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Perivascular mesenchymal stem cells in the
adult human brain: a future target for
neuroregeneration?
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Abstract

Perivascular adult stem cells have been isolated from several tissues, including the adult human brain. They have
unique signatures resembling both pericytes and mesenchymal stem cells. Understanding the nature of these cells
in their specific vascular niches is important to determine their clinical potential as a new adult stem cell source.
Indeed, they have promising features in vitro in terms of multipotency, immunomodulation and secretion of growth
factors and cytokines. However, their in vivo function is less known as yet. Recent emerging data show a crucial role
of perivascular mesenchymal stem cells in tissue homeostasis and repair. Furthermore, these cells may play an
important role in adult stem cell niche regulation and in neurodegeneration. Here we review the recent literature
on perivascular mesenchymal stem cells, discuss their different in vitro functions and highlight especially the
specific properties of brain-derived perivascular mesenchymal stem cells. We summarize current evidence that
suggests an important in vivo function of these cells in terms of their regenerative potential that may indicate a
new target cell for endogenous tissue regeneration and repair.
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Adult stem cells
Adult stem cells (ASCs) are found in almost all organs of
the postnatal human body. They reside in the perivascular
niche, a specific microenvironment that allows ASCs to
retain their multi-lineage potential and self-renewal ca-
pacity [1,2]. The perivascular niche consists of ASCs,
neighbouring cells and extracellular matrix [1,3,4].
Adult stem cells are a source for organ-specific cell re-

placement either during the normal cell turnover or under
pathological conditions [5,6]. These stem cells often remain
dormant until they are activated by the body’s need to
maintain tissues, or in response to disease or tissue injury.
Some ASC types, such as hematopoietic stem cells (HSCs)
or enteric stem cells, have a high proliferation rate, whereas
in other organs, ASCs only divide under certain conditions,
stimulated by injury for example.
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In contrast to embryonic stem cells, the differentiation
potential of ASCs is regarded as more restricted, usually
to the cells of the tissue in which they reside. This suggests
that the differentiation of an ASC into a specialized cell
might be dependent on the surrounding tissue. However,
this classical paradigm of tissue-specific differentiation
capacity has been challenged by observations of a different
degree of plasticity in some adult tissues that has resulted
in differentiation beyond tissue boundaries [5].
Mesenchymal stem cells
One ASC type that has specifically attracted attention dur-
ing the past years are mesenchymal stem cells (MSCs)
[7-12]. Friedenstein and co-workers [13] were the first to
describe MSCs, originally termed mesenchymal stromal
cells, as a rare population of plastic-adherent cells that
could be isolated from the bone marrow but was different
from HSCs [13]. Mesenchymal stem cells are isolated by
adherence to plastic, possess a high proliferative potential
and are characterized by the expression of a panel of sur-
face markers [14] and their capacity to differentiate
along mesodermal lineages such as osteoblasts,
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chondrocytes and adipocytes [15]. They have gained
interest because they are not only multipotent, they
also support hematopoiesis [16-18], are immunomodu-
latory [19-23] and have an intriguing pro-regenerative
capacity due to the secretion of different growth fac-
tors and mitogens [12,23].
Mesenchymal stem cells reside in the
perivascular niche
Interestingly, sources for MSCs are not restricted to
the bone marrow. Indeed, MSCs have been isolated
from several tissues in different species [7,10] but also
from different human tissues and organs [24-26] in-
cluding bone marrow [27], dental pulp [27,28], adipose
tissue [29], umbilical cord Wharton’s jelly [30], pla-
centa [31] and recently also from the adult human
brain [32]. Importantly, these MSCs are located in the
perivascular niche and exhibit similarities to pericytes
in terms of phenotype, gene expression and differen-
tiation capacity [25,26,32].
Evidence, that MSCs and pericytes are biologically

related had remained indirect for a long time, but a
more systematic analysis of their association has only
recently been made [25,26,33,34]. Now it has been
shown that MSCs may reside in the perivascular com-
partment and have characteristics identical to a sub-
class of pericytes [10,24-26,32,34]. However, pericytes
around capillaries are suggested not to be the only
ancestors of MSC’s [33]. Adventitial cells that reside
around larger vessels also natively express MSC sur-
face markers [35,36].
Pericytes
Pericytes are a heterogeneous cell population in the vas-
cular niche [37], that line the abluminal side of endothe-
lial cells in the perivascular space and are embedded
within a shared basement membrane [38,39]. They span
the entire microvasculature. The phenotypic identifica-
tion of pericytes is rather difficult due to the lack of one
specific pericyte marker. Therefore, besides their loca-
tion, a panel of different markers is usually used to iden-
tify pericytes [38,40-42].
This diversity in pericyte marker expression may be

due to differences in tissue location, vessel size or em-
bryonic origin. It is generally proposed that pericytes
are either mesodermal or neural crest-derived [43,44],
depending on their location in any given organ. In
addition to their multiple embryonic origins, pericytes
may develop from several adult cell types [38,42,45]. In
the resting stage, pericytes are quiescent slow-cycling
cells [46]. Once isolated from different tissues, pericytes
have the capacity to proliferate and differentiate into di-
fferent cell types in vitro.
Perivascular mesenchymal stem cells - a novel
stem cell in the human brain
For many decades, the adult brain, in contrast to other
tissues, was thought to not be capable of regeneration.
However, it is now widely accepted that the adult human
brain contains neural progenitors [47-53]. In the brain,
adult neural stem cells are also found in specialized vas-
cular niches, mainly in the neurogenic zones, the sub-
ventricular zone and the subgranular zone of the dentate
gyrus [54-57]. In these vascular niches, the neural stem
cells contact the vasculature at the sites that lack astro-
cyte endfeet and pericyte coverage [58].
Neural progenitor cells could also be derived from a

variety of adult brain regions other than the known
neurogenic zones [49,52,59,60]. Human adult progenitor
cells isolated from non-neurogenic regions multiply
in vitro and give rise to cells with the characteristics of
neurons, astrocytes, and oligodendrocytes [59,61,62].
Analyzing human brain tissue from biopsies and tem-

poral lobectomies, we have identified a novel adult stem
cell with mesenchymal characteristics located around small
blood vessels in the human brain that is different from the
previously described neural stem and/or progenitor cells
[32]. These perivascular cells expressing mesenchymal
(CD105, CD13) and pericyte markers (PDGFR-β) are
mainly located at vascular branching points. Some of the
pericytes co-expressing MSC markers are proliferating cells.
Isolated cells were further purified by fluorescence-
activated cell sorting (FACS), gating them positively for
CD105, CD13, and negatively for the hematopoietic marker
CD45 and the endothelial marker CD31. The expanded
purified cells exhibited a marker signature for both MSCs
and pericytes in vitro (CD73, CD90, CD13, CD106, CD49d,
PDGFR-β, RGS5, α-SMA, NG2). Cells were negative for
hematopoietic, endothelial, and glial markers. Most import-
antly, the isolated cells did not express any of the neural
progenitor markers that are typical for adult neural stem
cells (CD133, SOX1, NGN2, PAX6 and Musashi) (Table 1).
Isolated perivascular MSCs from the adult human brain

undergo self-renewal in vitro and give rise to single-cell-
derived clones that are indistinguishable from polyclonal
perivascular MSCs in terms of adherence, morphology,
proliferation, and surface antigen expression. Surprisingly,
the capacity of these brain-derived perivascular MSCs was
far superior to our initial expectations (Figure 1). Single-
cell-derived clones gave rise to adipocytes, chondroblasts
and osteoblast when exposed to the appropriate inductive
signals, a feature that had been described for both MSC
[15,25] and pericytes [25,63-66].
Most interestingly, when isolated perivascular MSCs

were exposed to glial induction medium, the cells diffe-
rentiated into oligodendrocytes or astrocytes, pericyte-
specific antigens were downregulated and cells expressed
glial fibrillary acidic protein (GFAP).



Table 1 Marker expression of perivascular MSC isolated
from the adult human brain

POSITIVE EXPRESSION NO EXPRESSION

Pericyte Markers Neural/ glial progenitor markers

PDGFR-β PAX6 CD133

RGS5 A2B5 SOX1

α-SMA S100b Musashi

NG2 GLAST Neurogenin2

Nestin GFAP Tuj1

Kir6.1 O4 Doublecortin

Mesenchymal Markers Endothelial markers

CD105 CD31

CD13 CD34

CD73 Hematopoietic markers

CD90 CD45

CD166 CD56

CD49d Macrophage/microglia markers

CD29 CD14

CD11b
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Furthermore, upon neuronal induction, the same peri-
vascular MSC clones downregulated mRNA for pericyte
markers (α-SMA, Nestin, RGS5, NG2 and PDGFR-β)
and upregulated mRNA for neuronal transcription
factors (NeuroD1, Pax6, Tbr1, Tbr2) and neuronal mar-
kers (DCX, Tuj1) and consistently expressed neuron-
specific proteins (DCX; HuC/D, Map2, Tuj1, NSE). A
proportion of neurons expressed the synaptic marker
PSD95 and GABA A-receptor, indicating a more mature
neuronal phenotype. Cells exhibited typical electro-
physiological features of immature neurons, consistent
with the slow maturation of human neurons.
Thus, perivascular MSCs have a broader stem cell

potential than classical neural stem cells. Moreover,
perivascular MSCs are not restricted to a certain peri-
vascular niche in neurogenic regions but could be ea-
sily isolated from non-neurogenic regions in the brain.
Thus, the perivascular MSC is a novel, unique popula-
tion distinct from the neural stem cells in the adult
brain that has both neuroectodermal and mesodermal
differentiation capacity in vitro. This differentiation ca-
pacity was retained in long-term proliferating cultures.
The most intriguing question to be answered now is

obviously which role these cells play for disease and repair
in vivo and whether this reflects their in vitro potential.

Regenerative potential of perivascular
mesenchymal stem cells
Perivascular MSCs possess both MSC and pericyte fea-
tures. Both cell types have been described to have differ-
ent properties that may play a role in regeneration.
Mesenchymal stem cells in vitro have shown several
interesting features such as multipotentiality, immuno-
modulation, and pro-regenerative capacities [9,12,15].
Due to these properties, MSCs have become one of the
most promising ASC types and are currently being tested
in several clinical trials. Indeed, MSCs are explored as a
treatment for Crohn’s disease [67-70], for acute graft ver-
sus host reaction [71-73], myocardial infarct [74-76], limb
ischemia [77,78], osteogenesis imperfecta [79-81], and for
neurological disorders such as stroke [82-84], cerebral
palsy [85], amyotrophic lateral sclerosis [86,87] and
multiple sclerosis [88-91]. A current search gives a total
of 298 clinical studies using different sources of MSCs
and mesenchymal stromal cells (www.clinicaltrials.gov).
In most of these clinical trials, MSCs are used in an
autologous and allogenic ex vivo transplantation setting
for repair.
Akin to MSCs, pericytes have been reported to be able

to differentiate into osteoblasts [25,63,64], chondrocytes,
adipocytes [25,65,66], muscle cells [25,92], but also neu-
roectodermal lineages [32,93].
It remains to be answered whether and to what extent

these described in vitro properties reflect the in vivo
function of perivascular MSCs as these properties might
be altered upon isolation and culture in vitro.

Multipotentiality in vivo
In vivo studies are rare due to the ambiguity in markers,
but there is some promising evidence that suggest that
pericytes may serve as an in vivo source of stem or pro-
genitor cells for adult tissue repair [94,95]. Under patho-
logical conditions, a tissue-specific differentiation capacity
of pericytes has been observed. Pericytes differentiate into
adipocytes during fat tissue injury [29,96], into chondro-
blasts and bone after bone injury [64] and are the progeni-
tors of Leydig cells of the testis [97]. Genetic lineage
tracing reveals that pericytes form odontoblasts during
tooth growth and damage in vivo [46]. They also contri-
bute to myocytes in skeletal muscle during develop-
ment and repair [98] and are more frequent in
muscles of myopathic patients compared to controls
[99]. Furthermore, pericytes are progenitors of follicu-
lar dendritic cells in lymphoid follicles [100], they are
the origin of myofibroblasts in kidney fibrosis [101],
and at least a subtype of pericytes contributes to scar
formation in the spinal cord [102]. Resident perivascu-
lar MSC give rise to myofibroblasts following lens
injury and contribute to fibrogenesis in human lung
allografts [103,104] (for summary see Table 2).

Immunomodulation
Besides their ability to differentiate into cell types from
different lineages, isolated MSCs also have an immuno-
modulatory role [12,21-23].

http://www.clinicaltrials.gov


Figure 1 The adult human brain vascular niche contains a novel progenitor with multi-lineage capacity that appears to represent both
MSCs and pericytes. These progenitor cells give rise to both neuronal lineage (astrocyte, oligodendrocytes, and neurons) and mesodermal
lineage (adipocytes, chondroblasts, and osteoblasts) at the clonal level.
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They have been shown to have an inhibitory effect on
lymphocytes [105,106], on B-cells [107], dendritic cells
[108] and natural killer cells [109,110]. Furthermore,
MSCs modulate the inflammatory response of microglial
cells, resident immunocompetent cells in the brain
[111]. Mesenchymal stem cells hereby inhibit the
Table 2 In vivo multipotency of pericytes/perivascular MSC

Cell origin Markers Experimen

Vascular progenitor Nestin Chemical ab

Pericyte Alkaline Phospatase Muscle inju

Vascular pericyte Stro-1 Bone injury

Pericyte NG2 Dental injur

Type A pericyte Glast Spinal cord

Pericyte PPARγ Genetic fate

Pericyte Foxd1 PDGFR-β Kidney Injur

Perivascular progenitor PDGFR-β Genetic fate
expression and release of inflammatory molecules and
stress-associated proteins and change microglial cells
from a detrimental to a more neuroprotective pheno-
type [112]. Thus, these immunomodulatory features of
MSCs may have an indirect neuroprotective effect
[113]. Mesenchymal stem cells lead to amelioration in
tal model Differentiated cell type Reference

lation in testis Leydig cells [97]

ry Myoblast/satellite cell [98]

Chondroblast/ osteoblast [64]

y Odontoblast [46]

injury Scar tissue/Fibroblast [102]

mapping White Adipocyte [29]

y Myofibroblast [101]

mapping Follicular dendritic cell [100]
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multiple sclerosis through inhibition of the pathogenic
immune response and the release of neuroprotective
molecules [22]. They have also been shown to su-
ppress ischemia-induced inflammation [114]. The neu-
roprotective effect of MSCs in stroke was also
mediated via a change in resident microglia to a more
neuroprotective type [115]. Furthermore, in a model
of Parkinson’s disease, dopaminergic cell death that
was induced by activated microglia could be prevented
by grafting MSCs [116]. Similar results, demonstrating
decreased activation of astrocytes and microglia by
MSCs in a mouse model of multiple system atrophy
have recently been reported [117,118].
Similarly to MSCs, pericytes have been described to

regulate T-cell activation, recruit T- and B-lymphocytes to
areas of tissue injury [119,120] and control transmigration
of thymocytes from the thymus across the blood vessel
wall [121]. In addition, brain pericytes have been shown to
secrete different cytokines in vitro [122].
Should these immunomodulatory features be present

on resident perivascular MSCs in vivo, they could indeed
play a primary role in inhibiting immunosurveillance
and thereby establish a regenerative environment [11].

Pro-regeneration
A third, and most important feature of isolated MSCs
is their pro-regenerative capacity. Mesenchymal stem
cells secrete a large number of cytokines, growth fac-
tors, mitogens and angiogenic factors [12,95]. This
raises the question of whether MSCs could also be
promoting a regenerative environment by production
of growth factors and cytokines in vivo [11].
The most interesting scientific question now is

whether their in vivo perivascular counterparts hold
similar properties mentioned above. It is conceivable
that resident perivascular MSCs support the local ASC
niche either directly by differentiating into tissue-specific
cells as indicated above, or indirectly, by regulating the
stem cell niche [123]. Interestingly, pericytes have been
shown to contribute to tissue repair and wound healing
in vivo by substantially enhancing the tissue-regenerative
capacity of human epidermal cells [124].
The HSC niche, where MSCs were first identified, is

currently the best characterized example of an ASC niche
in vivo function of resident MSC in the HSC niche was re-
cently revealed by lineage-tracing using nestin as a marker
for MSC. This data suggests that resident MSCs are re-
sponsible for the maintenance of the HSC niche by regu-
lating the proliferation and survival of HSCs [16].

Do perivascular mesenchymal stem cells/pericytes
play a role in brain repair?
Whether the properties and functions of perivascular
MSCs vary between tissues or whether these cells are
biologically equivalent will need to be systematically
evaluated. The diversity of pericytes is largely unex-
plored, but there are indications that pericytes in the
brain may have specific potential and functions
[119,123,125-127]. The brain is one of the most vascu-
larized organs and pericytes have a higher density in the
brain, and the brain has a lower endothelial/pericyte
ratio compared to other organs [38]. Consistent with
their higher density, pericytes appear to act as a key
modulator of the neurovascular unit in the brain [123].
Neurovascular pericytes regulate the blood brain barrier
[123,126], capillary flow, angiogenesis [128] and immune
responses [37,39,41,129,130]. Minor disturbances in the
blood vessels can compromise neuronal performance be-
cause of the importance of the vasculature for neuronal
homeostasis, delivery of oxygen and nutrients, removal
of metabolic waste and preservation of the neuronal
microenvironment [131]. This is reflected in the fact that
vascular damage in pericyte-deficient mice preceeds
neuronal damage and neurodegeneration, suggesting
that neurodegeneration may develop secondary to dis-
turbances in cerebral vascular homeostasis [127]. Thus,
microvascular dysfunction due to pericyte degeneration
may initiate neurodegenerative changes [123]. Resident
perivascular MSCs may thus regulate the local ASC
niche. Another hypothesis could be that pericytes
respond to injury by tissue-specific differentiation as evi-
dent from other organs (Table 2). Pericytes have been
shown to migrate in response to traumatic brain in-
jury [132]. Recent studies that have isolated brain
pericytes indicate that the differentiation potential of
brain-derived pericytes in vitro extends beyond the
mesodermal lineage to the neuroectodermal lineage
[32,93]. This may at least partially reflect their inhe-
rent differentiation potential and could, in analogy to
emerging studies in other tissues, possibly indicate
their in vivo capacity.
However, the role that is played by these cells in

brain development and repair remains most specula-
tive and yet, represents one of the most fascinating
questions to be raised. It now remains to be shown
whether perivascular MSCs/pericytes resident in the
brain have similar or equal functional characteristics
in vivo, supporting the stem cell niche and controlling
stem cell proliferation and differentiation. This could
place resident perivascular MSCs in a crucial position
for contributing to brain disease and regeneration, as
much pathology has been associated with a dysregula-
tion of the stem cell niche.
We believe that the properties of these cells observed

in other tissues may also apply to the brain. Thus, from
a therapeutic perspective, resident MSCs emerge as
an extremely promising target or agent for tissue
regeneration.
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Conclusion
In a time when the world’s population is aging, the
health burden of neurodegenerative diseases such as
Alzheimer’s disease and Parkinson’s disease but also con-
ditions such as stroke is constantly increasing. To man-
age the larger number of patients and the connected
health costs, brain research will have to direct a sharp
focus towards developing neurorestorative and neuro-
protective treatments.
In the next few years, the focus will be on studying the

in vivo function of the newly discovered perivascular
stem cells in the brain. Evidence from in vitro work and
in vivo observations in other tissues gives hope that
these perivascular stem cells may play a key role for re-
generation of the brain in response to trauma, injury or
degeneration. The aim is to control and enhance any
pro-regenerative capacities of these cells by delivering
therapies targeted at stimulating the cells to relocate to
sites of injury or damage.
To understand and harness the reparative potential of

ASCs in the brain will be key in setting the course for fu-
ture research on neurodegeneration and neurorestoration.
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