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Phosgene-induced acute lung injury 
(ALI): differences from chlorine-induced ALI 
and attempts to translate toxicology to clinical 
medicine
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Abstract 

Background: Phosgene (carbonyl dichloride) gas is an indispensable chemical inter-mediate used in numerous 
industrial processes. There is no clear consensus as to its time- and inhaled-dose-dependent etiopathologies and 
associated preventive or therapeutic treatment strategies.

Methods: Cardiopulmonary function was examined in rats exposed by inhalation to the alveolar irritant phosgene 
or to the airway irritant chlorine during and following exposure. Terminal measurements focused on hematology, 
protein extravasation in bronchoalveolar lavage (BAL), and increased lung weight. Noninvasive diagnostic and prog-
nostic endpoints in exhaled breath (carbon dioxide and nitric oxide) were used to detect the clinically occult stage of 
pulmonary edema.

Results: The first event observed in rats following high but sublethal acute exposure to phosgene was the stimula-
tion of alveolar nociceptive vagal receptors. This afferent stimulation resulted in dramatic changes in cardiopulmo-
nary functions, ventilation: perfusion imbalances, and progressive pulmonary edema and phospholipoproteinosis. 
Hematology revealed hemoconcentration to be an early marker of pulmonary edema and fibrin as a discriminating 
endpoint that was positive for the airway irritant chlorine and negative for the alveolar irritant phosgene.

Conclusions: The application of each gas produced typical ALI/ARDS (acute lung injury/acute respiratory distress 
syndrome) characteristics. Phosgene-induced ALI showed evidence of persistent apnea periods, bradycardia, and 
shifts of vascular fluid from the peripheral to the pulmonary circulation. Carbon dioxide in expired gas was sugges-
tive of increased ventilation dead space and appeared to be a harbinger of progressively developing lung edema. 
Treatment with the iNOS inhibitor aminoguanidine aerosol by inhalation reduced the severity of phosgene-induced 
ALI when applied at low dose-rates. Symptomatic treatment regimens were considered inferior to causal modes of 
treatment.
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Background
Phosgene (carbonyl dichloride) gas is an indispensa-
ble chemical intermediate used in numerous indus-
trial processes at a global annual production scale of 

approximately 15 million metric tons. In contrast to most 
irritant gases, phosgene is poorly soluble in water, reacts 
by acylation with nucleophilic moieties, and causes pul-
monary edema with a typical clinical “latency” or, more 
appropriately described, an clinically “occult” period. At 
such production scales, phosgene is commonly produced 
on demand and solvent-free by high-yield catalyzed gas-
phase reactions of carbon monoxide and chlorine. Phos-
gene is an essential building block for the synthesis of 
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isocyanates, which serve as monomers for paints, coat-
ings, insulating foams, and special-use chemicals, to 
mention but a few.

Phosgene and chlorine are most notorious as early 
chemical warfare agents, first used militarily in 1915 dur-
ing World War I (WWI). For operational purposes, they 
were denoted as either G52 (during WWI) or CG (WWI 
and later) [1–8]. A comprehensive overview of warfare 
agents, including phosgene, has been published [9–13]. 
Within military communities [both United States (US) 
and non-US], phosgene has been the subject of many 
toxicological studies, human toxicity estimates (ranging 
from threshold mild effects to lethality), and other gen-
eral reviews and commentaries [12–15].

Therapeutic approaches have traditionally been based 
on hypothetical pathways elucidated through in  vivo 
research on rodents. Putative mechanisms of phosgene-
induced ALI range from direct interaction and dete-
rioration of lung surfactants and associated changes in 
lung mechanics [16, 17] to free radical attacks on neu-
ronal, endothelial and epithelial cells, resulting in tissue 
destruction and mediator release [18, 19]. Canine, ovine, 
and porcine models have been used when studying the 
cardiopulmonary and hematological effects of meth-
ods used in humans. These models included protective 
ventilation in terminally anesthetized animals and phar-
macological interventions such as steroids and broncho-
dilators [18–26]. Many of the drugs examined in these 
studies were shown to be ineffective in follow-up proof-
of-principle studies. Concurrent with the change in para-
digms for treating ALI/ARDS (acute lung injury/acute 
respiratory distress syndrome), the emphasis of more 
recent research has shifted from treating to preventing 
acute lung injury using triage-based preemptive, person-
alized ventilator strategies applied to maintain normal 
lung function in patients at high risk [27–32]. Supportive 
treatment commonly includes increased fractional con-
centrations of  FiO2, the use of PEEP, and physical rest. 
However, preventive treatment of phosgene-induced ALI 
with ‘injury-adjusted’ partial pressures of  O2 and PEEP 
settings has not been systematically investigated. Coun-
termeasures were further complicated because ‘trial and 
error’ types of treatment strategies were already applied 
in the absence of indications and robust diagnostic tools 
that would have given prognostic guidance to clinicians.

Mechanism-based causal countermeasures require an 
in-depth understanding of the adverse outcome pathway 
(AOP), including its concentration × time relationship, 
initiating and amplifying the respective life-threatening 
condition. While past approaches focused on pharma-
cological interventions to mitigate phosgene-induced 
pulmonary edema, the focus of the research described 
in this paper was to better characterize the onset and 

interrelationships of early types of physiological dys-
regulation as initiating events causing progressively 
developing pulmonary edema. Unlike other, more 
water-soluble irritant gases, such as HCl or chlorine, 
potentially lethal exposure to phosgene may not sub-
jectively perceived as such. Thus, clinically occult lung 
edema might occur within the asymptomatic period of 
patients, which then changes precipitously with time 
after exposure, leading to respiratory failure and death. 
The odor threshold for phosgene is significantly higher 
than current inhalation exposure limits [5, 33–35]. 
Thus, odor or sensory irritation provides insufficient 
warning or clinical evidence of hazardous exposure 
doses.

Despite overwhelming evidence from both toxico-
logical and medical research, even recently published 
papers often begin with the following statement: “Owing 
to its poor water solubility, one of the hallmarks of phos-
gene toxicity is an unpredictable asymptomatic latent 
phase before the development of noncardiogenic pulmo-
nary edema”. Notably, the “latent” or, more appropriately 
phrased, clinically “occult” period of phosgene poison-
ing is the largely asymptomatic interval between expo-
sure and the onset of edema by conventional methods. 
This definition is a fallacy since the incipient anatomic 
and pathophysiologic lung injury occurs with expo-
sure and steadily progresses until sufficiently severe to 
become phenotypically detectable. Its occurrence fol-
lows a typical reciprocal inhaled concentration x time 
relationship. At exposure intensities within the range 
of 300–500  ppm ×  min, pulmonary edema occurs few 
hours post-exposure, followed by lethality  ≈12–24  h 
later. At much higher exposure intensities, this period 
may becomes markedly shorter [35, 36]. Delayed mortal-
ity was also observed in experimental models of phos-
gene examined 80 years ago [24]; however, it was absent 
in more recent studies [37, 38]. Accounting for the fact 
that the more recent industrial production of phosgene is 
by catalytic reaction of the high-purity gases anhydrous 
chlorine and carbon monoxide, the presence of irritant 
impurities causing airway injury can be ruled out. The 
largest-scale human exposures to chlorine occurred dur-
ing World War I, when the gas was used as a chemical 
weapon. Chlorine-induced oxidative injury and normal 
repair of the respiratory epithelium of the airways was 
critical to preventing the long-term pulmonary pathology 
that can occur following acute injury [39, 40].

This review discusses the most salient findings from 
toxicological and pharmacological research on rats and 
dogs over a period of one decade [17, 20, 37, 38, 41–50]. 
The objective of this project was not only to develop 
inhalation exposure systems to expose rats and dogs to 
phosgene under highly controlled conditions and similar 
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modes of exposure [20, 33, 37, 38, 49, 51] but also to 
study the early physiological events involved in phos-
gene-induced ALI, including options for causal and pre-
ventive treatment strategies. This process included the 
identification of early biomarkers of pulmonary injury 
that predict life-threatening pulmonary edema. Although 
most of the mechanistic endpoints were invasive in 
nature, emphasis was also directed toward non-invasive 
diagnostic methods that are translatable to clinical prac-
tice. One of the ancillary objectives of this work was to 
search for diagnostic tools to provide integrated infor-
mation as to how triage and countermeasures could be 
structured for patients exposed to mixtures of phosgene 
and chlorine, a precursor of phosgene. To achieve these 
objectives, methods used in toxicology must be translat-
able to those used in humans.

Inhalation method—rats
Rats were exposed to phosgene  (COCl2) using a directed-
flow nose-only inhalation principle [33, 37, 51]. Cur-
rent testing guidelines give preference to this mode of 
inhalation exposure [52]. Certified gas standards with 
specified stability in synthetic air were used in all stud-
ies. The gas was contained in 10  L cylinders @150  bar. 
The volume-to-mass conversion factor for phosgene is 
1 ppm = 4.1 mg/m3. Throughout all studies, the exposure 
period was 30  min. Air flow, temperature, and humid-
ity measurements in the inhalation chamber utilized a 
computerized data acquisition and control system. The 
exposure conditions were adjusted to maintain an air-
flow rate of 0.75 L/min per rat, which is threefold higher 
than the respiratory minute ventilation of the rat. Under 
the given conditions, inhalation chamber state–state was 
attained within the first minute of exposure. The analyti-
cal concentrations from the inhalation chamber were in 
agreement with the nominally calculated concentra-
tions, which were targeted at 30–35  mg phosgene/m3 
(≈1000 mg/m3 × min or ≈250 ppm × min). In studies 
aimed at toxicological endpoints, the characterization of 
test atmospheres utilized OSHA method no. 61 (http://
www.osha-slc.gov/dts/sltc/methods/organic/org061/
org061.html) using gas bubblers filled with a toluenic 
solution of the trapping agent 2-hydroxymethyl-piper-
idine (2-HMP). The resultant analyte was then analyzed 
by gas chromatography. For mechanistic and interven-
tion studies, actual concentrations were determined 
in real time using a calibrated Gasmet Dx-4000 FT-IR 
(Fourier transform infrared spectroscopy) gas analysis 
system (for details see http://www.gasmet.com/images/
tiedostot/product-downloads/Gasmet_DX4000_Techni-
cal_Data_(v1.6).pdf ). The spatial homogeneity and tem-
poral stability of phosgene in exposure atmospheres were 
controlled in real time [37].

Rats exposed first to phosgene and then to the aero-
solized drug aminoguanidine were exposed nose-only, 
similar to phosgene [44], or in a small whole-body inhala-
tion chamber with dynamic air flow and aerosol genera-
tion at targeted and analytically verified concentrations 
of ≈300 mg drug/m3. The comparison of nose-only and 
whole-body exposed rats served the purpose of judging 
the impact of “psychological immobilization stress” and 
associated cardiovascular stimulation due to restraint 
relative to non-immobilized, whole-body-exposed rats. 
Under such exposure conditions, the inhaled dose rate of 
drug is equivalent to ≈16 mg/kg-rat/hour.

Rats were anesthetized by intraperitoneal injection of 
pentobarbitone, and blood was collected from the left 
ventricle at sacrifice. Animals were exsanguinated by sev-
ering the abdominal aorta. Then, the excised lungs were 
weighed, and bronchoalveolar lavage fluid (BALF) was 
obtained as detailed elsewhere [38, 42].

Inhalation methods—larger animals
Details of the head-only chamber used for dog inhala-
tion studies have been published elsewhere [17, 20]. 
This mode of exposure to phosgene differed from those 
of other authors using larger animals. For reference, the 
reader is advised to consult more detailed reviews and 
papers on larger animals used for studies with phosgene 
[9, 21, 22, 24, 53]. Larger inhalation chambers may be 
useful to accommodate larger animals or larger numbers 
of small animals. For technical reasons and the difficulty 
of generating homogeneous exposure atmospheres at 
short exposure durations, a more human-like exposure 
mode and regimen may jeopardize the outcome of the 
study due to technical shortcomings. Especially for phar-
maceutical countermeasures delivered by the inhalation 
route, particular attention must be paid to maintaining 
similarities of the dosing regimen used in the bioassay 
with that used in humans. Otherwise, meaningful inter-
species extrapolations and dosimetric adjustments are 
hampered. The endotracheal administration of phosgene 
and inhalation drugs may overcome some of these dif-
ficulties; however, due to the numerous manipulations 
required, this may cause additional uncertainties con-
cerning the inhaled dose. Compared to small animals, 
dogs and pigs offer the advantage that these species have 
also been used in pre-clinical studies of inhalation phar-
maceuticals. Their breathing physiology is closer to that 
of humans than that of rodents. The size and anatomy 
of their lungs, including the large tracheobronchial tree 
and vascular architecture, make it possible to use the 
same equipment as used in intensive care units (ICUs). 
Thus, when making judgements as to the extent to which 
a small or large animal model delivers the most signifi-
cant information for human risk assessment, numerous 
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methodological and species-specific factors must be 
considered. These factors include that the exposure and 
treatment of larger animals using endotracheal tubes and 
terminal anesthesia may not only complicate translation 
dosimetry but may also affect reflex-mediated responses 
to exposure and injury.

Inhalation dosimetry
Experimental inhalation studies with irritant gases can-
not be considered as a “one-size-fits-all” approach. In 
case the most critical effect occurs in the lower airways 
of the respiratory tract, water solubility and chemical 
reactivity produce a marked concentration-dependent 
anterior–posterior gradient of injury within the tract. 
Depending on the concentration inhaled, the irri-
tant gas will be scrubbed in the upper airways of obli-
gate nasal-breathing rodents, whereas it may reach the 
lower airways in oronasally breathing humans. Hence, 
the sites of retention and injury may differ appreciably 
in relation any chosen concentration ×  time (exposure 
duration) relationship. Haber’s rule, “Cn ×  t = constant 
effect” with n = 1, is fulfilled for phosgene but deviates 
for other gases. The inhaled dose (Cxt) may vary appre-
ciably across species with different respiratory minute 
volumes. Animal models of the past attempted to over-
come this rodent-specific shortcoming by delivering test 
agents into the lung by endotracheal tubes. In doing so, 
the retained dose of the gas within the tract may pos-
sibly be more human-like at first glance; however, the 
distribution of the inhaled dose relative to the inspired 
volume and concentration gradient within the tract 
remains uncertain. Anesthesia, dead-space volumes and 
rebreathing increase the dosimetric uncertainties as 
well. Accordingly, animal models need to be dosimetri-
cally adjusted to a ‘human-equivalent dose’ to produce 
the same profile of lung injury. This process may require 
higher equivalent concentrations in rodents to overcome 
the loss of agent within the upper airways.

Notably, phosgene is an alveolar irritant with negligible 
scrubbing of gas within the airways. Thus, the gas pen-
etrates the lower respiratory tract independently of con-
centration, and injury becomes solely dependent on the 
inhaled Cxt but not C alone. On the other hand, chlorine 
is a water-soluble gas that is retained throughout the air-
ways that also becomes an alveolar irritant at higher con-
centrations. Thus, the injury patterns of chlorine change 
with both C and t. Thus, while C determines the depth 
of lung penetration and airway retention, the related Cxt 
determines the dose and severity of injury at this site of 
retention [33, 45, 50]. High-risk patients from acciden-
tal occupational exposure to phosgene can readily be 
identified by the mandatorily worn Cxt-based dosimeter 
(“Phosgene badge”).

Mechanisms of toxicity and hypotheses
The incipient pathogenesis of phosgene-induced ALI/
ARDS starts with loss of surfactant function, which is 
caused by direct chemical reactions of surfactant with 
phosgene [33, 45]. This loss then may lead to a hetero-
geneous collapse of alveoli and ensuing changes in lung 
mechanics. Although additional mechanisms cannot 
entirely be excluded, the alteration of the Starling fluid 
flux equation, e.g., due to increased interstitial pressure, 
further destabilizes the alveoli. Accordingly, the time for 
treatment is before, not after, edema has appeared, as 
previously concluded by Coman et al. [24] 80 years ago.

Such a series of events calls for preventive, rather 
than therapeutic, modes of treatment. However, any 
proposed therapies targeting prevention or early treat-
ment of lung injury prior to respiratory failure require 
specialized diagnostic tools to identify early at-risk 
patients who will actually develop ALI/ARDS. Progress 
in specific treatments for ALI/ARDS beyond the lung-
protective strategies of mechanical ventilation and con-
servative fluid management needs to be realized [31, 
54]. Hence, the currently instituted reactive rather than 
proactive approaches regarding lung protection should 
be refocused on preventing the progression of worsen-
ing lung injury with time elapsed post-exposure rather 
than attempting to treat respiratory failure that becomes 
increasingly refractory to any type of treatment.

Reactivity of phosgene leading to alveolar irritation
The low solubility of phosgene in water enhances its 
acute toxicity by allowing the inhaled gas to penetrate 
into the alveolar spaces without any appreciable losses of 
this gas in the extra- and intrathoracic airways. The phys-
icochemical properties of phosgene also preclude any 
spontaneous hydrolysis within this microenvironment 
because the reaction of phosgene with water is much 
slower than the reaction with the more nucleophilic 
chemical moieties –NH2, –OH, and –SH. Accordingly, 
as a strong electrophile, phosgene may avidly react with 
such nucleophilic moieties of peptides and proteins pre-
sent in this environment [35, 55]. The affinity of phosgene 
for thiol (–SH)-bearing molecules, such as cysteine (Cys) 
and glutathione (GSH), is sufficiently high to success-
fully compete with water. The inhibition of –SH enzymes 
produced by phosgene is irreversible and was shown to 
be ineffective target for the mitigating phosgene poison-
ing [56]. Hence, such interactions make it possible that 
phosgene can specifically affect homeostatic redox, pro-
tein-anti-protein and other equilibria. Reversibility can 
be achieved only by the re-synthesis of protein.

Rats acutely exposed to phosgene at 600  mg/m3 for 
1.5 min (225 ppm × min) [49] were exposed to the aero-
solized nucleophiles hexamethylenetetramine (HMT), 
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Cys, and GSH for 5 or 15  min at 1  mg/L air. Cys and 
GSH exhibited anti-oxidant properties in addition to 
their nucleophilic mode of action. The efficacy of treat-
ment was judged by protein concentrations in BALF col-
lected at the climax of the phosgene-induced lung edema 
one day post-exposure [33, 37, 38, 49]. Despite the use of 
optimized aerosolization to maximize the penetration of 
aerosolized drugs into the lower lung, none of the cho-
sen nucleophiles mitigated the phosgene-induced ALI. 
This finding suggests that the reaction products of phos-
gene could not be reversed even when instant inhala-
tion treatment was applied. Likewise, despite the direct 
administration of aerosolized anti-oxidants with phos-
gene-scavenging properties, all treatments were ineffec-
tive [49, 57]. To the contrary, the prophylactic parenteral 
or oral administration of nucleophiles, such as HMT [49, 
58] and cysteine esters [59], was demonstrated to provide 
measureable protection when given before exposure to 
phosgene.

Consistent with the findings detailed above, these com-
pounds did not demonstrate any protection when given 
after exposure to phosgene [58–61]. This outcome pro-
vides indirect evidence that the acylation of nucleophilic 
moieties of surfactant appears to be more critical than 
any putative release of HCl. This overall interpretation is 
supported by the  LCt50 of phosgene in acutely exposed 
rats (1741 mg/m3 × min) [37], which is orders of magni-
tude lower than that of HCl gas (211,545 mg/m3 × min) 
[33]. In this context, it is important to recall that the GSH 
content in human airway lining fluids is 140-fold higher 
than in plasma and that this most important protective 
nucleophile is known to be of inferior significance in rats, 
whose anti-oxidant status is predominantly controlled by 
ascorbic acid [62].

Mechanisms of phosgene leading to lethal lung edema
If the buffering capacity of the surfactant layer toward 
phosgene is exhausted, direct contact and damage of tis-
sue cannot be excluded. From that aspect, phosgene gas 
is expected to produce a clear-cut, precipitous toxicity 
restricted to the alveolar region [37, 38]. If the protec-
tive layer of surfactant becomes dysfunctional or dete-
riorated, alveolar collapse and ventilation: perfusion 
disturbances may ensue as the most likely outcome. This 
outcome is the first step toward increased dead space 
(intact alveolar ventilation but compromised perfusion) 
or shunt (intact perfusion but compromised alveolar 
ventilation). This situation is further complicated by the 
vasoactive and pro-inflammatory mediators released 
by damaged and necrotic alveolar macrophages, fol-
lowed by increased accumulation of fluids in the septal 
interstitium (Fig. 1). The resultant congestion and loss of 
elastic recoil may additionally affect alveolar compliance. 

Pulmonary vessels and airways may become mechani-
cally compressed, which overrules patency by tonus.

The direct interaction of phosgene with nerve endings 
from vagal C-fibers may add additional complexity with 
increasing loss of fine-tuned neurovascular control. The 
local stimulation of mechanosensory nerves may addi-
tionally affect the cardio-pulmonary synchronization and 
cardiovascular disturbances that contribute to hemody-
namic changes and imbalances, leading to the translo-
cation of fluids from the peripheral into the pulmonary 
circulation.

Despite this complexity occurring at near lethal Cxts, 
single and repeated subchronic 90-day inhalation stud-
ies of rats with 6  h/day exposure 5  times/week demon-
strated that the chronic effects of phosgene gas appear 
to be contingent on “acute-on-chronic” localized effects. 
Essentially identical NOAELs were observed independ-
ent of whether the duration of exposure was acute or 
subchronic [33, 63]. In contrast to more water-soluble 
irritant gases, airway toxicity or delayed-onset types of 
inhalation toxicity (e.g., obliterating bronchiolitis) were 
not observed in the more recent animal models of phos-
gene [33, 37, 38].

Although considered an irritant gas due to its high 
water solubility, chlorine  (Cl2) readily partitions into the 
fluids lining the airways. Once  Cl2 is dissolved into the 
fluids lining the airways, epithelial damage and desqua-
mation occur as a result of oxidative injury. This may 
occur with exposure to  Cl2, and further damage to the 
epithelium may occur with the migration and activation 
of inflammatory cells. Repair of the airway epithelium 
following  Cl2-induced injury may not necessarily restore 
normal structure and function, as evidenced by subepi-
thelial fibrosis and excessive mucous hyperplasia. The 
oxidative mechanism of toxicity caused by chlorine is less 
specific than that attributed to the more selective electro-
philic reactivity of phosgene. Hence, while chlorine may 
elicit different patterns of injury (airway injury with or 
without alveolar damage) depending on the inhaled dose 
and concentration, phosgene damage is largely independ-
ent on concentration and restricted to alveolar injury. 
Thus, anti-inflammatory countermeasures can be antici-
pated to be efficacious for chlorine-induced lung injuries, 
whereas they can be anticipated to be ineffective or even 
contraindicated for phosgene.

Experimental studies
Lethality thresholds in experimental animals and humans
The non-lethal time-adjusted threshold concen-
tration  (LCt01) in rats was  ≈1000  mg/m3  ×  min 
(225  ppm  ×  min) [37]. The respective value estimated 
for humans was ≈300 ppm × min (≈1200 mg/m3 × min) 
[64]. Thus, with regard to this acute point of departure 
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(POD), there is remarkable similarity between rats and 
humans [5, 33]. If not mentioned otherwise, the mecha-
nistic and intervention studies addressed in this paper 
utilized a  ≈1000  ±  50  mg/m3  ×  min delivery over a 

30-min exposure period. Interventions commenced 
shortly after exposure. Efficacy was judged by measure-
ments of BAL and lung weight 1 day post-exposure, i.e., 
the climax of pulmonary edema.
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Stimulation of sensory nerves in the lower respiratory tract
Acute lung injury in rats caused by the inhalation of phos-
gene gas was shown to elicit changes in cardiopulmonary 
functions, including changes in the control of breathing 
that preceded pulmonary edema. These dysregulated 
functions appeared to be associated with multiple fac-
tors originating from local neurogenic, pharmacological, 
and mechanical changes suitable to further orchestrate 
any centrally controlled cardiovascular function. Early 
studies in dogs [10, 65] reported that the heart rate fell 
precipitously with exposure to phosgene and then slowly 
rose to the initial value or higher. Small-animal bioassays 
were devised to more systematically study these types of 
phosgene-induced time-course relationships.

Rats with nose-only exposure to phosgene exhibited an 
instant ≈50% depression in respiratory minute volumes 
on volume-displacement plethysmographs when exposed 
to 744 and 1428  mg phosgene/m3  ×  min [37]. Partial 
recovery occurred shortly after the nadir of this response 
was reached (Fig. 1). However, recording the apnea time 
(AT), the period between two breathing cycles (see insert 
of Fig.  1), revealed a rapid ≈fivefold increase in AT. At 
exposure concentrations of both 24.8 and 47.6 mg/m3, a 
similar increase occurred up to ≈10 min of exposure, fol-
lowed by a decrease toward normal breathing at 24.8 mg/
m3. At 47.6 mg/m3, the opposite occurred when a cumu-
lative exposure dose of ≈1000 mg/m3 × min was attained 
(stepped line in Fig.  1, upper panel). The POD from 
reflexively related changes suggestive of progressive loss 
in the control of pulmonary mechanics coincided with 
the  LCt01 threshold occurring 10–20 h post-exposure.

In contrast to volume-displacement plethysmograph 
measurements performed simultaneous to phosgene 
inhalation exposure (Fig.  1), equally exposed rats were 
evaluated for changes in the shape of the airflow pat-
tern entering and leaving a whole-body-flow plethysmo-
graph as the animal breathed (Fig. 2). The experimental 
arrangement applied allowed contemporaneous meas-
urements of both pulmonary and cardiac functions in 
freely moving, habituated rats [42, 47]. Data collection 
started shortly after exposure to phosgene or chlorine 
and continued for up to approximately 20  h. The most 
salient changes in pulmonary function were indicated by 
increased enhanced pause (Penh), a dimensionless index. 
This index is sensitive to changes in the breathing cycle, 
especially the prolongation of apnea periods occurring 
during the expiratory phase [48]. Cyclically changing 
apnea periods occurred periodically and increased the 
inter-animal variability in phosgene-exposed rats, but not 
in normally breathing control rats (Fig. 2). The physiolog-
ical significance of the use of Penh to assess pulmonary 
function has been challenged [53, 66–73]. The mechani-
cal properties of the lungs are characterized by their 
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main determinants, resistance and elastance. Resistance 
is the ratio of the pressure to the flow, while elastance is 
the ratio of the pressure to the volume. Therefore, to cal-
culate either of these quantities, two signals need to be 
measured: pressure and either flow or volume. Penh is 
based on only a single time-varying signal, the pressure 
inside a plethysmograph; thus, it simply does not convey 
the information required to provide a valid estimate of 
lung mechanics. At best, Penh represents a type of non-
specific reflection of the pattern of breathing [73].

While entirely in agreement with the conclusions of 
these authors, Penh was used as an all-integrating end-
point mirroring the apparent loss in the elastance of pul-
monary parenchymal tissue with ensuing changes in the 
control of breathing. With increased elastic resistance 
of the lung by injury, the respiratory pattern needs to 
be adjusted to minimize the mechanical work of breath-
ing to overcome increased elastic tissue resistance. This 
interpretation was further substantiated by a strong cor-
relation between increased lung weight and increased 
Penh induced by a pulmonary irritant aerosol [48, 74]. 
Thus, despite its known shortcomings, Penh appears to 
integrate several physiological endpoints in a wholly non-
invasive manner so that non-specific functional changes 
can be readily identified without restraint of rats over 
long data-collection periods. Although specific patho-
physiological effects cannot be revealed by this index, 
Penh appears to reflect the integrated adaption of breath-
ing to changes in lung mechanics.

Typical ECG tracings of rats exposed to air (control) 
or phosgene have been published elsewhere [42]. Due to 
the lack of a common isoelectric baseline, each cycle was 
established on its own reference level. One of the unique 
electrophysiological characteristics of the rat ECG is the 
absence of a Q wave and the lack of an isoelectric ST-seg-
ment. Consequently, there is no clear separation between 
the QRS complex and the T-wave. The change in heart 
rate (sinus bradycardia), which was among the most 
prominent findings distinguishing phosgene-exposed 
rats from controls, attained a nadir approximately 4  h 
post-exposure (Fig. 2). The time-course changes observed 
in control rats were attributed to the rats’ nocturnally 
increasing activity (nycthemeral biorhythm). Other car-
diological changes that were observed were considered to 
be adaptive and secondary to bradycardia, i.e., functional 
changes typical of afferent pulmonary C fiber J receptor 
stimulation (increased AT). Continued bradycardia after 
exposure to phosgene and other signs typical of excessive 
parasympathetic tone have also been observed in humans 
[75, 76]. Although vagotomy and parasympatholytic 
drugs (atropine) prevented or abolished the neurogenic 
etiopathology of phosgene, they did not affect pulmonary 
edemagenesis [75, 77].

Thus, it appears that stimulation of pulmonary recep-
tors not only may play a role in the control of breath-
ing but may also affect heart rate (Fig.  2). This came as 
no surprise, as apnea may trigger a decrease in sys-
temic vascular resistance upon severe acute stimulation 
of receptors [78]. Accordingly, the activation of nerve 
afferents—either by chemical irritants or by physical 
stresses—may have elicited the respiratory and cardio-
vascular reflex responses shown in Figs. 1 and 2 [78–82]. 
This striking coherence was also demonstrated by the 
increased Penh proportional to the length of the apnea 
period (Figs.  1, 2) and bradycardia (Fig.  2). Both events 
occurred during exposure to phosgene and remained 
remarkably stable during the  ≈20-h post-exposure 
period, i.e., a period ranging from normal conditions to 
fully developed lung edema.

Li et al. [42] hypothesized that nociceptive C-fiber nerve 
endings may play a role in detecting the onset of patho-
physiological conditions at the alveolar level. The afferent 
activity arising from these vagal nerve fibers also plays 
an important role in regulating cardiopulmonary func-
tion under both normal and abnormal physiological con-
ditions [78]. Hence, the activation of these afferents by 
phosgene may elicit both respiratory and cardiovascular 
reflex responses. The hallmarks of this parasympathetic 
stimulation were believed to be linked to prolonged apnea 
periods and bradycardia, as illustrated in Figs.  1 and 2. 
More recent research on ion channels of the transient 
receptor potential (TRP) family has identified that these 
receptors act as specific chemosensory molecules in the 
respiratory tract in the detection and control of adaptive 
responses and in the initiation of detrimental signaling 
cascades upon exposure to various toxic inhalation haz-
ards, including phosgene. The TRP channel mechanism 
was considered a potential target for intervention in phos-
gene-induced ALI/ARDS [19, 83, 84].

Analysis of biomarkers of pulmonary irritation 
and associated lung edema
Rats with nose-only exposure to phosgene at  ≈LCt01 
were used to analyze time-course changes in BAL indica-
tive of acute pulmonary edema. Measurements began at 
the climax of the pulmonary edema (post-exposure day 
1) and continued through 4  weeks post-exposure. Con-
trol data were collected from time-matched controls dur-
ing the first 2 weeks (from which 4-week reference data 
were extrapolated, as illustrated in Fig. 3). The weight of 
excised lungs from exsanguinated rats was used as an all-
integrating endpoint of ALI.

Lung weights, collagen and total protein in BALF, as 
surrogate endpoints of extravasated capillary fluid into 
the alveolar compartment accessible by BAL fluid, fol-
lowed a similar trend (Fig. 3). The most sensitive endpoint 
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Fig. 3 The left column compares time-course changes of endpoints suggestive of pulmonary edema (protein and soluble collagen in BALF, wet 
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was soluble collagen, followed by protein (Fig. 3). These 
biomarkers suggest that the alveolar barrier function 
appeared to be functionally restored on post-exposure 
day 7. The nonsignificantly higher lung weights relative 
to the control were attributed to increased adaptive activ-
ity and hypertrophy of type II pneumocytes. These cells 
are known to be engaged in both the removal of excessive 
fluids and surfactant synthesis as well as acting as stem 
cells for the restoration of damaged type I cells. Increased 
tolerance following single phosgene exposure [85] and 
studies with longer post-exposure periods support this 
conclusion [38].

With regard to the cellular components of BALF, 
total cell counts in BALF (TCC) increased significantly 
on post-exposure days 7 and 14 (Fig.  3). Cytodifferen-
tials revealed conspicuously decreased alveolar mac-
rophages (AM) 1 day post-exposure [20, 38]. The loss of 
AM appeared to be compensated by a marked influx of 
neutrophils (PMN), which were cleared from the lung 
as rapidly as the extravasation marker in BALF (Fig.  3). 
These findings show that an exposure dose of phosgene 

at the  LCt01 may have caused a transient loss of func-
tional alveolar macrophages with a concomitant loss 
of anti-microbial capacity. Concomitantly, chemotac-
tic factors discharged from necrotic macrophages may 
have triggered the influx of neutrophils as a compensa-
tory response. Altogether, this series of events suggests 
that PMNs temporally assumed the role of phagocytes 
with minimal or absent priming toward inflammatory 
cells. Phagocytes (TCC) were apparently engaged in the 
removal of dysfunctional surfactant and/or cellular debris 
over a period of several weeks.

Interrelationship of hemoconcentration and increased 
lung weight
The time-course changes in increased lung weight rela-
tive to those in hemoglobin (Hb) in blood after the 
exposure of rats to either air (control) or phosgene are 
compared in Fig.  4. Although originating from entirely 
different compartments, a coherent increase in either 
endpoint occurred up to the climax of pulmonary edema. 
Thus, the gain in lung weight relative to the control rats 
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paralleled the loss of plasma fluid volume from the sys-
temic circulation indicated by increased Hb. Progressive 
increases in Hb and lung weight occurred 5–6  h post-
exposure. With increased time elapsed, the calculated Hb 
concentration was slightly lower than its measured con-
centration. This underprediction could be attributed to 
that fraction of accumulated fluid volume possibly being 
cleared from the lung into the lymphatic/pleural system 
at the later time points. This interpretation is substanti-
ated by observations from acute inhalation studies of 
rats, which showed both pulmonary edema (trachea with 
white foamy content) and pleural effusions (hydrothorax) 
[37]. Moreover, minimal additional shift of plasma fluid 
into splanchnic organs cannot entirely be excluded.

This analysis provides unequivocal evidence of the 
redistribution of plasma fluid and proteins from the 
peripheral circulation into the lung. This pattern of 
changes is not peculiar to phosgene poisoning since 
similar findings were noted following exposure to other 
lung irritants [33]. Bradycardia and decreased cardiac 
output along with systemic vasoconstriction may have 
caused the redistribution of plasma volume into the lung. 
This process may have aggravated the acute edema and 
anoxic anoxia in the accompanying hemodynamic state 
of increasing hemoconcentration and blood viscosity. All 
of these factors, including those caused by intense vagus 
stimulation [82, 86, 87], seriously impede gas exchange 
and further lead to imbalances in the fluid dynamics of 
the lung. Collectively, cardiovascular disturbances (car-
diogenic edema caused by imbalanced Starling forces), 
rather than an appreciable disruption of the air-blood 
barrier function, were believed to be the predominant 
etiopathology of the phosgene-induced lung edema (at 
this Cxt). Evidence from studies on larger animals and 
human evidence (military and occupational) report a 
similar interrelationship of hemoconcentration and pul-
monary edema [54, 75, 76].

Prognostic biomarkers in expired gas
A wealth of published evidence supports the prognostic 
relevance of measurements of physiological dead space 
 (VD) relative to tidal volume  (VT) for patients with ARDS 
[27, 28]. The value of  VD/VT measurements in predict-
ing mortality in patients has been reaffirmed by several 
studies [29, 30, 88–90]. The specific value of measuring 
 VD/VT to increase the understanding of the pathophysi-
ology of ARDS is based on the relatively high diffusibility 
of carbon dioxide across tissue membranes compared to 
oxygen [91]. Thus,  VD/VT is considered a more perfusion-
sensitive variable that may be useful as an indirect marker 
of pulmonary endothelial injury [87]. Duplication of this 
assay was attempted in rats (Fig.  5) with consideration 
of the following limitations: (1) rats are uncooperative, 

which precludes forced maneuvers to measure end-tidal 
 CO2 and nitric oxide (NO) in expired gas (eNO) and (2) 
the  VT and breathing frequencies of conscious, spontane-
ously breathing rats are in the range of 1–2 mL and 100–
200  breaths/min, respectively, which requires additional 
sheath air to overcome the limitations of the dead spaces 
of apparatus and ducts, as detailed elsewhere [43].

Another limitation is that measurements of arte-
rial  CO2 tension  (PaCO2) are more difficult to perform 
under such experimental conditions in rats compared 
to humans [92]. Thus, the method devised cannot be 
directly equated with volumetric capnography and venti-
lation dead space calculations, as suggested by Bohr [93] 
or Enghoff [94]. Indeed, measurements of  FCO2 alone 
may not be sufficient to fully elucidate the relative con-
tributions of venous admixture (shunt) and dead space 
[95]. Consistent with human data,  eCO2 persistently 
decreased by more than 50% post-exposure (Fig.  6). A 
statistically significant increase in eNO occurred during 
the asymptomatic phase and the development of lung 
edema.

NOS-2 inhibitors are highly efficacious in the develop-
ment of phosgene-induced ALI, especially when deliv-
ered by the inhalation route [96, 97]. Data from rats 
(Fig.  6) demonstrated that this non-invasive and readily 
available biomarker has the potential to deliver important 
prognostic information that could guide clinicians on 
countermeasures following accidental exposures to phos-
gene and other irritants [42, 43, 46, 47]. NO is considered 
an important mediator of acute lung injury (ALI) and is 
endogenously produced by NO synthase 2 (NOS-2), an 
enzyme upregulated in both ARDS patients and animal 
ALI models [98–100]. Recent studies have demonstrated 
that NOS-2 is induced in rat lungs exposed to phosgene 
[96, 101]. Hence, contemporaneous measurements of 
NO were thought to be an invaluable adjunct to exhaled 
 CO2, as they may enable an integrated appreciation of the 
localized modulation of vascular tonus by NO suggestive 
of perfusion: ventilation imbalances.

In the proof-of-concept study shown in Fig.  7 [44, 
partially published], changes in these biomarkers in 
expired gas were systematically examined using differ-
ent inhalation regimens at equal Cxts of aminoguanidine 
(AG) aerosol, a selective NOS-2 inhibitor: There was an 
unequivocal coherence of increased lung weights and 
decreased  eCO2, which was partially reversed by AG 
aerosol treatment. While superimposed immobilization 
stress reduced the efficacy of the drug, non-immobi-
lized animals in small whole-body chambers continually 
exposed to a lower AG concentration but for a longer 
duration (same Cxt of drug) showed visible improve-
ments in lung weights and  eCO2. The mild increase in 
phosgene-induced eNO was most favorably reduced 



Page 12 of 21Li and Pauluhn  Clin Trans Med  (2017) 6:19 

under the AG-III regimen. This outcome demonstrated 
a definite interrelationship of phosgene-induced “occult” 
lung edema and increased ventilation dead space. Similar 
relationships were also observed in ARDS patients [29, 
88, 102].

Comparison of indices of ALI in rats exposed to phosgene 
or chlorine
The clinical consequences of accidental, high-level expo-
sure to either chlorine [16, 39, 103–112] or phosgene gas 
[5, 34, 76, 113–115] have been well described. The objec-
tive of this comparative analysis was to compare phos-
gene, a poorly water-soluble alveolar irritant gas, with 
chlorine, a highly water-soluble airway irritant gas, at 
estimated equitoxic Cxts, which was 413 ppm × min for 
chlorine [47, 116].

The lung weights of chlorine-exposed rats peaked 
1-h post-exposure with partial resolution after 5 and 
24  h. Opposite time-course changes occurred in phos-
gene-exposed rats (Fig.  8). Changes in Penh reflected 
the marked upper airway irritation (reflex bradypnea 
from trigeminal stimulation in the nasal passages with 
decreased breathing frequency) in chlorine-exposed rats. 
The alveolar irritant phosgene produced a much milder 

response (reflex apnea by J-receptor stimulation in the 
lower airways with minimal changes in breathing fre-
quency). These typical periods of upper/lower respiratory 
tract irritation are considered ‘expiratory time’ by Penh. 
Heart rate depression (bradycardia) was almost indistin-
guishable between phosgene- and chlorine-exposed rats. 
Despite the more severe toxicological outcome in chlo-
rine-exposed rats, bradycardia decreased more completely 
relative to the phosgene-exposed rats. Hb increased with 
time elapsed in phosgene-exposed rats, whereas a some-
what instant increase occurred in the chlorine-exposed 
animals. Fibrin was significantly elevated after 24  h in 
chlorine-exposed rats (Fig.  8). Phosgene-exposed rats 
were indistinguishable from the control. Enhanced intra-
pulmonary fibrin deposition due to abnormal bronchoal-
veolar fibrin turnover and coagulopathy has been shown 
to be a hallmark of acute respiratory distress syndrome 
(ARDS) [103] and animal models [117–119]. Delayed 
onset of death occurred in rodents exposed to chlorine by 
mucus plugs and overshooting fibro-proliferative inflam-
mation and regeneration [116], while delayed lethality did 
not occur in more recent studies of phosgene in rats [38]. 
The key findings highlighting the differences of phosgene 
and chlorine are summarized in Table 1. 

Fig. 5 Schematic of the experimental arrangement to measure eNO,  eCO2 and breathing frequency in spontaneously breathing, conscious rats. 
Rats were placed into a two-compartment restraining tube for data collection periods of 10 min (thoracic compartment: volume displacement 
plethysmograph; head-out compartment: bias-flow of synthetic air with manifold to the NO-chemiluminescence and infrared  CO2-gas analyz-
ers connected to a mass-flow controlled vacuum). ‘Flow’: mass flow meter/controllers. Dotted lines electrical connections, double lines: ducts for 
analyses in expired gas
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An analysis of protein and cytodifferentiated total cell 
counts in BALF one day post-exposure to chlorine or 
phosgene revealed identical decreases in total cell counts, 
with slightly lower counts of alveolar macrophages in the 
phosgene-exposed group. Protein in BALF was mini-
mally elevated following exposure to chlorine and was 
maximally increased after exposure to phosgene. Exhaled 
breath analyses showed decreased  eCO2 after either gas 
but higher eNO in chlorine-exposed rats, especially on 
the day of exposure [47].

Inhalation studies—larger animals
Evidence collected from studies in small animals sup-
ports the conclusion that phosgene-induced pulmonary 
edema was initiated and propagated by events that affect 
the lungs’ overall control of lung mechanics and was indi-
rectly initiated by tissue congestion and decreased vas-
cular compliance/airway patency. Secondary changes in 
cardiovascular control and hemodynamics add another 
dimension of complexity. These conclusions from small-
animal models were further substantiated in exploratory 
proof-of-concept studies in dogs [17] and pigs [22] with 
protective positive PEEP ventilation. This mode of ven-
tilation strategy was demonstrated to improve survival 
in patients with ARDS [31, 120, 121], especially when 
begun early after the initiating encounter. Dogs were 

exposed at clearly lethal levels (135  mg/m3  ×  25  min, 
equivalent to 3350  mg/m3 ×  min or 820  ppm ×  min). 
Shortly after exposure, the dogs were anesthetized, intu-
bated and then subjected to PEEP  (VT =  10–12  mL/kg 
body weight, 40 breaths/min;  FiO2: 0.21) at 0, 4, or 12 cm 
 H2O over a post-exposure period of 8 h (one dog per set-
ting). The lung edema was markedly alleviated at 4  cm 
 H2O, but not at 0  cm  H2O of PEEP. Microscopy con-
firmed reduced hemorrhage, neutrophilic infiltration, 
and intra-alveolar edema. Thus, the time-dependent pro-
gression into life-threatening pulmonary edema can be 
effectively suppressed by protective, low-pressure PEEP 
when implemented sufficiently early after exposure to 
phosgene [17]. Anesthetized pigs were instrumented 
and exposed to phosgene (concentration ×  time (Cxt), 
2350  mg ×  min/m3 or 573  ppm ×  min) and then ven-
tilated with intermittent PEEP  (VT  =  10  mL/kg; PEEP 
3  cm  H2O; 20 breaths/min;  FiO2: 0.24), monitored for 
6 h after exposure, and then randomized into treatment 
groups:  VT at 8 or 6  mL/kg; PEEP 8  cm  H2O; 20 or 25 
breaths/min;  FiO2: 0.4. This study aimed to examine the 
pathophysiological changes observed with low-VT-pro-
tective ventilation strategies compared to conventional 
ventilation. Pathophysiological parameters were meas-
ured for up to 24  h. The results showed improved oxy-
genation and decreased shunt and mortality, with all the 
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animals surviving to 24 h compared to only three of the 
conventional ventilation animals. Microscopy confirmed 
reduced hemorrhage, neutrophilic infiltration, and intra-
alveolar edema [22].

From phosgene inhalation studies in dogs at 
1880 ppm × min (7708 mg/m3 × min), it was concluded 
that, under the given experimental conditions, immedi-
ate therapy with  O2 is vital and  FiO2 of 0.4–0.5 is suffi-
cient [25]. Timely correction with  NaHCO3 infusion was 
recommended for base deficit; however, the associated 
negative consequences must be thoughtfully considered 
(for details, see ‘permissive hypercapnia’ below). There 
was no apparent benefit from cortisone, theophylline, 
 PGE1 or atropine. Jugg and coworkers published a more 
comprehensive comparison of large animal models using 
therapeutic approaches [9, 25, 26].

Improved recognition of high‑risk patients 
and triage
As exemplified for phosgene, the most critical phase for 
prognostic triage and successful preventive treatment is 
the asymptomatic, rather than the symptomatic phase. 

The comparison of the predominantly airway irritant 
chlorine with the alveolar irritant phosgene demon-
strated appreciable differences in injury patterns. This 
result justifies not only different countermeasures but also 
the appropriate diagnostic tools to guide optimal treat-
ment. Elevated concentrations of fibrin and hemoglobin 
in blood as well as  CO2 and NO measured in expired gas 
were shown to be practicable and sensitive biomarkers of 
site-specific injuries within the respiratory tract. Re-triage 
by time-course measurements of  CO2 and NO in exhaled 
breath using protocols distinguishing the fraction of 
breath from the airways and alveoli may increase the diag-
nostic power of this assay [92, 122]. Bedside quantification 
of dead space could be used to titrate countermeasures at 
the asymptomatic stage of injury. In cases of exposure to 
mixtures of irritant gases, late complications cannot be 
entirely excluded. Therefore, prior to discharge of patients 
or before changing treatment strategies from anti-edema 
to anti-inflammatory, these readily available analyses may 
deliver important information to clinicians regarding 
which course to take. These methods appear to be easy to 
manage and suitable for both triage and re-triage.
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Prevention strategies
Commonly, practitioners and clinicians alike are guided 
by the symptoms elaborated in putatively exposed sub-
jects for the identification of high-risk patients. Most 
often, treatment follows reactive rather than proactive 
approaches, with an emphasis on treating rather than 
preventing the progression of worsening lung injury. 
Frequently, countermeasures appear to focus on  PaO2 
or saturation [32] to determine whether treatment strat-
egies are effective. However,  PaO2 may not be an accu-
rate surrogate of alveolar stability; therefore, reliance on 
 PaO2 as a marker of lung function presumes that there 
is no self-perpetuating and progressing occult ALI lead-
ing to alveolar instability and eventually lethal edema. As 
shown by the preventive PEEP applied to dogs and pigs, 
there is evidence that oxygenation as a method to opti-
mize PEEP is not necessarily congruent with the PEEP 
levels required to maintain an open and stable lung [31, 
32]. Thus, optimal PEEP might not be personalized to the 
lung pathology of an individual patient using oxygenation 
as the physiologic feedback system. Likewise, non-per-
sonalized, unreasonably high PEEP pressures may block 
lymph drainage. Ideally, titration of PEEP by volumetric 
capnometry at low  VT appears to be the most promising 
strategy [92, 123]. Volumetric capnometry was shown 
to be helpful for monitoring the response to titration of 
PEEP, indicating that the optimal PEEP should provide 
not only the best oxygenation and compliance but also 
the lowest  VD while maintaining the  VT below a level 
that over-distends lung units and aggravates  VD and lung 
injury [92]. Thus, the improvements in oxygenation and 
lung mechanics after an alveolar recruitment maneuver 
appear to be better preserved by using injury-adapted 

PEEP than by any ‘one size fits all’ standardized approach. 
Notably, protective lung ventilation strategies commonly 
involve hypercapnia. Thus, permissive hypercapnia has 
become a central component of protective lung ventila-
tory strategies [121, 124–128].

Pharmacological treatment
Due to the complex interactions among (patho)physi-
ological events, it seems unrealistic to assume that any 
monocausal, drug-related treatment regimen will be 
identified in the near future to mitigate the particular 
type of ALI attributable to inhaled phosgene gas. This 
conclusion matches those of other authors [120, 129–
131]. Collectively, the wealth of published evidence sup-
ports the conclusion that, if the acute stage of pulmonary 
edema with its attendant anoxic anoxia is survived, cir-
culatory failure may become a more important factor in 
the ultimate outcome [65]. Likewise, a countermeasure 
identified to be efficacious for a non-water-soluble gas, 
such as phosgene, may not necessarily be the best coun-
termeasure for a highly water-soluble airway and alveolar 
irritant gas, such as chlorine, and vice versa.

Multiple approaches for drug-related interventions, 
most of them anti-inflammatory and sympathomimetic, 
have been examined [9, 19, 22, 23, 25, 26, 55, 96, 132, 
133]; however, none of these drugs have found their way 
into the clinic. To the contrary, as could be expected for 
phosgene, anti-inflammatory treatment with steroidal or 
non-steroidal drugs was either ineffective or even aggra-
vated phosgene-induced ALI [21, 22, 44, 46]. More recent 
exploratory preclinical investigations have identified TRP 
inhibitors, NOS inhibitors, and statins as novel pharma-
ceutical approaches that prevent ALI; these drugs merit 

Table 1 Salient markers of acute respiratory tract injury of phosgene and chlorine in rats

URT upper respiratory tract, LRT lower respiratory tract, eNO exhaled nitric oxide, eCO2 exhaled carbon dioxide

Phosgene Chlorine

Subjective symptoms Absent Eye and airway irritation

Sensory irritation-URT Absent Marked

Bronchial airway injury Minimal, if any Marked

Surfactant deterioration Marked Dose-dependent

Sensory irritation-LRT Marked Dose-dependent

Alveolar macrophage injury Marked Dose-dependent

Pulmonary vascular dysfunction Marked Dose-dependent

Cardiopulmonary dysfunction Marked Marked

Early lung edema Extreme doses Dose-dependent

Onset of lung edema Maximum 15–20 h Instant

Primary countermeasure Lung edema Lung edema & obliterating airway injury

Secondary countermeasure Rapid recovery Lingering airway injury

Clinical guidance on inhaled dose Phosgene dosimeters Environmental analyses (if available)

Prognostic approaches Hemoglobin, eNO,  eCO2 Irritation severity, fibrin
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being studied in greater detail in the future [19, 31, 83, 
84, 96, 134].

Symptomatic or supportive treatment
As exemplified by many experimental studies in rats, an 
excess of water in the lung is not a consequence of too 
much water in the body; rather, it is a consequence of 
dysfunctional cardiovascular control to prevent excess 
fluid from accumulating in the septal interstitium and 
subsequent alveolar flooding. Hence, any use of diuret-
ics may further aggravate the phosgene-induced hemo-
concentration, rather than having any beneficial effect 
on the increasing pulmonary edema. Equally deleterious 
therapeutic results were obtained with bleeding or ven-
esection (phlebotomy) and argue against these therapeu-
tic options [65]. Notably, despite its vulnerable blood-air 
barrier, the lung is relatively resistant to the onset of 
pulmonary edema. This resistance is ascribed to several 
safety factors, which include increased lymph flow to 
drain fluids away from the lung and decreased interstitial 
oncotic pressure and interstitial compliance. These safety 
mechanisms are quite effective as long as surfactant pre-
vents alveolar collapse [135–138]. The supine position 
increases gravity-related hydrostatic pressure and lung 
edema, which supports the prone positioning of patients 
[31]. The symptomatic treatment of hemoconcentra-
tion by non-conservative fluid resuscitation may change 
a non-lethal to a lethal lung edema, as this surplus fluid 
was shown to settle in the lung as edema [54, 139], as 
shown in previous dog inhalation studies with phosgene 
[65, 139–141]. Hence, fluid resuscitation should be han-
dled most conservatively [115, 140]. The use of nebulized 
sympathomimetics may further contribute to reflexively 
induced changes in cardiac output and pulmonary hydro-
static pressure. Nebulized salbutamol treatment fol-
lowing phosgene-induced ALI did not improve survival 
and worsened various physiological parameters, includ-
ing arterial oxygen partial pressure and shunt fraction. 
Anti-inflammatory corticoids have shown little benefit in 
patients with this type of cardiogenic lung edema in the 
absence of an inflammatory etiopathology. In summary, 
most of these types of “symptomatic treatments” might 
transform phosgene-induced ALI into iatrogenic ALI, 
rather paving the road to recovery [21, 25].

Conclusions
Data from multiple animal species and mechanistic stud-
ies have coherently demonstrated that phosgene-induced 
ALI is unique compared to ALI induced by other, more 
water-soluble irritant gases. Phosgene-induced ALI is 
initiated with exposure and remains occult for hours 
post-exposure, depending on the dose inhaled. Dur-
ing this asymptomatic period, a range of reflex-related 

cardiovascular responses appears to be involved in trig-
gering progressive changes in cardiopulmonary and 
hemodynamic homeostasis. This imbalance of neuro-
physiological control may progressively shift fluid from 
the peripheral to the pulmonary circulation, leading to 
potentially lethal alveolar edema. Any proposed thera-
pies targeting the prevention or early treatment of lung 
injury prior to respiratory failure require triage to iden-
tify patients at high risk, as resources are limited.  CO2 
and NO in exhaled breath were shown to be prognostic 
for edema occurring hours later.

Most importantly, clinicians should refrain from non-
rationalized or common symptomatic treatments that 
could accelerate the progression of ALI. Preventive and 
personalized treatment strategies of mechanical ven-
tilation with feedback loops focusing on lung function 
and conservative fluid management should be given 
preference.

In summary, current knowledge about the sequelae of 
phosgene-induced ALI has clearly positioned the field to 
undertake steps toward preventive or causal treatment, 
rather than mere symptomatic treatment; however, much 
work and communication remain necessary to make 
therapies effective, practical, and safe for asymptomatic 
subjects. The objective of the course taken in this paper 
was to challenge the often-exercised ‘trial-and-error’ type 
of symptomatic treatment in the absence of any mecha-
nistic understanding.
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