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Abstract

Acute Respiratory Distress Syndrome (ARDS) is a devastating cause of hypoxic respiratory failure, which continues to
have high mortality. It is expected that a comprehensive systems- level approach will identify global and complex
changes that contribute to the development of ARDS and subsequent repair of the damaged lung. In the last
decade, powerful genome-wide analytical and informatics tools have been developed, that have provided valuable
insights into the mechanisms of complex diseases such as ARDS. These tools include the rapid and precise measure
of gene expression at the proteomic level. This article reviews the contemporary proteomics platforms that are
available for comprehensive studies in ARDS. The challenges of various biofluids that could be investigated and
some of the studies performed are also discussed.
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Introduction
Biological systems function via intricate orchestrated cel-
lular processes in which various cellular entities partici-
pate in a tightly regulated manner. Proteins are the
‘work horse’ of the cell and alterations of their behavior
often are implicated in the development of diseases. Due
to limitations in technology most of the initial biomed-
ical research to determine the structure-function of the
proteins was performed one molecule at a time. Since
the completion of the human genome project there has
been increasing interest to study the broader changes of
proteins within a biological system, a field defined as
Proteomics [1]. Prior reviews have focused on current
techniques available at that time as applied to interstitial
lung diseases [2,3], lung cancer [4-6] and other lung dis-
eases [7-9]. Some of these reviews have described the
principles of electrophoresis, the gel based methodolo-
gies and basic principles of mass spectrometry (MS) [7].
With improvements in the MS platforms, the proteomics
research has grown substantially from simply identifying
proteins present in a clinical sample to the capability for
absolute and relative quantification of proteins by either
LC-MS/MS or targeted proteomics. With these advances
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the field is now poised to identify candidate biomarkers
and give insight into the biological mechanisms of disease.
In this review, we highlight the principles and advances in
proteomic platforms focusing on contemporary MS meth-
odologies; discuss sample preparation challenges related
to biofluids for pulmonary research and the application
of current proteomic techniques in Acute Respiratory
Distress Syndrome (ARDS).

Proteomics methodologies
Traditional proteome analysis began with 2-dimensional
(2D) SDS-PAGE protein separation and differential ana-
lysis of gel spot patterns [10,11]. The advent of specialized
methods for mass spectrometric detection of proteins and
peptides that were made possible with the revolutionary
ionization techniques matrix-assisted laser desorption
ionization (MALDI) [12] and electrospray ionization
(ESI) [13] advanced all proteome pursuits starting in
the mid 1990’s [14-16].

Sample-specific details
Procurement of body fluid samples destined for proteo-
mics projects must be controlled for protein loss, degrad-
ation, proteolysis and oxidative modifications [17-19].
Variability in sample handling should be minimized for
quantitative analyses of protein expression levels to ensure
conclusions are made based on biological variability not
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variability in sample handling. Wide dynamic ranges in
protein abundances may limit or preclude detection limits
for clinically interesting, low abundant proteins such as
tissue leakage proteins and transcription factors [20,21].
When protein dynamic range is wide (e.g., serum where
protein abundance spans 10 orders of magnitude), high
abundant protein depletion with spin cartridges or col-
umns is often necessary to maximize protein detection
[20]. Assessment of the reproducibility of depletion prod-
ucts, when employed, is critical for both qualitative and
quantitative projects [22].

Top-down analyses
‘Top-down’ analyses of proteins by MS employ measure-
ments on intact proteins [23,24]. Two common tech-
nologies, MALDI and surface enhanced laser desorption
SELDI- time of flight (TOF), provide protein profiles but
do not provide protein identification. Thus these have
been utilized as screening methods for comparison of
protein profiles from various sample types among popu-
lations of healthy and diseased patients for the pursuit of
disease biomarker detection. Solid phase extraction (SPE)
and chip-based techniques used for these top-down ana-
lyses are fast and efficient methods for intact protein puri-
fication, with the principal limitation that relatively small
subsets of proteins are extracted and subsequently de-
tected. SPE is employed for protein purification, desalting
and concentration prior to MALDI-TOF MS detection.
MALDI-TOF MS has been performed in both serum
[25,26] and bronchoalveolar lavage fluid [27] for bio-
marker discovery. In a variation to MALDI-TOF MS, sur-
face enhanced selective protein capture, an affinity-based
chip method for protein extraction prior to SELDI-TOF
detection [28] has been used for biomarker discovery for
subjects with pulmonary sarcoidosis.

Bottom-up analyses
In contrast to studying intact proteins, analysis of peptide
mixtures obtained after proteolytic treatment of protein
mixtures is called ‘bottom-up’ or ‘shot-gun’ proteomics
[29,30]. ‘Bottom-up’ proteomics studies are typically im-
plemented for discovery-based experiments that provide
protein identification and can also provide relative and
absolute protein quantitative measurements with the ap-
propriate experimental design. Two basic workflows for
bottom-up proteomic studies are: 1) solution-based pro-
teolytic digestion of protein extracts [31-34] such as done
for studies in ARDS by others [34,35] and our laboratory
[36]; 2) GeLC analysis, which entails one dimensional
(1D) SDS-PAGE separation of proteins, excision of
consecutive gel regions and proteolytic digestion of pro-
teins in each gel section [14,37,38]. The steps in a ‘Bot-
tom-up’ proteomic workflow are shown in Figure 1 and
include 1) Proteolytic digestion 2) Chromatographic
peptide separation 3) Peptide tandem MS 4) Database
search for peptide identification and 5) Protein assembly.

Separation methods
Prior to MS protein identification and measurement
peptide mixtures such as a protein from excised gel band
could be separated by I-D liquid chromatography (LC)
[39]. 2D- LC is used for fractionation of complex peptide
mixtures such as tissue or cellular proteins [29]. The
first dimension typically separates peptides based on
peptide pI or hydrophobicity in high pH solvent. The
second dimension separation is usually based on peptide
hydrophobicity in low pH solvent and is performed ‘in-
line’ with the MS-ESI interface between the column tip
and MS orifice [40,41]. In a less common approach, the
second dimension LC eluent is directed onto a metal
plate or target for LC MALDI-TOF analysis [42,43].

Peptide and protein identification
Peptide mass spectra generated by tandem MS are used
for protein identification in bottom-up experiments.
Program-specific algorithms compare theoretically derived
peptide fragment pattern (generated in silico) to experi-
mental peptide data [44-46]. Potential peptide database
matches are ranked, scored and reported. Highest scoring
peptides are used to generate a list of inferred proteins
present in the complex mixture (protein assembly). Parsi-
monious protein assembly is used so the lowest number
of inferred proteins would account for the detected pep-
tides [47,48]. Variations on database search algorithms
provide a multitude of commercial and open source
search programs for database searching, each of which has
a unique peptide candidate scoring scheme and protein
inference method. One or more peptide matches per pro-
tein is sufficient evidence for detection of the protein in
the sample [49]. False discovery rates (FDR) of protein
identification are available when the target protein data-
base is reversed or scrambled and concatenated to the tar-
get database [50-52]. Public, species-specific protein
data repositories that contain translated genomic se-
quences provide templates for the software programs
(e.g., http://www.ncbi.nlm.nih.gov/protein and http://www.
uniprot.org/).

Quantitative proteomics
Methods for protein quantitation in clinical samples can
provide either relative or absolute quantitation. In the
discovery phase of a project, relative protein quantitation
is performed with the bottom-up, global approach from
complex samples. Two discrete methods may be used:
label-free [53] and differential isotopic labeling approaches
[54,55] (Figure 2). In both cases, equal amounts of protein
extracts from multiple samples are processed by trypsin
digestion and analyzed by LC-MS/MS.
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Figure 1 Workflow of ‘bottom-up’ or shotgun proteomics. Protein extracts from cells, tissue or biofluids are prepared by mechanical
(e.g., glass bead or homogenization) or chemical-based (precipitation, detergent solubilization) methods. Proteins are proteolytically digested into
peptides, usually with trypsin, that are separated by 1D or 2D chromatographic separation. The final chromatographic step is performed in-line
with the mass spectrometer. Two scan types are acquired: MS1 spectra contain intact peptide mass to charge (m/z) values; MS2 or tandem MS
(MS/MS) spectra represent peptide fragment ion m/z values. Peptide MS1 and MS2 data are correlated with theoretical peptide m/z values with
database search programs that use protein sequences as templates; parsimonious protein identifications with peptide matches are reported.

Bhargava et al. Clinical and Translational Medicine 2014, 3:34 Page 3 of 11
http://www.clintransmed.com/content/3/1/34
Label free quantitation: Peptide counts per protein
[56,57] or peptide peak area under the curve generated
during chromatographic separation [58,59] define label
free quantitation (Figure 2, panel A). Comparisons of
peptide counts or peptide AUC across sample sets are
performed with replicate measurements of each sample;
higher peptide count or AUC represents higher relative
abundance, when compared across samples. Label free
quantitation is challenging due to the inherent variability
in the spectral level data and extensive post processing
required for minimizing this variability. This laborious
approach has been used infrequently for studies in lung
diseases.
Label based quantitation (SILAC, TMT, iTRAQ): The
foundation of the peptide labeling approach is incorpor-
ation of heavy isotopes into peptides or proteins by meta-
bolic or chemical labeling.

� SILAC (stable isotope labeling by amino acids in cell
culture) technique incorporates stable heavy isotopes
into proteins via labeled amino acids added as a
growth supplement during cell culture [60]. Cells
are grown in similar media without heavy isotope
labeled amino acids under different conditions that
establish the comparative assay. Proteins from
‘heavy’ and ‘light’ labeled and are digested into



Figure 2 Principles of quantitative proteomics. A) Label-free quantitation performed by peptide peak area under the curve. Proteins are
extracted from tissue, proteolytically digested into peptides and analyzed by liquid chromatography (LC)-MS. Analyte intensity versus retention
time profiles are generated from which area under the curve (AUC) or summed peak intensities are calculated. Relative peptide amount in healthy
versus disease sample is proportional to peak AUC or summed intensities. Targeted peptide identification is typically performed on a subsequent
injection. B) Label-based quantitation with the iTRAQ® (isotope tagging for relative and absolute quantitation) 4plex workflow. Proteins from four
individual samples are digested into peptides that are tagged with isobaric stable isotope labeled chemicals. Four chemical tags have 4 unique
mass-to-charge (m/z) values that are produced during peptide tandem MS (MS/MS) and used for relative quantitation by relative peak intensity.
Peptide fragment ions are used for peptide ID and protein inference.
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peptides, mixed and analyzed by mass spectrometry.
Mass spectrometric peak intensities for the ‘heavy’
or ‘light’ peptides are used for relative protein
quantitation among the select sample types. Equal
amounts of protein are used for each sample under
comparison so that any differences in relative
peptide/protein amount measured by mass
spectrometry reflect differences between samples,
not starting protein amounts. Thus, sample
preparation must be optimized to ensure accurate
and consistent protein quantitation of the starting
samples.

� TMT and iTRAQ: Differential labeling of protein
extracts from discrete samples can be multiplexed
with the commercial TMT (tandem mass tags) and
iTRAQ (isobaric tagging for absolute and relative
quantitation) amine-specific chemical reagent tags
[61-63] (Figure 2, panel B). Comparison of
protein expression levels of 2 – 10 sample types
is made with heavy isotope-labeled functional
groups of isobaric compounds that bind to
peptide free amines [64]. These label-based
methods allow for estimation of relative protein
abundance [65].

Targeted proteomics
Mass spectrometry can be employed as a targeted assay
for the detection and precise quantitation of limited num-
ber of biomolecules identified from discovery based experi-
ments with selected reaction monitoring (SRM) MS [66,67]
or multiple reaction monitoring (MRM) MS assays. Protein
detection or absolute protein quantification is achieved
by selective measurement of peptides from proteolytic
(e.g., tryptic) digestion of clinical samples on a special-
ized mass spectrometer, typically a triple quadrupole
MS. The mass spectrometric acquisition method con-
tains a list of the mass-to-charge values of the select
peptides from the target protein(s) as well as the mass-
to-charge values for one or more peptide fragment ions
generated by tandem MS. The mass spectrometer acts
as a selective mass-based detector for the chosen
molecules; very low detection limits can be achieved,
for instance, <10 fmol per molecule. MS measures
peptides after separation by liquid chromatography.
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Chromatographic peptide peak integration is used for
quantitation with the stable isotope dilution method
using heavy isotope-labeled peptides as internal stan-
dards, which are spiked into the samples during work-
up. The term multiple reaction monitoring (MRM) re-
fers to an acquisition method for monitoring multiple
peptide fragment ions per peptide as a measure of in-
creasing specificity of detection for the select molecules.
The sensitivity of SRM assays surpasses the sensitivity
of data-dependent discovery based assays [68]. SRM
methods provide a fast, cost effective way to validate
biomarker candidates or quantitative proteins from
large sample sets. Targeted analyses require significant
method development but provide a means for absolute
quantitation of proteins with a low coefficient of vari-
ance [69-71].

Samples for lung proteomics
Proteomic studies begin with protein extraction from
biological sample. Either tissue specimens and/or bio-
logical fluids can be used for proteomic investigations.
Clinical-based samples, specifically body fluids, pose
unique challenges for proteomics experiments due to
the wide dynamic range of proteins typically present in
most samples. Since MS is a concentration dependent
technique, the molecules of highest concentration in a
sample are detected preferentially over lower abundant
species. The presence of ‘matrix’ biomolecules such as
mucins (e.g, large MW glycoproteins) and surfactants
(e.g., phospholipoproteins) in pulmonary fluids complicate
sample preparation since they must be removed during ini-
tial sample preparation steps. Sample cleanup and prepar-
ation methods must be developed and validated for specific
applications. The initial step of protein extraction from
either the cells or body fluids is the most critical for
achieving successful and reproducible outcomes, and is
overall the most challenging step in a mass spectrometry-
based proteomics experiment.
For lung diseases, including ARDS, it would be ideal

to have lung tissue from an involved region for prote-
omic studies; however, lung biopsy specimens often are
not available. Biological fluids that have been studied for
extracellular proteins include plasma/serum. Using these
biological fluids offers the benefit of repeated sampling
but the lung specific signal likely is diluted. Conse-
quently other body fluids such as sputum [72], epithelial
lining fluid (ELF) [73] lung edema fluid [74], exhaled
breath condensate [75] and bronchoalveolar lavage fluid
(BALF) have been investigated.

Sputum
Sputum consists of expectorated secretions from the re-
spiratory tract. In a study, Nicholas et al. studied sputum
proteins from one healthy smoker using either 2-DE or
SDS-PAGE followed by Gel LC MS/MS. By 2-DE over
600 features were present in the sputum, however only
61 proteins were identified when spots present in at least
three replicate gels were excised and analyzed by MS/
MS after in-situ trypsin digestion. Most of these proteins
represented high abundance proteins previously reported
in sputum, saliva, BAL and nasal lining fluid. In contrast,
Gel LC-MS/MS provided extended coverage with identi-
fication of 191 human proteins, which also included low
abundance proteins such as mucins, uteroglobin related
protein etc. The authors reported striking similarity be-
tween the proteome of the sputum and BAL [76]. Gray
et al. [72] investigated sputum from healthy controls and
subjects with obstructive airways disease (asthma or
COPD) and suppurative airway diseases (cystic fibrosis or
bronchiectasis). These studies using top-down SELDI-
TOF methodology identified approximately 50 (p-value
<0.001) proteins peaks that differentiated healthy control
subjects from patients with asthma or COPD and
approximately 300 protein peaks (p-value <0.001) that dif-
ferentiated healthy controls from subjects with bronchiec-
tasis or CF. Calgranulin A, B and C were more abundant
in bronchiectasis and CF and not seen in COPD or
asthma. In this study, club cell secretory protein (CCSP)
was present in lesser amount in both obstructive and sup-
purative lung diseases compared to healthy controls.

Bronchoalveolar lavage fluid
The epithelial lining fluid of the lung contains locally
produced proteins that participate in a variety of different
functions including defense mechanism, tissue remodel-
ing, oxidant-antioxidant systems, inflammatory processes
and cell growth. This fluid can be sampled directly by per-
forming bronchoalveolar lavage. The proteins in BALF
also may originate from diffusion from the serum; however
comparison of serum and BALF proteomes demonstrates
the presence of certain proteins at higher quantities in the
BALF, suggesting alveolar and airway epithelial cells spe-
cifically secrete some of these proteins [77]. Thus, BALF is
particularly attractive to investigate in pulmonary diseases
such as ARDS as it reflects the fluid most proximate to
the site of injury.
Two dimensional gel electrophoresis (2-DE) and LC-

MS has been used for characterizing the protein expres-
sion in BALF [78-82]. One of the first studies mapping
BALF proteins using 2-DE demonstrated mostly plasma
proteins [82]. Subsequent studies using more sophisti-
cated sample preparation technique have demonstrated
a more comprehensive map of the BALF proteins
[79,80,83] resulting in creation of a database of BALF
proteins [81,84]. The 2-DE map created by characterizing
both individual and pooled BALF form subjects with dif-
ferent lung conditions has resulted in visualization over
1200 silver stained spots and identification of 900 proteins
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that include intact proteins or protein subunits and frag-
ments [84]. However the major challenges in BALF prote-
omics are high salt and low protein content with wide
dynamic range. Several of the sample preparation tech-
niques used for 2-DE, such as desalting of the BALF, con-
tinue to be used for contemporary MS studies to address
this issue. The removal of albumin [85] and other high
abundance proteins that allows for investigating the lower
abundance proteins, referred to as deep proteome profiling,
has also improved identification of low abundance pro-
teins [27] [86,87] and is a useful strategy for LC-MS
based proteomics. Recent report by Goodlet et al. re-
views studies applying shot-gun proteomics to BALF
[88]. Our laboratory has optimized BALF sample prep-
aration for semi-quantitative protein expression studies
using iTRAQ® LC-MS/MS for patients with ARDS. Ini-
tial studies using removal of six high abundant proteins
(albumin, transferrin, IgG, IgA, haptoglobin and antitryp-
sin) resulted in identification of only 93 proteins at a FDR
of 5% (abstract presented at ASPEN lung meeting).
Optimization of sample preparation that included careful
selection of spin columns for desalting and concentration
of the BALF, depletion of 14 high abundance plasma pro-
teins - albumin IgG, α1-antitrypsin, IgA, IgM, transferrin,
haptoglobin, α2-macroglobulin, fibrinogen, complement
C3, α1-Acid glycoprotein (orosomucoid) , HDL (apolipo-
proteins A-I and A-II), LDL (mainly apolipoprotein B)- in
combination of use of high resolution Orbitrap MS re-
sulted in improved coverage with identification of 724
proteins at 1% global FDR [36]. With improvement in the
tools available to researchers, it is likely that challenges
with BALF such as high dynamic range, protein loss dur-
ing sample preparation, and variable states of dilution
during sampling will be overcome and a comprehensive
database of BALF proteome will become available.

Serum or plasma
Plasma and serum is attractive due to ease of collection
thus permitting serial measurements. This could be ex-
tremely valuable in ARDS to understand the pathological
changes that occur during the development and recovery
stages of this disease when lung specific biospecimens
can be challenging to collect. Other advantages of identi-
fying markers in serum or plasma include the ability to
detect proteins with different tissue of origin such as the
alveolar epithelial cells (SP-D, SP-A, RAGE), vascular
endothelium (vWF), matrix metalloproteinase and media-
tors of inflammation [89]. However, barriers to successful
plasma biomarkers include the high level of complexity of
the proteome in addition to high abundance proteins lim-
iting the systematic study of medium or low abundant
proteins. Similar to BALF, immunodepletion of high abun-
dance proteins has been used for plasma proteomics in
ARDS [90,91].
Other potential bio-fluids that could be investigated in-
clude urine, nasal lavage fluid, and pleural effusion fluid.
However, currently there is limited evidence of the utility
of these samples in the study of ARDS.

Proteomics in ARDS
ARDS is acute respiratory failure with bilateral infiltrates
due to permeability pulmonary edema resulting in hypoxia
with a decrease in PaO2 to FiO2 ratio in absence of con-
gestive heart failure [92-94]. ARDS continues to be associ-
ated with a relatively high mortality [95,96]. American
European Consensus Conference criterion used the term
Acute lung injury (ALI) for milder form of ARDS [94] but
Berlin definition has suggested to use mild ARDS instead
of ALI [97]. Current knowledge is that ARDS is associated
with an exuberant inflammatory response in the lung
resulting in diffuse alveolar damage, surfactant dys-
function, epithelial and endothelial damage with loss of
alveolar-capillary barrier and leakage of protein rich
edema fluid into the alveolus that results in impaired
gas exchange. Following the exudative phase the lung
attempts to repair itself by proliferation of type II alveolar
epithelial cells which then differentiated into type I alveo-
lar epithelial cells and ultimately leading to regeneration
of the alveolar epithelium and clearing of edema fluid and
cellular debris form the alveolus. Proteomics studies have
been used to provide novel insight to the mechanisms
underpinning the development of and recovery from
ARDS and also to discover biomarkers of the disease
(Table 1).
Initial attempts to study the proteome in ARDS were

performed using gel-based platforms. First attempts at
applying proteomics to ARDS were published by Bowler
[74] where they studied plasma and edema fluid (EF) in
16 (age 55 ± 3) patients with ALI/ARDS (PF ratio 124 ± 15)
and plasma and BALF in 12 normal non-smoking subjects
(age 25 ± 5). Studies performed using 2-DE demonstrated
300 distinct protein spots in healthy volunteers. In healthy
controls, the protein profile was globally similar except that
there was some variability in the intensity of protein spots.
Multiple isoforms of some proteins such as SP-A, IgA and
IgM, were evident in the BALF. A few proteins were
present only in the BALF and not in the plasma. Several
proteins such as albumin, haptoglobulin, IgG, fibrinogen,
apolioporotien, clusterin-sulfated glycoprotein-2, transfer-
rin, retinol binding protein, and transthyretin all had more
intense staining in the plasma than BALF. In patients with
ALI/ARDS the protein spot profile could be grouped into
three patterns when compared to controls- 1) increased
protein intensity, 2) decreased protein intensity or 3)
modified expressions due to presence of post-translational
modifications. The spots with increased relative intensity
in EF of all ALI subject were of albumin, transferrin, IgG
and clusterin. In contrast, SP-A was seen in the BALF for



Table 1 Studies in ARDS using proteomics platforms

Year Proteomics methodology Sample type Number of subjects Number of proteins identified Reference

2004 2DE-MALDI/TOF Plasma and Edema
fluid in ARDS and Plasma
and BALF in non-smoking
healthy controls

ALI/ARDS = 16,
Controls = 12

300 distinct protein
spots and 158 proteins
identified.

Bowler [74]

2006 SELDI-TOF and 2DE +
MALDI TOF/TOF

BALF ARDS = 11, Healthy
nonsmoking controls = 33

Only differentially
expressed proteins
reported

De Torre [98]

2006 ‘Bottom-up’ proteomics
with LC-MS/MS

BALF ARDS = 3 226, 291 and 659 proteins
for the three patients
studied

Schnapp [35]

2008 2DE-MALDI TOF/TOF BALF ARDS day 1 = 7 ARDS
Day 3 = 8 ARDS day7 = 5

991 protein spots seen.
Only 80 protein spots
analyzed by MS which
represented 37 unique
proteins

Chang Martin [38]

2013 MALDI TOF/TOF Pooled plasma Direct lung injury = 6,
Indirect lung injury = 5,
healthy controls = 15

132 proteins Chen [90]

2014 iTRAQ Orbitrap LC-MS/MS Pooled BALF Early phase ARDS
survivors = 7 Early phase
ARDS non-survivors = 8
Late phase ARDS survivors = 7

724 proteins identified,
499 proteins quantified

Bhargava [36]
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all normal subjects but only one patient with ALI/ARDS.
Similarly, alpha-1-anti trypsin was identified in all normal
subjects but only half of ALI/ARDS patient’s. Haptglobin
and orosomucoid appeared to be have undergone post-
translational modification in ALI/ARDS. The authors con-
cluded that proteomics has potential to study the air space
in patient’s with ALI/ARDS with the ability to identify
post-translational modifications that would not be possible
with other techniques.
In another study de Torre et al. [98] used top-down

SELDI-TOF methodology and 2-DE with MALDI-TOF
MS to identify BALF protein profile differences in ARDS
compared to normal subjects. Study subjects included
11 cases within 72 hours of meeting the ARDS criterion
and 33 healthy nonsmoking subjects challenged by either
saline or endotoxin for induction of local lung inflamma-
tion followed by BAL in 6, 24 and 48 hours. Their studies
revealed the presence of differentially expressed proteins
in endotoxin challenged compared with saline challenged
subjects. Three peaks at 14,18 and 28 kDa were more
prominent in the endotoxin challenged subjects. The in-
flammation persisted at 24 hours but decreased at 48 hours
after the endotoxin challenge. The pattern from ARDS
cases were similar to that seen at 6 hours after the endo-
toxin challenge with increase in the 14 and 28 kDa peak
intensity. Subsequent 2-DE combined with in-gel trypsin
digestion with MALDI-TOF MS identified increased level
of apolipoprotein A1, S100-A8 and A9 in subjects chal-
lenged with endotoxin and ARDS.
Other studies have used MS for characterizing global

changes in BALF in patients with ARDS. In a study
Chang et al. [38] performed DIGE followed by MS-
based proteomics in combination with in silico analysis
to characterize serial changes in ARDS BALF at day 1
(n = 7), day 3 (n = 8), and day 7 (n = 5) and compared
these to normal volunteers (n = 9). Protein separation
using DIGE showed an average of 991 protein spots in
each group of patients. Of these 991 protein spots, 80
spots of interest were chosen for further study using tan-
dem MALDI-TOF/TOF resulting in identification of 37
unique proteins that represented opsonins, antioxidants,
basement membrane proteins, coagulation proteins and
acute phase reactants. Twenty-two of these proteins were
differentially expressed over time compared to controls.
This type of study lends itself to functional analysis and
Gene Ontology of these 22 proteins demonstrated pro-
cesses involved in inflammation, response to microbials
and response to stress/injury. An advantage of this ap-
proach is a sophisticated network analysis that revealed
complex and redundant dynamic changes suggesting the
complex nature of protein changes in ARDS. Several of
the proteins that were previously known to be critical in
ARDS such as TNF alpha, IL-1beta, LBP, p38MAPK were
central hubs in the identified networks in this study. Time
course network analysis showed temporal dynamic
changes. Compared to controls, on day one of the ARDS
diagnosis there were increases in complement proteins,
annexin A3, S100 protein, antiproteases, actin and extra-
cellular matrix proteins in the BALF. In contrast, surfac-
tant protein-A, annexin A1, fibrinogen and fatty acid
binding protein were decreased in ARDS compared to
control. Differences between day one and day three of
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ARDS were less dramatic though complement C3 and
preredoxin-2 showed a major difference. By day seven,
there was evidence of regeneration of the lung epithe-
lium, decreased cellular injury, cell turnover and reso-
lution of lung injury.
Our laboratory has used label based quantitative ‘bot-

tom-up’ proteomics (iTRAQ® Orbitrap LC-MS/MS) and
characterized protein expression form ARDS patients
who had BALF collected either in early phase of ARDS
(day 1-7 after intubation) or late phase (≥8 days post in-
tubation) [36]. The goal of these studies was to identify
differentially expressed proteins in early phase survivors
when compared to early phase non-survivors and deter-
mine the biological processes that are lacking or over-
expressed in the two groups with divergent outcomes. We
identified 724 proteins (FDR ≤ 1) of which 499 proteins
had quantitative data available. The proteins that were
overexpressed in early phase survivors represent six
ontologies- three related to coagulation, fibrinolysis
and wound healing, two related to iron and cation homeo-
stasis and one related to immune system activation. In
contrast, the early phase non-survivors had a signature of
collagen deposition, carbohydrate catabolism and actin
cytoskeleton organization. Proteins that are differentially
expressed in these biological processes could be potential
biomarkers for prediction of outcomes in ARDS. In this
study when early phase survivors were compared to late
phase survivors, biological processes that were activated in
late phase were cell migration and actin filament based
processes suggesting dynamic changes in the BALF occur
in ARDS subjects who survive. The processes that get ac-
tivated in late phase ARDS survivors could be potential
targets to design novel therapeutics and be manipulated in
early ARDS in patients predicted to have poor outcomes.
In a recent study, pooled plasma from patients with

ARDS due to direct lung injury (n = 6), indirect lung in-
jury (n = 5) and normal controls (n = 15) were analyzed
using semi-quantitative proteomics by iTRAQ with
MALDI-TOF tandem MS [90]. Despite depletion of albu-
min and IgG, the proteome coverage in this study was
limited with identification of 2429 peptides with only 132
non-redundant inferred proteins. Of these 132 proteins
only eleven proteins were differentially expressed in ARDS
compared to controls, seven up regulated and four down
regulated. The canonical pathways represented by these
proteins were liver X receptor/retinoid X receptor (LXR/
RXR) and farnesoid X receptor (FXR)/RXR activation,
clathrin-mediated endocytosis signaling, atherosclerosis
signaling, IL-12 signaling and production in macrophages,
nitric oxide and reactive oxygen species production in
macrophages, and complement system signaling. Due to
the limited protein coverage and relatively small number
of differentially expressed proteins, any protein pathway
inference requires further investigation. This study
highlights the ongoing challenges of plasma/serum prote-
omics due to wide dynamic rage and lack of deep prote-
ome coverage in these biofluids.
In addition to BALF and plasma, exhaled breath con-

densate has been studied by SDS gel separation in com-
bination with MALDI-TOF in patients with respiratory
failure [99]. A high level of cytokeratin 2 and 10 was as-
sociated with increased peak inspiratory pressure; PEEP
and ARDS score suggesting that cytokeratins correlated
with mechanical stress. These studies are examples how
extended proteome coverage of lung biospecimens by dif-
ferent proteomics platforms and computational tools can
lend new insights into the pathobiology of ARDS.
Conclusion and future of proteomics in lung
diseases
Significant strides have been made in several techniques
that are available for large-scale studies of proteins in
biological systems. Mass spectrometer based proteomics
has evolved from the ability to identify proteins present
in a complex mixture to its current state where both
label free and label-based methodologies can provide
quantitative information regarding proteins with high
precision. Label based methodologies are currently used
more widely but one of the limitation of these tech-
niques is co-isolation of more than one peptide for tan-
dem MS which would provide imprecise quantification.
Label free quantification with SRM and MRM requires
prior information of the peptide behavior of the proteins
of interest. Targeted proteomics with SRM or MRM is
also dependent on sample processing prior to LC-MS
and thus precludes measurement of low abundance pro-
teins. Some of the newer techniques that implement un-
biased data independent acquisition by mass spectrometry
followed by targeted data extraction such as SWATH-MS
(Sequential Windowed data independent Acquisitionof
the Total High-resolution Mass Spectra) [100] offer prom-
ise for high throughput precise quantification of large
number of proteins. Sophisticated bioinformatics algo-
rithms are also being developed (inSeq) [101] which im-
plement real time assignment of the spectral matches
allowing for improved accuracy of quantitation and also
improved localization of post translational modifications.
Better understanding of post-translational modifications
will allow more comprehensive mapping of networks and
pathways implicated in certain diseases. In addition to ad-
vanced algorithms for protein inference, there is a major
opportunity to understand the systems that are contribut-
ing to a disease state by integrating proteomics with other
platforms such as next generation sequencing and small
molecule studies using metabolomics. This ‘multi-dimen-
sional data integration’ would be key to develop targeted
therapies for complex conditions like ARDS.
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