysis was carried out based on genes 
detected by MCODE. Using pathway enrichment analy-
sis from 18, 1318, and 66 genes, we reached to 7, 113, 
and 39 pathways, respectively (Fig.  3). Interestingly, the 
GoTerms are informative and related to the phenotype of 
each step, such as collecting duct acid secretion in early 
step. An interesting finding in this study was the detec-
tion of critical pathways  and functions such as EGF, 
Wnt, MAPK, HIF, P53, CFTR, AMPK, PDGF, NFκB, 
IGF1, MET signaling, oxidative phosphorylation, energy 

Fig. 1 The quality of the microarray dataset is satisfying. The Principle component analysis results of the GSE7869 dataset were shown the samples 
were separated appropriately
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metabolism, cell–cell and cell–matrix interaction, and 
signaling by interleukins which were previously shown to 
be associated with ADPKD in experimental studies [19–
21], and other pathways could consider for more studies 
and validation.

miRNAs and TFs enriched with DE gene were determined
The miRNAs and TFs as important regulators of DE 
genes were predicted. HNF4A, ESR1, and RXR were 
defined as TFs in the  initial step, in normal vs. MCT 
comparison. TFs were significant in the small and large 
cyst growth steps are shown in Table  2. The top miR-
NAs enriched with DE genes in each phase are shown 
in Fig.  4. Previous studies reported the  association of 
ADPKD with some of TFs e.g. HNF4A, STAT3, VDR, 
TP53, and HIF1A [6, 20, 22, 23]. Also, the role of miR-17 
family and miR-192 in cyst enlargement were identified 

[24, 25]. It is valuable to investigate other miRNAs and 
TFs in experimental studies. 

Discussion
ADPKD caused by mutations in PKD1 or PKD2 genes 
[2] and the protein products of these genes, polycystin-1 
and polycystin-2 act as a mechanosensor on the surface 
of epithelial and endothelial cells [4]. The loss and gain 
of function of these proteins, leading to dysregulation of 
pathways related to proliferation, apoptosis, and polar-
ity of cells [5]. Despite many studies indicated the func-
tions of the polycystins, the numerous ambiguities remain 
about the molecular mechanisms of the disease progres-
sion. For the importance of time series analysis of diseases 
[26], the purpose of this study was the computational 
analysis of the expression profile of renal cysts that were 
compared based on different sizes of cysts. Bioinformat-
ics methods were performed in this study showed that 

Fig. 2 The overlapping of differentially expressed genes and protein–protein interaction networks. The protein- protein interaction networks were 
built with differentially expressed genes. b: Normal vs. MCT, c: MCT vs. SC, d: SC vs. LC)



Page 5 of 8Rahimmanesh and Fatehi  Clin Trans Med             (2020) 9:1 

512, 7024, and 655 DE genes, respectively dysregulated in 
each step. The PPI networks were shown nodes and their 
interactions became more complex with the progression 
of disease in small cyst growth. The topology and cluster-
ing analysis of networks were employed for revealing can-
didate genes with high centrality  as therapeutic targets. 
Nodes (genes) with high degree, they have many connec-
tions and are important for the networks. Betweenness 
centrality is based on the number of shortest paths going 
through a node and are shortcuts of the networks. Also, 
closeness centrality calculated physically nearest genes to 
all nodes [27]. Modules are high density regions in the net-
work and identify functional genes [12]. The role of some 
of these genes has been well documented in ADPKD such 
as EDN1 as a vasoconstrictor may promote tumorigen-
esis and recent studies have documented that an increase 
in serum endothelin levels is associated with renal 

pathogenesis of ADPKD. Also, polymorphisms of EDN1 
can influence the age of onset of end-stage renal disease 
in ADPKD [18, 28]. EGFR promotes cell growth, prolif-
eration, and cell  survival and has important functions in 
the progression of ADPKD [17]. Other genes introduced 
as applicant genes for future studies are ARF6, SMURF2, 
WWTR1, CACNB2, and FOXO1. ARF6  is a member of 
the RAS superfamily that regulates signaling pathways 
related to actin remodeling such as wnt path, the central 
pathway in ADPKD [26]. SMURF2 controls cell migration 
with BMP and TGFβ signaling pathways [29]. WWTR1 
acts as a transcriptional coactivator downstream of the 
Hippo signaling pathway that plays a major function in 
the control of organ size [30]. Ablation of CACNB2 leads 
to calcium homeostasis derivation and could have a criti-
cal role in the initiation and progression of the  disease. 
Previous studies showed that mutation in the PKD1 leads 

Table 1 Top clustered genes in the PPI networks. The seed genes with the highest density in PP networks are shown

GOID Betweenness 
centrality

Closeness centrality Degree GOID Betweenness 
centrality

Closeness centrality Degree

Normal vs. MCT HSF1 0.002468 0.285681 17

EDN1 0.412698 0.313043 3 NRCAM 0.001105 0.25658 13

MCT vs. SC PRMT5 0.000581 0.296164 17

EGFR 0.017832 0.371711 149 POLR3C 3.92E-05 0.265655 17

RPL35 5.85E-05 0.30435847 73 SEMA3A 3.9E-05 0.28154 16

COPA 0.00661 0.299735 54 TAF9B 0.00086 0.274302 15

PMF1 1.41E-05 0.309089 49 PIAS4 0.000677 0.299916 15

ARF6 0.006571 0.317375 45 THRB 0.000456 0.312586 13

FBXW11 0.002383 0.324162 44 DCAF7 0.000292 0.276992 12

SMURF2 0.003544 0.323445 40 EIF1 1.64E-05 0.240752 12

WWTR1 0.004166 0.318269 35 GSN 0.004329 0.284374 11

CACNB2 0.001283 0.313691 34 OCLN 0.001005 0.269397 11

TBL1X 0.001139 0.317051 33 AES 7.63E-05 0.308475 11

CUL3 0.001145 0.302286 28 ATP6 3.7E-07 0.186567 11

RPP30 0.000402 0.250681 28 ALDOA 0.001615 0.264891 4

AP1M2 5.86E-05 0.281063 26 HSD17B8 0.666667 1 3

TGFB2 0.002654 0.314127 25 SC vs. LC

PHAX 0.000336 0.294655 23 NCBP1 0.153881 0.26259 17

FABP4 0.000212 0.297939 23 KDELR2 0.01875 0.533333 7

SEC23A 0.001501 0.258339 22 FOXO1 0.152968 0.264493 5

CXCL9 6.9E-05 0.269514 21 EDN1 0.121988 0.302905 7

ND2 5E-05 0.215126 21 PSMA5 0.066667 0.769231 7

CTF1 0.000322 0.267398 19 ITGB5 0.134354 0.25 5

CITED2 9.8E-05 0.289845 19 PPIE 0.105023 0.216617 7

(See figure on next page.)
Fig. 3 Pathway enrichment analysis of clustered genes. Functional analysis showed interconnected and informative pathways mainly are 
associated with renal cystic growth (a Normal vs. MCT, b MCT vs. SC, and c SC vs. LC). The significance of pathways is labeled based on the color 
code. The number of mapped genes in each path is shown according to the size of nodes
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to higher glycolysis in ADPKD kidneys. FOXO1 through 
insulin signaling plays a main role in glucose metabolism 
and consequently involved in ADPKD pathogenesis [31, 

32]. Also, ITGB5 contributes to cell adhesion and known 
as a biomarker in kidney disease [33]. The mechanisms of 
the newly introduced crucial genes such as PPIE remain 
to be identified  with experimental studies. We pointed 
out TFs such as HNF4A, STAT3, VDR, TP53, and HIF1A 
associated with ADPKD [22, 23]. In addition, other TFs 
as CLOCK in ADPKD pathogenesis firstly are described 
in this study. Since CLOCK involved in kidney function, 
confirmation its role in ADPKD can get interesting results 
[34]. Functional analysis was shown that the pathways 
are correlated with the phenotype of disease in each step 
including pathways involved in cell proliferation, apopto-
sis, and inflammation. The roles of some of the pathways 
have determined in ADPKD pathogenesis [19, 20].

Conclusions
Here by computational tools we generate a system-
atic view of the ADPKD to explore the comprehensive 
molecular mechanisms of a monogenic disease. Methods 
employed in this study may also be used for each mono-
genic disorder to reach novel therapeutic targets. Also, 
the necessity of holistic maps assay of monogenetic dis-
ease besides complex disease is desired.

Table 2 Transcription factor enrichment analysis

TFs were obtained with adjusted p-value < 0.05

Normal vs. MCT MCT vs. SC SC vs. LC

HNF4A CLOCK ESR1 BRD4 VDR

ESR1 ZNF217 TCF21 NERF2 AR

RXR NUCKS1 ESR2 CEBPD PPARG 

RELA NR1H3 TOP2B KDM5B

WT1 OLIG2 SMARCA4 TP53

PAX3-FKHR SOX9 STAT3 MYB

CEBPD FOXA1 TP63 KDM5A

SMARCA4 AR EBF1 EKLF

FOXA2 KLF4 PAX3-FKHR FOXA1

PRDM5 MYB SOX2 CEBPB

SOX2 CTNNB1 ZNF217 PCGF2

HNF4A KLF6 NFE2L2

NFE2L2 P300 NRF2

NRF2 VDR SMAD4

SMAD4 HNF4A

Fig. 4 miRNA enrichment analysis results. The top of the miRNA were predicted. An adjusted p-value less than 0.05 was considered as the 
significant cut-off
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