
Zhu et al. Clinical and Translational Medicine 2014, :32
http://www.clintransmed.com/content///32
REVIEW Open Access
Biological and clinical significance of cancer stem
cell plasticity
Yongyou Zhu†, Ming Luo†, Michael Brooks, Shawn G Clouthier and Max S Wicha*
Abstract

In the past decade, the traditional view of cancers as a homogeneous collection of malignant cells is being replaced by
a model of ever increasing complexity suggesting that cancers are complex tissues composed of multiple cell types.
This complex model of tumorigenesis has been well supported by a growing body of evidence indicating that most
cancers including those derived from blood and solid tissues display a hierarchical organization of tumor cells with
phenotypic and functional heterogeneity and at the apex of this hierarchy are cells capable of self-renewal. These
“tumor imitating cells” or “cancer stem cells” drive tumorigenesis and contribute to metastasis, treatment resistance and
tumor relapse. Although tumor stem cells themselves may display both genetic and phenotypic heterogeneity, recent
studies have demonstrated that cancer stem cells maintain plasticity to transition between mesenchymal-like (EMT) and
epithelial-like (MET) states, which may be regulated by the tumor microenvironment. These stem cell state transitions
may play a fundamental role in tumor progression and treatment resistance. In this review, we discuss the emerging
knowledge regarding the plasticity of cancer stem cells with an emphasis on the signaling pathways and noncoding
RNAs including microRNAs (miRNA) and long non-coding RNAs (lncRNAs) in regulation of this plasticity during tumor
growth and metastasis. Lastly, we point out the importance of targeting both the EMT and MET states of CSCs in order
to eliminate these lethal seeds of cancers.
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Introduction
Despite significant advances over the last decade in the
diagnosis and treatment of cancer, the fact remains that,
once metastatic, the disease remains almost universally in-
curable. There is now substantial evidence that many can-
cers, including breast cancer, are hierarchically organized
and driven by a population of cells that display stem cell
properties [1-3]. These cells have been referred to as
tumor-initiating cells (TICs) or cancer stem cells (CSCs).
Subsequent studies have provided further evidence that
CSCs mediate tumor metastasis and are associated with
therapeutic resistance [4-7]. On this basis, targeting CSCs
holds great potential for limiting tumor growth and me-
tastasis as well as preventing therapeutic resistance and
cancer relapse.
The high degree of phenotypic and functional plas-

ticity has been increasingly recognized as one of the sig-
nificant properties of CSCs driving therapeutic resistance.
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We recently reported that breast CSCs display two
reversible phenotypic and functional states: an EMT,
epithelial-to-mesenchymal transition state and an MET,
mesenchymal-to-epithelial transition state [8]. The transi-
tion between these two states in breast CSCs may facilitate
breast cancer growth, dissemination and formation of
distal metastasis. In this review, we will discuss emerging
aspects regarding the plasticity of CSCs, the signaling
pathways that regulate this plasticity during tumor growth
and the role of CSC plasticity in tumor progression and
metastasis. We will also discuss the clinical significance of
targeting CSC plasticity.
Review
Cancer stem cells and plasticity
The cancer stem hypothesis
The cancer stem hypothesis posits that the majority of
human cancers are initiated and maintained by a small
population of cells that display stem cell properties in-
cluding unlimited self-renewal as well as the ability to
recapitulate the cellular distribution of the original
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tumor [9,10]. These cells were first described in human
acute myeloid leukemia [11]. The first evidence for CSCs
in solid tumors was presented in 2003 by Al-Hajj et al.
who prospectively enriched a population of breast cancer
cells with high tumorigenic properties [12]. These breast
CSCs were characterized by virtue of their expression pro-
file of specific cell surface markers, including EpCAM+,
CD24- and CD44+. As few as 100 cells bearing this
phenotype were capable of forming tumors in immune
deficient NOD/SCID mice, whereas 10,000 cells without
this cell surface phenotype were non-tumorigenic. An
in vitro cell culture assay under non-adherent condi-
tions for quantitating the stem/progenitor cell propor-
tion in human mammary epithelial cells has also been
described [13]. In this assay, only the cells with stem-
ness are able to proliferate and generate mammosphere
structures. More recently, it has been demonstrated that
cells high in aldehyde dehydrogenase (ALDH) activity
are enriched in breast CSCs, as determined by using the
Aldefluor assay(Stem Cell Technologies) [14]. The can-
cer stem hypothesis and the prospective isolation and
characterization of cancer stem-like populations from
leukemia, breast cancer and a wide variety of other solid
malignancies including that of the brain [15], prostate
[16,17], colon [18,19], pancreas [20], liver [21,22], lung
[23], and head and neck [24] in the past decade has
been one of the major advances in current cancer re-
search. Increasing studies have shown that CSCs display
treatment resistance to chemotherapy and radiation
therapy [4-6,25], while clinical neoadjuvant chemother-
apy expanded the proportion of CSCs [20,26].

Epithelial-mesenchymal plasticity of CSCs
In the case of breast cancer, CSC populations identified by
the markers CD24-CD44+ or ALDH+ were characterized as
minimally overlapping, largely separate cell populations,
each capable of initiating tumors in immune deficient mice
[14]. However, whether these different phenotypic popula-
tions identify distinct or independent CSCs in the tumor
remained to be resolved. To further characterize these dis-
tinct breast CSC populations, we prospectively isolated
these distinct subsets of breast cancer cells from a total of
30 human breast cancer samples. These tumor samples
were digested in collagenase to obtain single tumor cells.
Following tumor cell disassociation, tumor cell samples
were incubated with anti-CD44, anti-CD24, and anti-
lineage mixture antibodies (PE-conjugated anti-CD2, CD3,
CD10, CD16, CD18, CD31, and CD 140b), and then labeled
by Aldefluor assay, and analyzed using MoFlo Astrios flow
cytometry. Side and forward scatter were used to eliminate
debris and cell doublets, and the Lin- tumor cells were
further analyzed and sorted for ALDH+, ALDH-CD24-

CD44+ and bulk (non-ALDH+CD24-CD44+) tumor cell
populations. Using gene expression profiling of ALDH+
and CD24-CD44+ BCSCs (comparing to bulk tumor cells)
isolated across different subtypes of human breast cancer
tissues together with multi-marker immunofluorescence in-
cluding CD24, CD44 and ALDH1, we have recently shown
that the CD24-CD44+ and ALDH+ cell populations identify
anatomically distinct breast CSCs with distinct EMT
(epithelial-to-mesenchymal transition) and MET (mesen-
chymal-to-epithelial transition) gene-expression profiles re-
spectively [8]. The EMT-like CD24-CD44+ breast CSCs are
primarily quiescent and localized at the tumor invasive
front, while the MET-like ALDH+ breast CSCs are prolifer-
ative cells located mainly in the central part of tumors. Im-
portantly, the epithelial and mesenchymal states of breast
CSCs are not static; instead they display a cellular plasticity
allowing them to transit between EMT and MET states [8].
This reversible, metastable epithelial-mesenchymal plasti-
city of breast CSCs builds upon the current model of can-
cer metastasis postulating that EMT drives tumor cell
dissemination while subsequent MET drives metastatic
colonization [27].
Targeting two states of cancer stem cells
Cancer stem cell and drug resistance
A body of literature has shown the EMT type of CSC
plays a critical role in drug resistance and cancer
metastasis, which could partially explain why it has trad-
itionally been difficult to cure cancer using cytotoxic
chemotherapy. For instance, recent studies have shown
that EMT breast CSCs were particularly resistant to
treatments of either chemotherapy or radiation therapy
in cell lines and patient-derived mouse xenografts
[6,25,28,29]. The molecular mechanisms by which the
CSCs possess increased drug resistance are still not
completely clear. The proteins of the ABC transporter
family are believed to function as drug efflux pumps and
increased levels of these proteins in CSCs could there-
fore be contributing to the protection of CSCs from
cytotoxic chemotherapy [30-33]. For example, Osteosar-
coma CSCs were enriched for ABCG2, a member of
ABC transporter, and showed increased drug resistance
and metastasis [34,35]. Hu et al confirmed this finding
by showing that high expression levels of ABCG2 in
ovarian CSCs contributed significantly to Cisplatin re-
sistance [36]. Another member of ABC transporters,
MDR1/ABCCB1, has been reported to be associated
with a drug-resistant profile and high clonogenic activity
of the stem cell population in small-cell lung carcinoma
[37]. A recent study showed that transcription factor
Oct1 directly regulates ABC transporter genes Abcg2,
Abcb1 and Abcb4 in CSCs [38]. In this study, the authors
found an elevated protein level of Oct1, but not mRNA,
highly correlated with the frequency of CD24-CD44+

EMT breast CSCs or ALDH+ MET breast CSCs.
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There is mounting evidence suggesting that CSCs
employ alternative DNA repair pathways to maintain
genomic stability and prevent damage from radiother-
apy. A previous study reported CD24-CD44+ EMT
breast CSCs are a relatively radioresistant subpopula-
tion and increase in numbers after short courses of
fractionated irradiation [5]. Another group reported
that CD24-CD44+ EMT breast CSCs isolated from ei-
ther MCF7 or MDA-MB231 breast cancer cell lines,
or primary culture of patient tumors, displayed in-
creased capacity for sphere formation and resistant to
radiation compared to the non- CD24-CD44+ subpop-
ulation through the enhanced activation of DNA
damage response [39]. CD133+ brain tumor stem cells
in glioblastoma have reduced sensitivity to radiation-
induced apoptosis [15,40] and similar findings were
made by Bao et al that CD133+ tumor stem cells iso-
lated from both human glioma xenografts and pri-
mary patient glioblastoma specimens preferentially
activate the DNA damage response after radiation
treatment and repair radiation-induced DNA damage
more effectively than CD133- bulk tumor cells [41].
These results also suggest that the DNA repair ma-
chinery may be an effective target to eliminate CSCs,
leading to increased patient survival.
Aldehyde dehydrogenase1(ALDH1) is a detoxification

enzyme involved in the oxidization of intracellular alde-
hydes to carboxylic acids [42]. Elevated expression level of
ALDH1 in MET type of breast CSCs is thought to be re-
sponsible for drug resistance to cytotoxic agents, such as
cyclophosphamide [43]. Studies have shown that ALDH+

MET breast CSCs exhibit similarly enhanced metastatic
and drug resistant features with EMT type of breast CSCs
[14]. In this study, the ALDH+ CSC population was found
to be a prognostic indicator for high tumor grade, negative
ER/PR status, ERBB2 overexpression, and expression of
basal-like cytokeratins. Beside those findings, ALDH1 ac-
tivity in breast CSCs was considered as a predictor of poor
clinical outcome [14]. Consistent with those observations,
a clinical study examining ALDH1 expression level in pri-
mary breast tissue treated with Paclitaxel and Epirubicin
revealed that ALDH1 activity was strongly associated with
a low pathologically complete response and high resist-
ance to chemotherapy [26]. Most recently, it has been
shown that ALDH enzymes play a directed role in chemo-
therapy resistance [44]. Therefore, ALDH1 not only serves
as a functional marker of CSCs, but also plays important
role in resistance to chemotherapy.

Targeting signaling pathways of cancer stem cells
The Wnt pathway
The Wnt signaling pathway is a key developmental path-
way involved in a variety of biological processes includ-
ing cell proliferation, survival and differentiation [45]. The
well characterized canonical Wnt/β-catenin signaling path-
way is initiated with ligand-receptor binding resulting in
transcriptional activation of a subset of response genes,
which have been suggested to play a critical role in tumor
initiation in many tissues. The Wnt/β-catenin signaling
pathway is often aberrantly activated in CSCs, which are
responsible for generation of metastasis and decreased
survival of patients [46]. Therefore, targeting the Wnt/
β-catenin signaling pathway may potentially reduce the
number of, or even eradicate, CSCs. To this end, a number
of small-molecule inhibitors of Wnt signaling are being
studied including existing drugs such as nonsteroidal anti-
inflammatory drugs (NSAID), new molecular-targeted
agents, including many that are currently in the discovery,
preclinical, or clinical testing stages [47]. Among them,
CBP/β-catenin antagonist ICG-001ICG-001, was reported
to be capable of eliminating imatinib-resistant leukemic
stem cells both in vitro and mouse xenografts. In Wilm’s
tumor, the stem cell properties of sphere formation and
clonogenicity can be largely abrogated after the application
of anti-FZD7, an antibody for Wnt receptor Frizzled 7
[48]. Moreover, application of Dkk1 has been shown to de-
crease mammosphere formation in primary breast cancer
cells and MCF-7 cells and drive CD24-CD44+ EMT breast
CSCs into differentiation at a high concentration by pre-
venting the formation of FZD-Wnt-LRP complex [49]. Re-
cently, it has been demonstrated that salinomycin is able to
dramatically reduce the number of CSCs in triple negative
breast cancer [50] by promoting the degradation of Wnt
co-receptor LRP6 [51]. Thus, targeting the components in
Wnt signaling pathway is a promising approach to elimin-
ate CSCs, especially the CSCs with EMTcharacteristics.

The Hedgehog pathway
Recent studies have suggested that the Hedgehog (Hh)
pathway is involved in the maintenance of CSCs in a num-
ber of tumors, including pancreatic cancer [52], gastric
cancer [53], colorectal cancer [54], and glioma [55]. An
Hh pathway inhibitor GDC-0449(Vismodegib) has been
developed to inhibit the signaling component Smoothened
(SMO) and has shown promise in clinical trials of ad-
vanced basal cell carcinoma and advanced metastatic me-
dulloblastoma [56,57]. However, mutations in SMO in
patients conferred a drug resistance to this inhibitor [58].
An active compound in green tea, (-)-epigallocatechin-3-
gallate (EGCG), has been proposed to inhibit self-renewal
capacity of pancreatic CSCs through blocking Hh pathway
[52]. In this study, the expression levels of sonic Hh sig-
naling components Patched (Ptch), SMO, Gli1 and Gli2
were downregulated, and the transcriptional activities of
Gli1 and Gli2 were also inhibited after application of
EGCG. However, the direct target(s) of EGCG in CSC in-
hibition are still unclear. A small-molecule Hh pathway
inhibitor, IPI-269609, has been tested both in vitro and
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in vivo model systems of pancreatic cancer and the results
showed that this SMO inhibitor is effective in reducing
ALDH+ MET CSCs and preventing metastasis [59]. More-
over, treatment with the Hh pathway inhibitor cyclopa-
mine combined with gemcitabine and rapamycin showed
significant inhibitory effects on CD133+ CSCs of human
pancreatic cancer [60], suggesting that combined targeted
treatment may have therapeutic efficacy. Bmi-1 is an
oncogene and may cooperate with Twist1 to regulate
EMT state of CSCs and metastasis. Bmi-1 has been shown
to play an important role in the regulation of stem cell
self-renewal in breast cancer, where the activity of Bmi-1
is increased by Hh pathway activation [61]. A recent study
demonstrated that a small molecular inhibitor, PTC-209,
is capable of inhibiting Bmi-1, further blocking self-
renewal of colon cancer initiating cells (CICs) [62,63],
which provides a therapeutic rationale for exploring the
efficacy of PTC-209 in targeting CSCs.

The Notch pathway
The role for Notch signaling in cancer was demonstrated
by the identification of activating mutations as well as
amplification of Notch pathway components in a number
of tumors [64,65]. Among them, activating mutations of
Notch-1 have been identified in more than 50% of human
T-cell acute lymphoblastic leukemia patients (T-ALL)
[66]. Overexpression of receptor Notch-1, or its ligand
Jagged-1, has been shown to predict poor survival of
breast cancer patients [67,68], suggesting a significant role
of the Notch pathway in this malignant disease. Moreover,
Notch activated HER2 overexpression is essential for self-
renewal of breast CSCs in patients and is associated with
poor prognosis [69]. Blocking the activity of Notch intra-
cellular domain (NICD) is currently one of the practical
approaches to inhibiting Notch signaling to eliminate
CSCs, and this therapeutic inhibition of Notch signaling
can be achieved using γ-secretase inhibitors (GSIs) to
block the release of NICD. GSIs were shown to reduce glio-
blastoma CSCs [70] and breast CSCs [71] through inhibition
of Notch pathway. In another study, GSI MRK-003 has been
shown to inhibit CSCs in a mouse model of breast cancer
[72]. A blocking antibody or siRNA knockdown of Notch-4
has been shown to reduce the stem cell population, inhibit-
ing tumor formation from EpCAM+CD24-CD44+ CSCs and
that this effect was greater than Notch-1 inhibition [71,73],
this suggests that Notch4-targeted therapies may be more
effective than Notch1-targeted therapies in targeting breast
CSCs.

PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR pathway has been shown to play
an important role in the regulation of CSCs. PTEN acts
as a negative regulator of PI3K/Akt/mTOR signaling
through dephosphorylating PIP3, a product of PI3K,
resulting in pathway inhibition [74-77]. Loss of PTEN
activity leads to constitutive PI3K/Akt pathway activa-
tion, which results in increased stem cells in breast can-
cer. Treatment with Akt or mTOR inhibitors has been
shown to increase sensitivity of CSCs to irradiation and
chemotherapy, respectively [78,79]. Accordingly, inhib-
ition of AKT with Perifosine reduced CSC activity as
accessed by mammosphere formation. These results sug-
gest the PTEN/PI3K/AKT/mTOR pathway could be an
effectively therapeutic target in sensitizing and eliminat-
ing CSCs.

Targeting cytokines through STAT3 and NF-κB pathways
The STAT3 and NF-κB pathways play a pivotal role in the
induction and maintenance of inflammatory microenvir-
onment of malignant diseases and tumors [80-82], and
these pathways are activated by numerous cytokines in-
cluding IL-6 and IL-8 secreted by a variety of inflamma-
tory cells [83,84]. In cancer patients, high levels of IL-6
and IL-8 are associated with poor outcome. IL-6 activated
JAK2/STAT3 pathway was proposed to support the main-
tenance of CD24-CD44+ breast CSCs [85]. STAT3 and
AKT activation causes the activation of NF-κB pathways
in inflammatory cells leading to increased levels of Lin28
and decreased levels of miRNA let7. This in turn leads to
increased IL-6 and IL-8 production in the tumor micro-
environment [86,87]. A recent study revealed that IL-6 ac-
tivated Jagged1/Notch1 signaling contributes to bone
metastasis of breast cancer [88], indicating that multiple
pathways may be involved in the IL-6-mediated CSC regu-
lation. Moreover, we previously reported that the IL-8
receptor CXCR1 is selectively expressed in breast CSCs,
and the addition of IL-8 promotes proliferation and self-
renewal of breast CSCs [89]. These results suggest block-
ing IL-6, IL-8 and their receptors IL-6R and CXCR1 may
be an attractive therapeutic strategy.
Approximately 20-25% of human breast cancers are

HER2-positive and almost 50% of patients with HER2-
amplified cancer will develop trastuzumab resistance after
1-2 years of treatment [90]. Notably, PTEN deletion was
identified in over 40% of those HER2-positive trastuzumab
resistant breast cancer patients [91]. In a recent study, we
found that PTEN inactivation in HER2-positive breast
cancer cells activates an IL-6, STAT3, AKT and NF-κB
involved inflammatory feedback loop, which expands
EMT type of breast CSCs [87]. Moreover, it has been
shown that activation of the IL6 inflammatory loop in p53
−PTEN− cancer cells is associated with reduced SOCS3
expression which serves as a negative regulator of IL6-
mediated signaling, and forced expression of SOCS3 or
using IL6-R blockade inhibited tumor proliferation and
metastasis in mouse xenografts [92]. Through the IL6
feedback loop, trastuzumab resistance is acquired and
EMT-CSCs are significantly enriched. Based on this
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observation, we treated HER2-positive, PTEN deleted,
tumor xenografts with a combined treatment of trastuzu-
mab and tocilizumab, a monoclonal antibody directed
against IL-6R. This treatment completely overcame de
novo and acquired trastuzumab resistance of HER2-
positive PTEN-deleted breast cancer. Furthermore, repar-
axin, an inhibitor of the IL-8 receptor CXCR1, is currently
in a phase I clinical trial, to evaluate the strategy of adding
repertaxin to paclitaxel to block the chemotherapy-
induced increase in CSCs.

Non-coding RNAs in CSC plasticity
Non-coding RNAs (ncRNAs) are RNA molecules which
are transcribed from the genome, but do not encode
proteins. One class of ncRNAs are microRNAs which
are highly-conserved small non-coding RNAs with a
length of ~22 nucleotides that serve as regulatory inhibi-
tors for protein expression [93]. They modulate gene
function through their binding to complementary re-
gions within the 3’-UTRs of target mRNAs, leading to
mRNA degradation or repression of translation. Micro-
RNAs have been extensively studied and regulate expres-
sion of a variety of target genes involved in different
developmental processes and diseases including cancer
[94]. MicroRNAs can function as oncogenes [95,96] or
tumor suppressors [97,98]. There is mounting evidence
that microRNAs are potential targets for cancer diagno-
sis and therapy [99-102]. Long non-coding RNAs
(lncRNAs) are a newly identified class of non-coding
RNAs longer than 200 nuceotides [93]. Although rela-
tively few lncRNAs are well characterized compared to
microRNAs, lncRNAs function in physiological and
pathological processes through a variety of mechanisms
such as interacting with microRNAs, mRNAs, proteins
and genomic DNA [103]. LncRNAs have been impli-
cated in many aspects of epigenetic, transcriptional and
translational regulation [104]. Emerging evidence
suggests that non-coding RNAs might serve as potential
targets for anti-CSC therapies.

MicroRNA regulation of cancer stem cell plasticity
The most established regulatory network of microRNAs
in CSCs is the miR-200 family, which includes miR-200a,
b, c, miR-141 and miR-429. Two prominent targets of the
miR-200 family are ZEB1 and ZEB2 which are involved in
the regulation of epithelial/mesenchymal transitions.
E-cadherin is one of the key epithelial genes, and down-
regulation of E-cadherin is generally associated with EMT.
miR200-family members act to maintain E-cadherin
expression through directly suppressing the negative regu-
lators ZEB1 and ZEB2 in EMT CSCs. Forced expression
of miR-200 family members was shown to prevent a TGF-
β induced mesenchymal phenotype [105], and block
tumorigenicity of CD24-CD44+ CSCs [106]. Consistent
with this result, miR-200 family members were found to
be strongly suppressed in CD24-CD44+ breast CSCs which
is associated with an EMT state [106,107]. In addition, in-
hibition of miR-200 family members was also shown to
promote CSC formation and maintenance [108]. miR-
200c inhibited the polycomb gene Bmi-1 in breast CSCs,
leading to reduced self-renewal of CSCs [109]. In contrast,
loss of miR-200b promotes the expression of the E-
cadherin suppressor Suz12, which resulted in increased
numbers of EMT CSCs [108]. In breast cancer patients,
the expression of miR-200 family members inversely cor-
related with the proportion of CD24-CD44+ EMT breast
CSCs. Furthermore, forced expression of miR-200 genes
in those EMT CSCs resulted in a conversion of these
CSCs to an epithelial MET state [110].
The microRNA let-7 family regulates stem cell self-

renewal and differentiation and acts as a tumor suppressor
through targeting oncogenic RAS and HMGA2, which are
involved in the EMT state of CSCs. Overexpression of let-
7 leads to suppression of mammosphere formation,
proliferation, and reduced proportion of breast CSCs, sug-
gesting let-7 inhibits cancer growth through regulation of
the EMT state of CSCs [111]. Similar to the let-7 family,
overexpression of miR-30 in breast CSCs resulted in re-
duced self-renewal and anoikis resistance and increased
apoptosis via decreased Ubc9 levels and silencing of
ITGB3. When both let-7 and miR-30 were expressed in
breast cancer, a much more significant inhibition of
self-renewal of breast CSCs was observed compared to ex-
pression of either miRNA alone [112], indicating multiple
miRNAs could be used to eliminate CSCs in anti-cancer
therapy. miR-34c has been identified as a tumor suppres-
sor because it has inhibitory activity in regulating self-
renewal and EMT of breast CSCs through targeting
Notch4. The miR-181 family which interacts with the
TGF-β pathway functions in the regulation of EMT breast
CSCs [113]. Finally, miR-21 functions as an oncogenic
miRNA and promotes the EMT-like breast CSCs through
AKT/ERK1/2 inactivation by targeting PTEN [114].
Recently miR-93 [115], miR-100 [116], and miR-221

[114] were shown to be important regulators of the transi-
tion between EMT and MET CSC states. Low mir-93
expression is associated with increased tumor-initiating
capacity, while overexpression diminishes the presence of
CSCs. Forced expression of miR-93 in claudinlow SUM159
and basal HCC1954 cell lines, as well as NOD/SCID
mouse xenografts, dramatically reduced the proportion of
ALDH+ MET-like breast CSCs and overexpression of
miR-100 in breast cancer cell lines and tumor xenografts
also modulates the MET and EMT breast CSC states
[115-116]. A number of targets of miR-93, including
JAK1, SOX4, STAT3, AKT, EZH1, and HMGA2 are
known regulators of stem cell-renewal. Expression of miR-
93 was also found to suppress the TGF-β signaling
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pathway through targeting TGF-βR2 and SMAD5 to
promote the conversion of EMT to MET, resulting in an
increased proportion of ALDH+ MET breast CSCs. In
contrast, forced expression of miR-100 and miR-221in
MCF10A, a non-tumorigenic breast cell line, as well as a
variety of tumorigenic breast cancer cell lines resulted in
the induction of CD24-CD44+ EMT stem cells and
decreased proportion of ALDH+ MET stem cells [115].

LncRNA regulation of cancer stem cell plasticity
Hotair (Hox transcript antisense intergenic RNA) is one
of the first lncRNAs whose function has been elucidated.
It plays a pivotal role in the polycomb repressive
complex 2 (PRC2), which directs epigenetic regulation
of target genes through histone H3 lysine 27 trimethyla-
tion (H3K27me3) [117,118]. High expression level of
Hotair contributes to metastasis and poor survival in
breast cancer patients [117]. Hotair is also highly
expressed in CD133+CD44+ colon cancer cells which
have been characterized as EMT CSCs [120]. Overex-
pression of Hotair resulted in increased expression of
EMT inducing genes such as ZEB1, Snai1, Twist, β-
catenin, vimentin and fibronectin in breast CSCs
[118,120]. Those results suggest Hotair regulates EMT
CSCs and promotes cancer metastasis through global re-
programming of chromatin states.
Xist, one of the lncRNAs involved in X chromosome

inactivation(XCI), was demonstrated to be a tumor
suppressor and a stem cell regulator [121]. Using math-
ematical modeling, SUZ12 and EZH2, regulators of
CSCs, were predicted to show high binding affinity to
Xist RNA [122], which is further evidence that Xist may
Figure 1 Potential therapeutic targets of CSC plasticity. MET and EMT
Potential targets for eliminating these populations include targeting each s
(MET CSCs) or Tocilizumab (EMT CSCs) or developing new drugs to target
populations.
function in regulation of CSCs [123]. Salvado et al.
validated that low Xist expression in patient derived
xenografts is associated with drug response and a signifi-
cant decrease of the ALDH+ breast CSC population after
treatment with a histone deacetylase inhibitor (HDACi)
abexinostat. In contrast, high expression of Xist in
patient derived xenografts increased the proportion of
breast CSCs. This result indicates that Xist’s regulation
of the proportion of CSCs may be dependent on CSC
states. Our laboratory identified BRCA1 as a regulator of
ALDH+ CSCs [124], while a previous study showed that
Xist RNA concentration in XCI was increased by
BRCA1 in breast cancer cells [125], suggesting Xist
regulation of breast CSCs is in a BRCA1 dependent
manner.
Translational regulatory RNA (treRNA) was found to

function in the nucleus as a cis element to upregulate
the expression of Snail while suppress cytoplasmic
E-cadherin expression promoting EMT in cancer cells
[126,127]. Overexpression of lncRNA treRNA in MCF7
breast cancer cells suppressed E-cadherin and other
epithelial proteins and increased the protein levels of
mesenchymal proteins, resulting in increased cell migra-
tion and invasion [127]. These results suggest treRNA
may play a role in the regulation of EMT CSCs and may
thus be an appropriate therapeutic target. The metasta-
sis–associated lung adenocarcinoma transcript 1
(MALAT 1) was found to be associated with highly
metastatic tumors and correlated with poor patient
outcome [128]. In bladder cancer, downregulation of
MALAT-1 led to the inhibition of the EMT associated
genes ZEB1, ZEB2, and Slug, and the activation of E-
CSCs can readily transition back and forth between the two cell states.
pecific population with particular drugs such as Trastuzumab
the pathways and ncRNAs involved in the transition between the
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cadherin. In addition, increased expression of MALAT-1
was also found to activate the Wnt pathway to promote
EMT and human bladder cancer cell metastasis [129].
LncRNA H19, together with its partner miR-675, a

miRNA embedded in its first exon, were proposed to
regulate EMT through multiple signaling pathways,
one of them being the PI3K–AKT pathway [130].
Over-expression of H19 in lung cancer lines abolished
the expression of E-cadherin by activation of Slug in
a miR-675 dependent manner, suggesting a biological
function of H19 in the regulation of EMT. A recent
study showed that H19 can serve as a molecular
sponge for the let-7 microRNA family in muscle tis-
sue, suggesting an alternative function of lncRNAs in
the transition between EMT to MET of CSCs through
blocking microRNAs [131]. Linc-ROR was first char-
acterized in induced pluripotent stem cells (iPSCs)
[132] and recently it was proposed to act as a sponge
for mir-145 serving to de-repress a number of mir-
145 targets, including OCT4, SOX2, and Nanog
[133]. More recently, linc-ROR has been demon-
strated to play an important role in the regulation of
breast cancer metastasis and EMT CSCs. Overexpres-
sion of linc-ROR in mammary epithelial cells resulted
in an increase in the CD24-CD44+ stem cell popula-
tion with strong upregulation of the mesenchymal
markers such as Vimentin, α-SMA, N-cadherin and
Fibronetin, while the epithelial markers E-cadherin
and Occludin were dramatically suppressed [134]. In
this study, linc-ROR was suggested to have a role as
a sponge for mir-205 thereby preventing the degrad-
ation of its targets such as ZEB1 and ZEB2 in breast
cancer to regulate CD24-CD44+ EMT stem cells. Re-
cently, lncRNA-activated by TGF-β (lncRNA-ATB)
was demonstrated to competitively bind the miR-200
family and sequester them from their targets, ZEB1
and ZEB2, thereby inducing EMT and invasion in
hepatocellular carcinoma. On the other hand,
lncRNA-ATB also interacts with, and increases the
stability of IL-11 mRNA, which results in the
activation of the IL-11-STAT3 signaling pathway and
enhanced colonization in hepatocellular carcinoma
[135]. These findings suggest that lncRNA-ATB might
act as a key regulator of TGF-β signaling by targeting
both EMT and MET states of CSCs. Future studies
will further elucidate the role of lncRNAs in CSC
signaling and plasticity.

Conclusions
The current model of CSC plasticity between EMT
and MET states suggests that CSCs may not consti-
tute fixed populations but rather a dynamic, plastic
and phenotypic state that can be acquired as a func-
tion of dynamic tumor microenvironment changes
such as growth factor and inflammatory signaling,
stromal cell interactions, and tumor hypoxia/meta-
bolic reprograming. This epithelial-mesenchymal plas-
ticity of CSCs adds another layer of complexity in
terms of therapeutic strategies to target these lethal
seeds of tumors. However, no matter how plastic and
dynamic, CSCs are still regulated by and are
depended on specific stem cell signaling pathways,
and thus may be amenable to CSC specific therapies.
The plasticity of CSCs is regulated by a plethora of
factors, such as many signaling pathways, transcrip-
tion factors, miRNAs and lncRNAs. Thus, targeting
both EMT and MET states of CSCs may prove to be
the most effective therapeutic strategy for anti-cancer
treatment (Figure 1). Emerging evidence has shown
that lncRNAs may play roles in the regulation of the
EMT and MET states of CSCs. However, lncRNAs
have been characterized to be involved in diverse
physiological and pathological processes through mul-
tiple targets and distinct molecular mechanisms.
Therefore, the therapeutic potential of lncRNAs in
control of EMT and MET states of CSCs needs to be
validated in future studies.
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